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Abstract
Two efficient and scalable numerical solution methods will be compared using exact Jacobians to solve the fully coupled
Newton systems arising during fully implicit discretization of the equations for two-phase flow in porous media. These
methods use algebraic multigrid (AMG) to solve the linear systems in every Newton step. The algebraic multigrid methods
rely on (i) a Schur Complement Reduction (SCR-AMG) and (ii) a Constrained Pressure Residual method (CPR-AMG)
to decouple elliptic and hyperbolic contributions. Both methods employ automatic differentiation (AD) to calculate exact
Jacobians and are compared with finite difference (FD) approximations of the Jacobian. The superiority of AD is shown by
several numerical test cases from the field of CO2 geo-sequestration comprising two- and three-dimensional examples.
A weak scaling test on JUQUEEN, a BlueGene/Q supercomputer, demonstrates the efficiency and scalability of both
methods. To achieve maximum comparability and reproducibility, the Portable Extensible Toolkit for Scientific Computation
(PETSc) is used as framework for the comparison of all solvers.
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1 Introduction

Applications for two-phase flow in porous media are found
in numerous scientific fields, e.g., geothermal energy, the
remediation of groundwater contamination by non-aqueous
phase liquids (NAPLs), hydrogen emission due to barrel
corrosion during nuclear waste management, enhanced oil
recovery where oil is produced by the injection of water, and
production of oil and gas fields as well as geological storage
of CO2. In geothermal energy, high-enthalpy reservoirs may
contain water as liquid and vapor. Successful production
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requires an assessment of the behavior of the phases
over time. Remediation of NAPLs during groundwater
contamination may involve the injection of hot steam. This
reduces the viscosity of the NAPLs and supports their
easier transport out of the reservoir. Here, groundwater,
injected steam, and the NAPL are the existing phases.
During nuclear waste storage, brines may corrode the
storage containers, finally resulting in the emission of H2.
Enhanced oil recovery makes use of water or CO2 injection
to increase the oil yield. In this scenario, water, oil, and
possibly CO2 are the existing phases. In this context, the
petroleum industry created the first numerical multiphase
flow simulators, described by Douglas Jr. et al. as early as
1959 [17]. Both Aziz and Settari [1] and Chavent and Jaffré
[13] summarize in detail the equations for flow and transport
in petroleum reservoirs.

In the test examples, the focus is on the geological
sequestration of CO2. Here, brine-saturated sandstone
reservoirs at depths greater than 800 m may provide a
safe storage site for supercritical CO2. Safety assessments
require a prediction of the propagation of the CO2

plume in the subsurface. Given a safe storage site, the
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geological sequestration of CO2 is one option to mitigate
anthropogenic effects of greenhouse gas emissions on our
climate. Compared with the other applications, this example
is particularly challenging because of the high injection
rates and the fact that CO2 is injected but no other
fluids are produced. Both aspects result in high reservoir
overpressures.

The fully implicit discretization of the fully coupled
formulation for two-phase flow equations yields a system
of nonlinear algebraic equations. Newton’s method is used
to linearize this system. This requires solving a system
of linear equations in each time step and each Newton
step. This linear system is often extremely ill-conditioned
and asymmetric and couples strongly the different physical
quantities, e.g., pressure and saturation.

Historically, ILU preconditioned methods were used
to solve these systems due to their general applicability.
Unfortunately, they are neither necessarily efficient nor
scalable (cf. [40] Chapter 10.3 on ILU factorization
preconditioners). As an alternative, direct methods are
known for their robustness and reliability. However, they
also require a considerable amount of computation, on the
order of O(n2), and memory, on the order of O(n4/3)

where n is the number of unknowns (cf. [33]). In contrast,
multigrid methods promise linear complexity for certain
problems and thus belong to the most efficient class of
methods (cf. [24]).

Since the exact solution of the Newton system is not
required, iterative methods such as GMRES [41], BiCGStab
[46] or FGMRES [39] are used which approximate the
solution only to a certain accuracy. The most time-
consuming parts of the numerical simulation are the
computation of the Jacobian and the subsequent solution of
the resulting linear systems. We focus our attention on these
two computational kernels to optimize the solution time.

The linear system contains both hyperbolic and almost
elliptic properties. The properties of the matrix are
described in, e.g., [6, 16, 29] as well as [45] and summarized
by [10].

Two-stage preconditioners, such as the Constrained Pres-
sure Residual method [47, 48], decouple these contributions
from each other resulting in preconditioners implicit in pres-
sure and explicit in saturation (IMPES). In a first stage,
the pressure equation is solved. The overall solution is then
updated with the result from this stage and in a second
stage, the total system is solved for the remaining saturation
variables. The elliptic subpart can be solved efficiently by
AMG, followed by an ILU-based solution of the full system.
IMPES schemes may impose severe restrictions on time step
size due to the explicit handling of the saturation equation.
Jenny et al. [27], propose a sequential fully implicit (SFI)
multi-scale finite volume (MSFV) method to avoid these
restrictions.

Kayum et al. [28], compare various CPR-AMG strategies
together with different decoupling and preconditioning
strategies, such as Alternate Block Factorization (ABF),
Quasi IMPES (QI) and Dynamic RowSum (DRS). Other
approaches making use of AMG are presented by Stüben
et al. [45], who discuss strategies for solving fully implicit
formulations that possess the elliptic properties required
by AMG. Additionally, they present an iterative coupling
scheme that is faster and also feasible for AMG as an
alternative to fully implicit formulations. Mishev et al.
[34], use multiplicative and additive overlapping Schwarz
preconditioners together with AMG, while Gries [21] uses
system-AMG with DRS preconditioning for an efficient
solution of the equations in reservoir simulation. Next to
these AMG-based approaches, Klı́e et al. [30] present a
physics-based two-stage percolation aggregation (2SPA)
preconditioner and compare it with classical ILU-based
preconditioning.

Recently, methods relying on a Schur Complement
Reduction have also been used to solve two-phase flow
equations (cf. [10]). We present a variant using AMG on
the pressure field as a preconditioner and AMG as a solver
on the Schur complement, preconditioned by the saturation
block. In addition to AMG, geometric multigrid has also
been applied to the fully coupled, fully implicit reservoir
equations (cf. [5, 6]). However, we focus here on AMG due
to its general applicability.

