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Abstract
Calibrating the heterogeneous permeability distribution of hard-rock aquifers based on sparse data is challenging but crucial for
obtaining meaningful groundwater flow models. This study demonstrates the applicability of stochastic sampling of the prior
permeability distribution and Metropolis sampling of the posterior permeability distribution using typical production data and
measurements available in the context of groundwater abstraction. The case study is the Hastenrather Graben groundwater
abstraction site near Aachen, Germany. A three-dimensional numerical flow model for the Carboniferous hard-rock aquifer is
presented.Monte Carlo simulations are performed, for generating 1,000 realizations of the heterogeneous hard-rock permeability
field, applying Sequential Gaussian Simulation based on nine log-permeability values for the geostatistical simulation. Forward
simulation of flow during a production test for each realization results in the prior ensemble of model states verified by
observation data in four wells. The computationally expensive ensemble simulations were performed in parallel with the
simulation code SHEMAT-Suite on the high-performance computer JURECA. Applying a Metropolis sampler based on the
misfit between drawdown simulations and observations results in a posterior ensemble comprising 251 realizations. The posterior
mean log-permeability is −11.67 with an uncertainty of 0.83. The corresponding average posterior uncertainty of the drawdown
simulation is 1.1 m. Even though some sources of uncertainty (e.g. scenario uncertainty) remain unquantified, this study is an
important step towards an entire uncertainty quantification for a sparsely sampled hard-rock aquifer. Further, it provides a real-
case application of stochastic hydrogeological approaches demonstrating how to accomplish uncertainty quantification of sub-
surface flow models in practice.
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Introduction

Aquifers often exhibit heterogeneous hydraulic properties
(e.g. porosity and hydraulic conductivity or permeability)

which are crucial for characterizing subsurface flow and trans-
port. Especially in hard-rock aquifers, hydraulic properties
tend to be strongly spatially variable. At the same time, only
a limited amount of direct measurements or indirect data is
available from boreholes or surface geophysics for character-
izing subsurface flow. Yet, assigning adequate hydraulic prop-
erties to hydrological units is crucial for a proper groundwater
flow and transport assessment by numerical flow models.
With increased computational power and advanced numerical
methods, numerical modeling has become an established tool
in aquifer research (Prickett 1975; Carrera et al. 2005). It en-
ables the understanding of the aquifer in three dimensions,
beyond one- or two-dimensional measurements, as well as
accounting for spatial heterogeneity and uncertainty (e.g.
Marsily et al. 2005).
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This study addresses the challenge of calibrating a hard-rock
aquifer flow model in a case study of an aquifer used for drink-
ing water production, based on available production data and
auxiliary data recorded in this context. It demonstrates the need
for incorporating the spatial variability of hydraulic parameters
in order to generate realistic models, which reproduce the data
trend and the hydraulic behavior. To this end, this paper pro-
vides a case study, which shows and discusses the application
of the Monte Carlo approach to a sparsely sampled hard-rock
aquifer in order to investigate the heterogeneity and prior un-
certainty of the aquifer permeability. Here, the aim is to dem-
onstrate how the inverse parameterization of flow models, in
this case the permeability field, can be improved based on a
limited amount of data, which is often the case in practice. In
contrast, many studies and research projects benefit from exten-
sive measurement campaigns or work with synthetic data sets
that are tailored to their needs in terms of input data availability
(e.g. Kurtz et al. 2014; Li et al. 2012).

Stochastic approaches based on the Monte Carlo method
for estimating subsurface model parameters and their uncer-
tainties are well established in theory (e.g. Tarantola 2005;
Zhang 2002; Rubin 2003; Oliver et al. 2008; Zhou et al.
2014). However, they are not applied commonly to subsurface
flow modeling in the fields of, e.g. hydrogeology or
geothermics (e.g. Dagan 2002; Renard 2007; Rubin et al.
2018). Only recently, Rubin et al. (2018) pointed out and
discussed this lack of practical applications of stochastic hy-
drogeology once again, which shows that the problem still
exists. They identify lack of data and software issues as two
of the main hurdles.