Automatic differentiation (AD) (cf. [37] and [23])
allows for an elegant, exact computation of the Jacobians
during the Newton step. We use Tapenade (cf. [25]) to
perform the required source-code transformation. Given
a function F representing the discretized PDE systems,
this source-code transformation generates a function dF,
calculating the derivative of the function F. This results
from applying the chain rule: every source code can be
viewed as a concatenation of basic functions, such as
multiplication, addition, exponential, or sine functions.
These basic functions have a simple derivative and with the
chain rule the complete derivative is easily computed.

The advantage of AD over FD is the exactness of the
Jacobian. No additional approximation errors are introduced
as would be the case for a FD approximation. In addition,
it is not necessary to choose a certain finite difference step
size, which should minimize the FD error over the entire
computation time. Additionally, the advantage of AD over a
hand-coded exact Jacobian is its error robustness. Since the
derivative of the source code is generated automatically, no
errors can be introduced by manual differentiation.

Although automatic in principle, the derivative genera-
tion by AD requires some preparation of the source code,
such as specifying the independent and dependent variables,
as well as the derivative quantities to be computed. Depend-
ing on the code and how well-defined its interfaces are, this
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may require some effort. Nevertheless, the advantages of
AD outweigh these additional preparations by far.

This paper is organized as follows: In the first section,
we introduce the governing equations and different param-
eters. Subsequently, we describe the numerical method and
highlight the use of exact Jacobians by automatic differen-
tiation (AD). The last section presents three different test
cases: (i) CO2 injection into a two-dimensional domain
for an advection- and a diffusion-dominated test case;
(ii) model 2 of the SPE10 benchmark problem, referred
to as SPE10B; and (iii) CO2 injection into the Sleip-
ner reservoir. The conclusion highlights the advantages
of AD, as well as the competitiveness of SCR-AMG com-
pared with classical CPR-AMG.

In the Appendix, we show the command line options
for PETSc (cf. [2–4]) for selecting the different solvers.
Additionally, the Buckley-Leverett problem (cf. [9]) is
used for code verification. Finally, gravitational and CFL
numbers are discussed for the different test examples and
the influence of anisotropy is examined.

2Mathematical model

The system of partial differential equations (PDEs) that
governs two-phase flow in porous media consists of two
mass balances, one for the wetting (w), water phase, and
one for the non-wetting (n), gas phase. The choice of
primary variables is typically a combination of a pressure
and a saturation. We use a water pressure (pw), gas
saturation (Sn) formulation. Density ρα and viscosity μα ,
α ∈ {w, n} are either constant or depend on pressure and
temperature. Permeability K may be either homogeneous or
heterogeneous in space and either isotropic or anisotropic
in different directions. Porosity φ may be homogeneous or
heterogeneous in space. Flow through the porous medium
is governed by the usual extension of Darcy’s law [15]
for multiphase systems by relative permeabilities krα , a
modification factor for the absolute permeability (cf. [7]).
The volumetric flow rates vw and vn are defined as:

vw = − krw

μw
K (∇pw − ρwg) ,

vn = − krn

μn
K (∇pn − ρng) , (1)

with krα denoting relative permeabilities, K the tensor of
absolute permeabilities, and g = (0, 0, −g)T gravity. The
system of non-linear coupled partial differential equations
then reads as such:

φ
∂(ρwSw)

∂t
+ div(ρwvw) = qw

φ
∂(ρnSn)

∂t
+ div(ρnvn) = qn. (2)

This system is supplemented by algebraic constraints for the
saturations, which sum up to 1:

Sw + Sn = 1,

and the relation between wetting and non-wetting pressure
by the capillary pressure function:

pc(Sw) = pn − pw.

Applying these constraints, inserting the Darcy velocities
and choosing water pressure pw and gas saturation Sn as
primary variables, we have:

φ
∂(ρw(1 − Sn))

∂t
− div

(
ρw

krw

μw

K (∇pw − ρwg)
)

= qw

φ
∂(ρnSn)

∂t
− div

(
ρn

krn

μn

K (∇(pc + pw) − ρng)
)

= qn.

(3)

2.1 Relative permeability and capillary pressure

The two most common approaches for modeling capillary
pressure pc were proposed by Brooks and Corey [8] and
van Genuchten [20]. The Brooks-Corey model for capillary
pressure:

pc = pdS
−1/λ
e (4)

is often combined with the approach by Burdine [11] for
relative permeabilities:

krw = S
2+3λ

λ
e (5)

krn = (1 − Se)
2
(

1 − S
2+λ
λ

e

)
, (6)

while the van Genuchten model for capillary pressure:

pc = 1

τ
(S

−1/m
e − 1)1/n (7)

is often combined with the relative permeability model after
Mualem [35]:

krw = √
Se

(
1 − (1 − S

1/m
e )m

)2
(8)

krn = (1 − Se)
1
3

(
1 − S

1
m
e

)2m

. (9)

Here, Se is the effective saturation:

Se = Sw − Swr

1 − Swr − Snr

, (10)

where Swr and Snr are the residual wetting and non-
wetting saturations. In the Brooks-Corey model, pd is the
displacement pressure and λ the pore size distribution index.
The displacement or entry pressure pd is the pressure
needed by the non-wetting fluid to displace the wetting fluid
from the largest pore. For large and small values, the pore
size distribution index λ corresponds to a relatively narrow
or wide pore size distribution respectively.
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Fig. 1 Relative permeability-saturation relations after [8] and [20]

The van Genuchten model uses parameters τ , which can
be seen as an inverse entry pressure, and the parameter m,
often chosen as m = 1 − 1

n
. Ideally, these parameters are

determined by experiments.
Figures 1 and 2 show the relative permeability and

capillary pressure functions of the two models.

3 Numerical method using exact Jacobians

We use the implicit Euler method as time discretization and
a cell-centered finite volume method as space discretization.
Let uα = φ ρα

(
δαw + (−1)δαwSn

)
and vα = −λαK(∇pw+

δαn∇pc − ραg), where λα = krα

μα
is the mobility of phase α

and δ is the Kronecker delta. The domain 	 is discretized
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Fig. 2 Capillary pressure after [8] and [20]

into cells Vi . For a cell Vi , the integral form of Eq. 3 reads
as:
d

dt

∫
Vi

uα dV +
∫

Vi

div(ραvα) dV =
∫

Vi

qα dV

α ∈ {w, n}, (11)

with qα representing source and sink terms of the (non)-
wetting phase. Using Green’s theorem, we transform the
volume integral into a surface integral:∫

Vi

div(ραvα) dV =
∫

∂Vi

ραvα · n d
.

Applying the midpoint rule for the volume integrals, a two-
point flux approximation for the boundary integral, and the
implicit Euler method for the time derivative, we have:

un+1
α,i − un

α,i

Δt
|Vi |

+
∑
j

(
ρα

krα

μα

K

)n+1

ij

{
pα,j − pα,i

di + dj

− ρα,ij gij

}n+1

|Aij |

−qn+1
α,i Vi = 0, (12)

with Δt the time step size of time step n, |Vi | the volume
of cell Vi , |Aij | the area of the surface between cell Vi and
Vj , and di the distance from the center of cell Vi to the
interface between cell Vi and Vj . An appropriate averaging
at the interface between cell i and j is needed for quantities
with indices ij . The mobilities are fully upwinded:

λα,ij =
{

λα,j if ψα,j − ψα,i ≥ 0

λα,i if ψα,j − ψα,i < 0,
(13)

with ψα = pw+δαnpc−ραg. An arithmetic average ρα,ij =
ρα,i+ρα,j

2 is used for the densities and a harmonic average for

the absolute permeability: Kij = 2
(

1
Ki

+ 1
Kj

)−1
. We end

up with a system of nonlinear equations:

F(x) = 0, (14)

where x = (pw,Sn)
T ∈ R

2N is the vector of unknowns,
and the vector function F = (F1,F2)

T : R
2N → R

2N

consists of the two discretized equations for the water and
gas phases. Newton’s method is used for linearization of the
non-linear system Eq. 14. Thus, in every Newton step, the
linear system:

∂F(xk)

∂xk

Δxk = −F(xk) (15)

is solved, where Δxk equals xk+1 − xk in the kth Newton
step. The Jacobian J := ∂F(x)

∂x is of the form:

J =
(

∂F1
∂pw

∂F1
∂Sn

∂F2
∂pw

∂F2
∂Sn

)
. (16)

The sparsity pattern of the Jacobian J can be seen in
Fig. 3. The 2 × 2 block structure with seven diagonals
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Fig. 3 Sparsity pattern of the Jacobian J with 2 × 2 block structure

in each block results from the three-dimensional space
discretization on a regular grid with 5 × 5 × 5 cubes and
thus J ∈ R

250×250. The J12 block has only two diagonals
due to the upwind scheme used. The J22 block has the full
seven diagonals because this example has non-zero capillary
pressure.

The Jacobian in Eq. 16 is modified in such a way that
F1 is replaced by G1 = 1

ρw
F1 + 1

ρn
F2 in the first N rows.

The second N rows are left as is: G2 = F2. Thus, we add
Eqs. 1 and 2 of system Eq. 3. In the special case of constant
densities, this eliminates the time derivatives and yields a
purely elliptic pressure block J11. The different entries of
the Jacobian have the form:

∂G1

∂pw

= −div

((
krw(Sw)

μw

+ krn(Sw)

μn

)
K∇

)
(17)

∂G1

∂Sn

= −div

(
1

μw

dkrw(Sw)

dSn

K (∇pw − ρwg)
)

−div

(
1

μn

dkrn(Sw)

dSn

K (∇(pc + pw) − ρng)

+ 1

μn

krn(Sw)K∇ dpc

dSn

)
(18)

∂G2

∂pw

= −div

(
ρn

μn

krn(Sw)K∇
)

(19)

∂G2

∂Sn

= −div

(
ρn

μn

dkrn(Sw)

dSn

K (∇(pc + pw) − ρng)

+ ρn

μn

krn(Sw)K∇ dpc

dSn

)
. (20)

To verify the correctness of the exact derivatives, we
compare the Jacobian computed by finite differences (FD),

JFD, with the Jacobian computed by AD, JAD. We vary
the step size h for FD logarithmically with equidistant
steps of 0.5 in the interval [10−18, 1]. We compare the
relative error of the Jacobian computed with AD, JAD, to
the finite difference (FD) Jacobian in the maximum norm
for matrices |JAD−JFD|∞|JAD|∞ . Figure 4 shows the relative error
for the different step sizes h.

The minimal error is obtained for a step size h = 10−8.
This is also a very typical choice for the FD step size.
Nevertheless, this step size is only optimal for the first
Newton step in the first time step. Later iterations may
require different optimal step sizes. Using AD, we need not
worry about the choice of the step size h, as we always use
the exact derivative and not an approximation.

3.1 Linear solvers and preconditioners

The linear solver is at the heart of the simulation code. Once
the Jacobian is formed, the solution of a linear system is to
be performed.

For large systems, direct methods break down due to
memory consumption and runtime. Block ILU methods are
in principle scalable, but the preconditioner deteriorates
with the increasing number of blocks. Using ILU as a
preconditioner for the full system also does not scale
since the computation of the ILU decomposition is not
scalable. As a consequence, we need a solver which is
known to scale well, such as multigrid methods for elliptic
problems. However, these methods need to be applied
carefully since the coupled system is rather a degenerated
parabolic/hyperbolic one than an elliptic one.

We compare two different solvers: (1) a Schur Com-
plement Reduction method (SCR-AMG) relying on the
preconditioner package Hypre [18, 19] and its AMG solver
BoomerAMG [26] as preconditioner and solver and (2) a

Fig. 4 Relative error between JAD and JFD computed with varying
step sizes h ∈ [10−18, 1]
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Constrained Pressure Residual method also making use of
BoomerAMG for the pressure block and a block Jacobi
ILU preconditioner, with no level of fill in (known as
ILU(0)), for the saturation block. These two solvers are then
combined with either a Jacobian formed by AD or FD.

3.2 Schur complement reduction

The method is implemented with the fieldsplit precondi-
tioner from PETSc (cf. [3] Chapter 4.5 on solving block
matrices). This preconditioner allows addressing the dif-
ferent fields, in our case pressure and saturation, of a
multi-physics simulation with appropriate solvers. On the
pressure field, we only apply Hypre/BoomerAMG as a pre-
conditioner and do not use an iterative method. The Schur
complement is preconditioned by the J22 block of the Jaco-
bian and Hypre/BoomerAMG is used as a solver, which
terminates after a maximum of 10 iterations or when the
residual is decreased by two orders of magnitude.

Given a matrix J =
(

J11 J12

J21 J22

)
∈ R

2N×2N the inverse of

this matrix can be written as:

J−1 =
[(

I 0
J21J

−1
11 I

)(
J11 0
0 S

) (
I J−1

11 J12

0 I

)]−1

(21)

=
(

I −J−1
11 J12

0 I

) (
J−1

11 0
0 S−1

) (
I 0

−J21J
−1
11 I

)
(22)

with the Schur complement S = J22 − J21J
−1
11 J12 of the

block J11. Thus, the solution of a 2N × 2N system can be
reduced to the solution of two N × N systems. For this
solution method to be effective, a good preconditioner for
the Schur complement matrix is needed. Note that never any
of the matrices is actually inverted but rather a linear system
is solved, since we do not need the actual matrix, but rather
its action on a vector.

We use PETSc option “a11” and consequently J22 to
construct the preconditioner for the Schur complement. This
option is justified since all the derivatives in the Jacobian
reduce to the Laplacian in case we assume all parameters
to be constant. This yields an effective preconditioner
for the Schur complement and consequently an overall
very effective solution method. Appendix A.1 describes
the different PETSc options to allow for maximum
comparability and reproducibility.

3.3 Constrained pressure residual

In reservoir simulation, the Constrained Pressure Residual
method (CPR-AMG) is often used as a solver for the
occurring linear systems [22, 31, 32, 42, 45]. The idea is to
apply AMG to the elliptic contributions and an ILU method
to the hyperbolic part. CPR-AMG is implemented by a

composite preconditioner consisting of the fieldsplit method
and a block Jacobi ILU method. The fieldsplit method
is again used to separate the pressure and the saturation
fields. But this time, we use it only to select the pressure
field. For this field, we apply Hypre’s BoomerAMG as a
solver. The saturation field is omitted. Finally, the two fields
are combined in an additive way. In general, the additive

fieldsplit type solves the J11 and J22 block

(
J−1

11 0
0 J−1

22

)
.

Here, the inverse indicates the solution of a (preconditioned)
linear system.

Next, the fieldsplit solution is combined with a block
Jacobi ILU method in a composite preconditioner of mul-
tiplicative type. Let P1 and P2 be the two preconditioners.
Then, the effect of the combined preconditioner P on a
vector x, y = Px, can be obtained by calculating:

y = P1x (23)

w1 = x − Ay (24)

y = y + P2w1. (25)

4 Numerical simulations

For comparison, all methods are implemented together
with PETSc (the Portable Extensible Toolkit for Scientific
Computation) [2–4]. This allows a change of the linear
solver via a modification of only a few command line
options and ensures maximum comparability and easy
reproducibility of the results. We use PETSc 3.9.0 compiled
with GCC 4.8.5 and OpenMPI 1.10.4. Test cases 1 to 3
run on Intel Xeon E5-2680 processors with 2.70 GHz.
Each node consists of two processors with 8 cores. Test
case 1 uses one node, i.e., 16 cores, while test cases 2
and 3 use four nodes, i.e., 64 cores in total. JUQUEEN, a
BlueGene/Q supercomputer, is used for the weak scaling
test comprising one node (16 cores) up to 64 nodes (1 024
cores). On JUQUEEN, we use PETSc development GIT
revision v3.8.3-1672-gb907f15 compiled with GCC 4.8.1
and MPICH2. In this GIT revision, the non-scalable parts of
PETSc’s MatCreateSubMatrix found in [12] are fixed.

SHEMAT-Suite [14, 38], a forward and inverse modeling
code for the simulation of reactive flow, heat, and species
transport in porous media is used as a platform for the
implementation of the multiphase flow equations.

All test examples use constant fluid and gas properties.
Permeability tensor is isotropic for the two-dimensional test
cases and anisotropic for the Sleipner and SPE10B test
case. Anisotropy factors reach values of 35 for the Sleipner
case and 10,000 for the SPE10B case. CO2 and brine
phase are immiscible. Discontinuous capillary pressure is
not considered. The simulations use rectangular grids with
variable cell sizes.
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Fig. 5 Porosity and corresponding permeability distribution after [36]

Fig. 6 Porosity field (top) and corresponding permeability field (bottom) after Eq. 26

4.1 Test case 1: Two-dimensional CO2 injection

Two-dimensional CO2 injection into a heterogeneous
porous medium is examined. The domain of interest extends
600 m in x-direction and 100 m in z-direction with a
thickness of 1 m in y-direction. The discretization consists
of 2.5 m × 2.5 m blocks, yielding 240 cells in x-direction
and 40 cells in z-direction, comprising 9600 cells in total.
Thus, this problem has 19,200 degrees of freedom.

Initial and boundary conditions Initially, there is no CO2,
i.e., Sn = 0. Water pressure pw is hydrostatic with the top
of the domain situated at a depth of 800 m. This results
in pressures at which CO2 is in a supercritical state with
liquid-like densities. Top and bottom boundaries have no-
flow conditions, assuming the presence of an impermeable
caprock above and below the reservoir. The left boundary
is also impermeable and CO2 is injected through the
lower 5 cells, i.e., 12.5 m, with a total injection rate of
0.2 kg s−1. The right boundary is open and water pressure
and gas saturation are held constant at their initial values.
Table 3 shows rock properties, as well as the constant
fluid properties for the incompressible simulations. The
advection-dominated case uses an entry pressure of pd =
0 Pa and the diffusion-dominated case of pd = 106 Pa.

Heterogeneous porosity and permeability distribution To
model heterogeneity, we sample the porosity field from the
porosity distribution shown in Fig. 5. The corresponding
permeability distribution is calculated after [36] with a
fractal model valid for a Rotliegend sandstone typical of the
northeastern German basin:

K = 155 φ + 37 315 φ2 + 630 (10 φ)10. (26)
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Fig. 7 Saturation distribution Sn

after 67 days of injection with
0.2 kg s−1

Figure 6 shows the porosity field and the corresponding
permeability field calculated after Eq. 26. Figure 7 shows
injection into the heterogeneous porous medium. The
permeability distribution clearly influences the shape of the
CO2 plume.

Tables 1 and 2 show the number of time steps (TS),
number of Newton iterations (NI), and linear iterations (LI),
as well as the total time to solution for both test cases,
namely the advection- and diffusion-dominated ones. Both
CPR-AMG and SCR-AMG profit from the exact Jacobian
with fewer Newton iterations and fewer linear iterations.
The time to solution is also better using AD compared with
FD. For the advection-dominated case, the speedup is 1.17
for SCR-AMG and 1.22 for CPR-AMG when comparing
AD and FD. Similarly, for the diffusion-dominated case, the
corresponding speedups are 1.56 for SCR-AMG and 1.51
for CPR-AMG.

Comparing the advection-dominated case from Table 1
with the diffusion-dominated case from Table 2, CPR-AMG
is faster in the advection case (speedup of 2.35 (AD) and
2.26 (FD)) whereas SCR-AMG is faster in the diffusion case
(speedup of 1.51 (AD) and 1.45 (FD)).

4.2 Test case 2: SPE10B problem

The 10th SPE comparative solution project [44] comprises
a three-dimensional domain of dimensions 365.76 m ×
670.56 m × 51.816 m. This domain is discretized into 60 ×
220 × 85 cells, with one cell having a size of 6.096 m ×
3.048 m × 0.6096 m. This gives 1,122,000 cells yielding
2,244,000 unknowns. Figure 8 shows the permeability
distribution. We inject CO2 at a rate of 6.62 kg s−1 at the

Table 1 Performance of different solvers for advection-dominated
case where TS is number of time steps, NI number of nonlinear
iterations, LI number of linear iterations, and total simulation time in
seconds

Solver TS NI LI LI/NI NI/TS Time (s)

SCR-AMG (FD) 27 539 3992 7.40 19.96 208.84

SCR-AMG (AD) 27 509 3817 7.49 18.85 177.82

CPR-AMG (FD) 27 539 7146 13.26 19.96 92.31

CPR-AMG (AD) 27 509 6775 13.31 18.85 75.67

center of the domain along the entire z-range, i.e., into 85
cells. The initial CO2 saturation is zero and water pressure
is hydrostatic with the top of the domain lying at a depth
of 3.6 km. The upper and lower boundaries are closed while
the other boundaries are open. The simulation time is 2000
days. Figure 9 shows CO2 saturation distribution after 1060
days of injection.

This test case is particularly challenging since it covers
a permeability range of more than ten orders of magnitude.
Thus, only methods using AD are able to finish the
simulation in the allowed compute time of 72 h. Within this
period, the methods using the FD Jacobian only manage
to simulate 25.3% (SCR-AMG) and 44.9% (CPR-AMG)
of the total simulation time. CPR-AMG performs better
than SCR-AMG due to zero capillary pressure used in
this test example. The speedup for AD is 5.81 comparing
CPR-AMG and SCR-AMG. All results are summarized in
Table 4.

4.3 Test case 3: CO2 injection into the Sleipner
reservoir

This test case simulates injection of CO2 into the Sleipner
gas field [43] operated by Statoil and situated in the
Norwegian part of the North Sea. The extracted gas contains
high amounts of CO2. This CO2 is not vented into the
atmosphere, but rather compressed and reinjected into a
permeable sandstone of the Utsira formation, approximately
800 m below the seabed. We use a discretization of 65 ×
119 × 50 cells, totaling 386, 750 cells with cell sizes
of 50 m × 50 m × 1 m. This yields a domain size of
3250 m × 5950 m × 50 m. Assuming an annual injection
of approximately 0.9 Mt, we prescribe an injection rate

Table 2 Performance of different solvers for diffusion-dominated case
where TS is number of time steps, NI number of nonlinear iterations,
LI number of linear iterations, and total simulation time in seconds

Solver TS NI LI LI/NI NI/TS Time (s)

SCR-AMG (FD) 27 807 3217 3.99 29.88 119.14

SCR-AMG (AD) 26 731 2810 3.84 28.11 76.33

CPR-AMG (FD) 29 858 13265 15.46 29.58 173.03

CPR-AMG (AD) 26 733 11364 15.50 28.19 114.91
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Table 3 Model parameters for test case 1 as well as fluid and rock properties

Properties Parameter Value Parameter Value

Model Mesh size 240 × 1 × 40 Cell size 2.5 m

Total dimensions 600 m×1 m×100 m Injection rate (over 12.5 m) 0.2 kg s−1

Simulation time 67 days Time step variable

Fluid/rock CO2 density ρn 450.0 kg m−3 CO2 viscosity μn 3.0×10−5 Pa s

Water density ρw 1000.0 kg m−3 Water viscosity μw 1.0×10−3 Pa s

Porosity φ 0.2 Permeability K Heterogeneous

Pore size distribution parameter λ 2 Entry pressure pd 0 Pa/106 Pa

of 28 kg s−1 and simulate for a period of 30 years.
Figure 10 shows the permeability distribution, as well as the
topology of the sandstone layer. Figure 11 shows saturation
distribution in layer 43 after injecting 28 kg s−1 of CO2 for
17 years.

Fig. 8 Horizontal (top) and vertical (bottom) permeability distribution
of SPE10B (bottom view)

Table 5 shows the comparison of SCR-AMG and CPR-
AMG using AD and FD for the Sleipner case. The speedups
are 1.97 for SCR-AMG and 3.12 for CPR-AMG, comparing
AD and FD. This test case favors SCR-AMG over CPR-
AMG with a speedup of 6.58 (AD) and 10.4 (FD).

5Weak scaling

We compare the Schur Complement Reduction method
(SCR-AMG) and the Constrained Pressure Residual method
(CPR-AMG) on JUQUEEN, a BlueGene/Q supercomputer
from IBM, with 28,672 nodes located in Jülich, Germany.
Each node consists of an IBM PowerPC A2 running at
1.6 GHz with 16 cores and 16 GB of memory. We start
with 16 cores for 393,216 cells and finish with 1024
cores for 25,165,824 cells. We perform five timesteps each
executing the same number of Newton iterations. We omit
I/O completely for this test case, so neither reading the input
file nor the output of computed quantities influences the
overall computation time.

Figure 12 shows efficiency over the number of cells.
Here, efficiency is defined as E = S/N with speedup
S = T1/TN , N the number of cores, T1 time to solution

Fig. 9 CO2 saturation distribution after 1060 days of injection with
6.62 kg s−1

171Comput Geosci (2021) 25:163–177



Table 4 Performance of different solvers for SPE10B test case with TS number of time steps, NI number of nonlinear iterations, LI number of
linear iterations, and total simulation time in hours

Solver TS NI LI LI/NI NI/TS Time (h)

SCR-AMG (FD) 987 42,488 199,269 4.69 43.04 > 72 (25.3% of tend)

SCR-AMG (AD) 392 2071 44,982 21.71 5.28 42.71

CPR-AMG (FD) 1279 51,252 561,667 10.95 40.07 > 72 (44.9% of tend)

CPR-AMG (AD) 452 1 975 78,842 39.92 4.36 7.35

Fig. 10 Permeability distribution of the Sleipner reservoir

Table 5 Performance of different solvers for Sleipner test case with TS
number of time steps, NI number of nonlinear iterations, LI number of
linear iterations, and total simulation time in hours

Solver TS NI LI LI/NI NI/TS Time (h)

SCR-AMG (FD) 442 4075 29,954 7.35 9.21 5.33

SCR-AMG (AD) 442 2366 19,541 8.25 5.35 2.70

CPR-AMG (FD) 3760 24,305 1,256,671 51.70 6.46 55.41

CPR-AMG (AD) 3509 6492 491,901 75.77 1.85 17.76

Fig. 11 Saturation distribution after injecting 28 kg s−1 in layer 43 for
17 years

Fig. 12 Efficiency of SCR-AMG and CPR-AMG over the number
of cells and number of cores compared with ideal efficiency. Note,
efficiency starts at 95 %
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with one core, and TN time to solution with N cores. SCR-
AMG as well as CPR-AMG both have efficiencies above
95%, demonstrating nearly ideal scaling properties.

6 Summary and conclusion

The speedup when using AD instead of FD ranges from
1.17 (SCR-AMG) and 1.22 (CPR-AMG) in the advection-
dominated two-dimensional case up to 1.51 (CPR-AMG)
and 1.56 (SCR-AMG) in the diffusion-dominated two-
dimensional case to speedups of 1.97 (SCR-AMG) and 3.12
(CPR-AMG) for the Sleipner reservoir. These differences
in speedup are due to the different time percentages for the
computation of the Jacobian and time spent in the linear
solver.

The SPE10B problem turns out to be the most
challenging problem. In this case, only the AD code finishes
in the desired simulation time of 72 h. CPR-AMG is in
particular suitable for advection-dominated cases (speedup
of 5.81 in the SPE10B example) compared with SCR-AMG,
whereas SCR-AMG is faster in the diffusion-dominated
cases (speedup of 10.40 (FD) and 6.58 (AD) in the Sleipner
example).

AD always reduces the overall runtime and reduces the
number of Newton iterations and linear iterations. The speed-
up in the Sleipner case is more than threefold when using AD.
Moreover, the SPE10B case could only be solved in time
with AD. In addition, AD circumvents the definition of an
FD step size and the associated approximation errors and
avoids error-prone, hand-coded Jacobians. Consequently,
we would always advise to use AD.

AD together with algebraic multigrid (AMG) makes
these solution methods for the fully coupled, fully implicit
two-phase flow equations highly competitive. Due to
its physics-based splitting approach, the pressure and
saturation field are addressed in an optimal way.

The two presented solvers are both efficient and scalable
with efficiencies above 95% on JUQUEEN. While SCR-
AMG is more suited for diffusion-dominated cases, CPR-
AMG deals with advection-dominated cases better. Through
PETSc, both solvers can be easily modified and enhanced.
For example, the Schur complement solution step for SCR-
AMG by Hypre/BoomerAMG could be replaced by a block
ILU method, accounting for an advection-dominated J22

block. In contrast, for CPR-AMG, the additive fieldsplit
could benefit from an additional solution step on the
saturation field for a J22 block with a strong capillary
pressure derivative.
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Appendix 1: PETSc command line options
for the different solvers

This appendix shows the different command line options
used to invoke the linear solvers in PETSc.

The following options for the weak scaling test are shared
by all the solvers.

-ksp_atol 1e-50 -ksp_rtol 1e-6 -ksp_max_it 100

-ksp_type fgmres

SCR-AMG

-pc_type fieldsplit

-pc_fieldsplit_type schur

-pc_fieldsplit_schur_precondition a11

-fieldsplit_0_ksp_type preonly

-fieldsplit_0_pc_type hypre

-fieldsplit_0_pc_hypre_type boomeramg

-fieldsplit_1_ksp_type gmres

-fieldsplit_1_pc_type hypre

-fieldsplit_1_pc_hypre_type boomeramg

-fieldsplit_1_ksp_max_it 10

-fieldsplit_1_ksp_rtol 1e-2

CPR-AMG

-pc_type composite

-pc_composite_type multiplicative

-pc_composite_pcs fieldsplit,bjacobi

-sub_0_ksp_type fgmres

-sub_0_pc_fieldsplit_type additive

-sub_0_fieldsplit_0_ksp_type gmres

-sub_0_fieldsplit_0_pc_type hypre

-sub_0_fieldsplit_0_pc_hypre_type boomeramg

-sub_0_fieldsplit_1_ksp_type preonly

-sub_0_fieldsplit_1_pc_type none

-sub_1_sub_pc_type ilu
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Fig. 13 Comparison of analytical Buckley-Leverett solution to
numerical results showing grid convergence

Appendix 2: Code verification using
the Buckley-Leverett problem

The Buckley-Leverett problem describes the immiscible
displacement of oil by water in a porous medium (cf. [9]).
It is widely used for the verification of numerical models.
Figure 13 shows the analytical solution for the problem
and compares it with numerical solutions with different cell
sizes. It is clear that the numerical solution approaches the
analytical for increasingly smaller cell sizes.

Appendix 3: Discussion of gravity numbers

The gravitational number is defined as:

Gr = (ρw − ρn) gK

μnvcr
= gravitational forces

viscous forces
(27)

and relates gravitational and viscous forces. Here, vcr = φlcr
tcr

is the characteristic velocity with a characteristic length lcr

and a characteristic time tcr. Permeability is a scalar, which
means that it is assumed to be isotropic.

For our test case 1, we have a reservoir thickness of
100 m, thus lcr = 100 m. Simulation time is 67 days and
consequently tcr = 5, 788, 800 s. Densities are chosen as
ρn = 450 kg m−3 and ρw = 1000 kg m−3. Non-wetting
viscosity is μn = 3.0 × 10−5 Pa s and permeability is K =
10−12 m2. All in all, we have:

Gr = (1000 − 450) · 9.81 · 10−12

3.0 · 10−5 ·
(

0.2·100
67·86400

) ≈ 52.06. (28)

In addition, we consider two test cases: (i) injection into a
hot aquifer with ρn = 250 kg m−3 and μn = 3.0×10−5 Pa s
and (ii) injection into a deep aquifer with ρn = 650 kg m−3

Table 6 Performance of different solvers for advection-dominated
cases and hot aquifer (high gravitational number) where TS is number
of time steps, NI number of nonlinear iterations, and LI number of
linear iterations

Solver TS NI LI LI/NI NI/TS

SCR-AMG (FD) 26 566 4795 8.47 21.76

SCR-AMG (AD) 26 538 4615 8.57 20.69

CPR-AMG (FD) 26 566 8504 15.02 21.76

CPR-AMG (AD) 26 538 7773 14.44 20.69

and μn = 8.0 × 10−5 Pa s. This leads to gravitational
numbers of (i) Gr ≈ 70.99 and (ii) Gr ≈ 12.42.

Comparing Table 1 with Table 6, we have a higher
number of Newton and linear iterations for the hot aquifer.
This is in line with the higher gravitational number of Gr ≈
70.99 compared with Gr ≈ 52.06 for the original test case.

Table 7 shows results for the deep aquifer with a low
gravitational number of Gr ≈ 12.42. Here, we have a lower
number of Newton and linear iterations. Again, this is in line
with the lower gravitational number. Analogous results hold
for the diffusion-dominated case.

Gravity numbers for the Sleipner and SPE10B case are
Gr ≈ 88.96 and Gr ≈ 555.20, respectively. To calculate
a single gravitational number, we used mean permeabilities
and porosities. The high gravitational number of the
SPE10B case reflects its high degree of difficulty.

Appendix 4: Discussion of CFL numbers

The Courant–Friedrichs–Lewy (CFL) condition can be
derived using the saturation equation from the fractional
flow formulation:

∂Sw

∂t
+ vtot

φ

dfw

dSw

∇Sw = qw. (29)

Here, vtot = vw+vn is the total velocity and fw = λw

λw+λn

is the fractional flow function. Then, the CFL number C is

Table 7 Performance of different solvers for advection-dominated
cases and deep aquifer (low gravitational number) where TS is number
of time steps, NI number of nonlinear iterations, and LI number of
linear iterations

Solver TS NI LI LI/NI NI/TS

SCR-AMG (FD) 26 231 1845 7.98 8.88

SCR-AMG (AD) 26 231 1839 7.96 8.88

CPR-AMG (FD) 26 230 2525 10.97 8.84

CPR-AMG (AD) 26 230 2515 10.93 8.84
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Fig. 14 CFL numbers for advection- and diffusion-dominated two-
dimensional test case for original, hot, and deep aquifer (finite
difference case of SCR-AMG)

defined as:

C := 
t

φ

( |vtot,x |

x

+ |vtot,y |

y

+ |vtot,z|

z

)
dfw

dSw

. (30)

Figure 14 shows the CFL number for every time step for
the advection- and diffusion-dominated two-dimensional
test case for the original, hot, and deep aquifer. The figure
shows results from the finite difference approximation of
the Jacobian and SCR-AMG.

For the advection-dominated case, we have CFL numbers
of over 100 in the 12th time step. For the hot aquifer, CFL
numbers reach values of approximately 125 also in the 12th
time step and for the deep aquifer values of over 50 in the
13th time step. Similarly, for the diffusion-dominated case,
we have CFL numbers of over 140 in the 13th time step. For
the hot aquifer, CFL numbers reach a value of over 105 in
the 15th time step and for the deep reservoir over 110 in the
13th time step. The high CFL numbers indicate that the fully
implicit fully coupled approach is indeed well justified.

Table 8 Performance of different solvers for diffusion-dominated
cases and anisotropy factors of 1:100 where TS is number of time steps,
NI number of nonlinear iterations, and LI number of linear iterations

Solver TS NI LI LI/NI NI/TS

SCR (FD) 38 1490 6708 4.50 39.21

SCR (AD) 39 1568 7298 4.65 40.20

CPR (FD) 122 1092 33,192 30.39 8.95

CPR (AD) 122 1102 33,212 30.13 9.03

Table 9 Performance of different solvers for diffusion-dominated
cases and anisotropy factors of 1:10,000 where TS is number of time
steps, NI number of nonlinear iterations, and LI number of linear
iterations

Solver TS NI LI LI/NI NI/TS

SCR (FD) 46 1593 9658 6.06 34.53

SCR (AD) 46 1715 8566 4.99 37.28

CPR (FD) 925 2612 163,633 62.64 2.82

CPR (AD) 889 2678 160,475 59.92 3.01

Appendix 5: Influence of anisotropy

In this section, the influence of anisotropy on solver
performance is examined. The diffusion-dominated two-
dimensional test case from Section 4 is the basis for the
comparison. Results for anisotropy factors of 1:100 and
1:10,000 are shown in Tables 8 and 9, respectively.

Comparing Table 8 with Table 2, performance of CPR-
AMG decreases. An increase in the number of time steps
(factor of 4.21 for FD and 4.69 for AD), Newton iterations,
and linear iterations is observed. The performance of SCR-
AMG is affected less by anisotropy with a slight increase in
the number of time steps (factor of 1.41 for FD and 1.50 for
AD), Newton iterations, and linear iterations.

Looking at Table 9, performance of CPR-AMG dras-
tically decreases, both for the FD and the AD case. The
number of time steps increases by a factor of 31.90 (FD)
and 34.19 (AD) compared with the original values with no
anisotropy. The performance of SCR-AMG is significantly
more stable. The number of time steps increases only by a
factor of 1.59 (FD) and 1.77 (AD) compared with the values
with no anisotropy.

In summary, CPR-AMG is affected much more by an-
isotropy compared with SCR-AMG. Interestingly, this is
also true for the advection-dominated case, where CPR-
AMG originally outperformed SCR-AMG.
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Bruaset, A.M., Langtangen, H.P. (eds.) MA, Boston (1997)

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D.,
Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes,
L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F.,
Zampini, S., Zhang, H., Zhang, H.: PETSc users manual Tech.
Rep. ANL-95/11 - Revision 3.13, Argonne National Laboratory,
Lemont, IL, USA, https://www.mcs.anl.gov/petsc (2020)

4. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D.,

175Comput Geosci (2021) 25:163–177

https://www.mcs.anl.gov/petsc


Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes,
L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F.,
Zampini, S., Zhang, H., Zhang, H.: PETSc Web page http://www.
mcs.anl.gov/petsc (2020)

5. Bastian, P.: Numerical Computation of Multiphase Flows in
Porous Media. Habilitation thesis, Technische Fakultät, Christian-
Albrechts-Universität Kiel https://conan.iwr.uni-heidelberg.de/
data/people/peter/pdf/Bastian habilitationthesis.pdf (1999)

6. Bastian, P., Helmig, R.: Efficient fully-coupled solution tech-
niques for two-phase flow in porous media: Parallel multigrid
solution and large scale computations. Adv. Water Resour. 23(3),
199–216 (1999). https://doi.org/10.1016/S0309-1708(99)00014-7

7. Bear, J.: Hydraulics of Groundwater McGraw-Hill New York
(1979)

8. Brooks, R.J., Corey, A.T.: Hydraulic Properties of Porous Media,
vol 3 Colorado State University Hydrology Paper Fort Collins CO
(1964)

9. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement
in sands. Transactions of the AIME 146(01), 107–116 (1942)

10. Bui, Q.M., Elman, H.C., Moulton, J.D.: Algebraic Multigrid
Preconditioners for Multiphase Flow in Porous Media. SIAM
Journal on Scientific Computing 39(5), S662–S680 (2017).
https://doi.org/10.1137/16M1082652

11. Burdine, N.T.: Relative Permeability Calculations from Pore-
Size Distribution Data. Petroleum Transactions AIME 198, 71–77
(1953). https://doi.org/10.2118/225-G
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38. Rath, V., Wolf, A., Bücker, M.: Joint three-dimensional inversion
of coupled groundwater flow and heat transfer based on automatic
differentiation: sensitivity calculation, verification and synthetic
examples. Geophys. J. Int. 167, 453–466 (2006). https://doi.org/
10.1111/j.1365-246X.2006.03074.x

176 Comput Geosci (2021) 25:163–177

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://conan.iwr.uni-heidelberg.de/data/people/peter/pdf/Bastian_habilitationthesis.pdf
https://conan.iwr.uni-heidelberg.de/data/people/peter/pdf/Bastian_habilitationthesis.pdf
https://doi.org/10.1016/S0309-1708(99)00014-7
https://doi.org/10.1137/16M1082652
https://doi.org/10.2118/225-G
https://doi.org/10.1007/978-3-319-73441-5_63
https://doi.org/10.1007/978-3-319-73441-5_63
https://doi.org/10.1023/A:1011521413158
https://doi.org/10.1023/A:1011521413158
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2118/182630-PA
https://doi.org/10.2118/182630-PA
https://doi.org/10.2118/163608-PA
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/j.jcp.2006.01.028
https://doi.org/10.2118/195472-MS
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7551&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7551&rep=rep1&type=pdf
https://doi.org/10.2118/118752-MS
https://doi.org/10.2118/118752-MS
https://doi.org/10.1002/nla.264
https://doi.org/10.1137/S106482750240443X
https://tel.archives-ouvertes.fr/tel-01929478
https://doi.org/10.2118/141765-MS
https://doi.org/10.2118/141765-MS
https://doi.org/10.1029/WR012i003p00513
https://doi.org/10.1029/WR012i003p00513
https://doi.org/10.1190/1.1444649
https://doi.org/10.1111/j.1365-246X.2006.03074.x
https://doi.org/10.1111/j.1365-246X.2006.03074.x


39. Saad, Y.: A Flexible Inner-Outer Preconditioned GMRES
Algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993).
https://doi.org/10.1137/0914028

40. Saad, Y.: Iterative Methods for Sparse Linear Systems 2nd edn
Society for Industrial and Applied Mathematics Philadelphia, PA
(2003)

41. Saad, Y., Schultz, M.H.: GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems.
SIAM Journal on Scientific and Statistical Computing 7(3), 856–
869 (1986). https://doi.org/10.1137/0907058

42. Scheichl, R., Masson, R., Wendebourg, J.: Decoupling and block
preconditioning for sedimentary basin simulations. Computational
Geosciences 7(4), 295–318 (2003). https://doi.org/10.1023/B:
COMG.0000005244.61636.4e

43. Singh, V.P., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M.,
Ringrose, P.S., et al.: Reservoir Modeling of CO2 Plume Behavior
Calibrated Against Monitoring Data From Sleipner, Norway. In:
SPE Annual Technical Conference and Exhibition, Florence, Italy,
Society of Petroleum Engineers Richardson TX USA (2010).
https://doi.org/10.2118/134891-MS

44. SPE: SPE 10th Comparative Solution Project Description of
Model 2: SPE Project Website: http://www.spe.org/web/csp/
datasets/set02.htm Richardson TX (2001)

45. Stüben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.F.: Algebraic
Multigrid Methods (AMG) for the Efficient Solution of Fully
Implicit Formulations in Reservoir Simulation. In: SPE Reservoir
Simulation Symposium, Houston, TX, USA, Society of Petroleum
Engineers, Richardson, TX, USA (2007). https://doi.org/10.2118/
105832-MS

46. Van der Vorst, H.A.: Bi-CGStab: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear
Systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992).
https://doi.org/10.1137/0913035

47. Wallis, J. et al.: Incomplete Gaussian Elimination as a Pre-
conditioning for Generalized Conjugate Gradient Acceleration.
In: SPE Reservoir Simulation Symposium, San Francisco, CA,
Society of Petroleum Engineers, Richardson, TX, USA (1983).
https://doi.org/10.2118/12265-MS

48. Wallis, J.R., Kendall, R., Little, T., et al.: Constrained Residual
Acceleration of Conjugate Residual Methods. https://doi.org/10.
2118/13536-MS (1985)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

177Comput Geosci (2021) 25:163–177

https://doi.org/10.1137/0914028
https://doi.org/10.1137/0907058
https://doi.org/10.1023/B:COMG.0000005244.61636.4e
https://doi.org/10.1023/B:COMG.0000005244.61636.4e
https://doi.org/10.2118/134891-MS
http://www.spe.org/web/csp/datasets/set02.htm
http://www.spe.org/web/csp/datasets/set02.htm
https://doi.org/10.2118/105832-MS
https://doi.org/10.2118/105832-MS
https://doi.org/10.1137/0913035
https://doi.org/10.2118/12265-MS
https://doi.org/10.2118/13536-MS
https://doi.org/10.2118/13536-MS

	Efficient solution techniques for two-phase flow in heterogeneous porous media using exact Jacobians
	Abstract
	Introduction
	Mathematical model
	Relative permeability and capillary pressure

	Numerical method using exact Jacobians
	Linear solvers and preconditioners
	Schur complement reduction
	Constrained pressure residual

	Numerical simulations
	Test case 1: Two-dimensional CO2 injection
	Initial and boundary conditions
	Heterogeneous porosity and permeability distribution


	Test case 2: SPE10B problem
	Test case 3: CO2 injection into the Sleipner reservoir

	Weak scaling
	Summary and conclusion
	Appendix  1: PETSc command line options for the different solvers
	SCR-AMG
	CPR-AMG
	Appendix 2: Code verification using the Buckley-Leverett problem
	Appendix  2: Code verification using the Buckley-Leverett problem
	Appendix 3: Discussion of gravity numbers
	Appendix  3: Discussion of gravity numbers
	Appendix 4: Discussion of CFL numbers
	Appendix  4: Discussion of CFL numbers
	Appendix 5: Influence of anisotropy
	Appendix  5: Influence of anisotropy
	References