Stochastic Monte Carlo simulations are one option for ad-
dressing subsurface parameter heterogeneity and uncertainty
in numerical models. They are based on a statistical analysis
of a large number of randomly created, equally likely forward
simulations (e.g. Zhang 2002; Gelhar 1993). The spatially
variable hydraulic properties such as permeability, are treated
as random variables that can be generated by a stochastic
spatial process. If the hydraulic property (i.e., permeability)
is measured on a scale, which exceeds the scale of average
fracture spacing it can be defined reasonably over a continuum
(Neuman and Depner 1988). The stochastic modeling of the
permeability, based on geostatistical parameters which honor
the spatial trend in borehole data, allows considering the het-
erogeneity between fractures and matrix and the spatial
variability of permeability due to main fracture orientations
in a single continuum. Neuman and Depner (1988) and
Tsang et al. (1996) were the first to demonstrate the applica-
bility of this stochastic-continuum concept to fractured hard-
rocks. The continuum model approach avoids the large data
requirements of discrete or equivalent fracture model ap-
proaches which model fracture networks explicitly or by using
upscaling approaches (e.g. Chen et al. 2018; Neuman 2005;
Baca et al. 1984; Warren and Root 1963).

Main stochastic inversion approaches for model calibra-
tion and uncertainty assessment are sampling and optimi-
zation approaches (e.g. Zhou et al. 2014; Linde et al.
2015). The sampling approach aims at sampling the poste-
rior distribution based on the Markov Chain Monte Carlo
(McMC) technique (e.g. Tarantola 2005). It means that the
evaluation of each sample depends only on the state of the
previous sample in the chain. It is relatively easy to imple-
ment in a post-processing workflow, but sampling methods
require the evaluation of a thousand or more forward real-
izations, which is computationally expensive and results is
a large amount of data. The simplest sampler is the rejec-
tion algorithm that compares the likelihood of one sample
to the likelihood of the previous sample and only accepts it
as member of the posterior if the likelihood is not deterio-
rated. This sampling procedure is accurate but requires a
large number of prior samples in order to retain a statisti-
cally sufficient number of accepted samples in the posteri-
or. In contrast, the Metropolis algorithm uses a probabilis-
tic transition operator for deciding whether to accept a
sample as member of the posterior or to reject it.
Depending on the design of the decision operator, it sam-
ples the posterior more efficiently up to a certain error level
(e.g. Tarantola 2005; Mosegaard and Tarantola 1995;
Mariethoz et al. 2010).

The optimization approach is based on minimizing an ob-
jective function, which is the mismatch between simulation
results and observation data. Stochastic optimization methods
such as the gradual deformation method (Hu 2000) or the
probability perturbation method (Caers 2003), preserve the
prior model andmatch observation data. Another optimization
approach is the Ensemble Kalman filter (Evensen 2003),
which continuously updates the ensemble of model realiza-
tions as transient data become available for optimizing the
history match. The prior model structure is not preserved by
this data assimilation technique.

Generally, both approaches differ in their main purpose.
While optimization methods aim at history-matching and
finding the optimal model parameterization, the main focus
of sampling approaches lies in the realistic uncertainty quan-
tification (Park et al. 2013). The interested reader is referred to
Zhou et al. (2014) and Linde et al. (2015) and references
therein for detailed reviews of stochastic inverse methods in
hydrogeology.

Recent studies demonstrated the successful application of
Bayesian Evidential Learning (BEL) to hydrogeological ap-
plications for uncertainty quantification and prediction
(Hermans et al. 2018, 2019). This recently developed
prediction-based approach derives a direct relationship be-
tween data and prediction based on the prior ensemble. First
applications showed promising results for estimating the pos-
terior distribution of model states, but it has not been applied
for estimating parameter distributions yet.
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This study assesses the heterogeneous hard-rock aquifer
permeability at the Hastenrather Graben study site, near
Aachen, Germany, using a massive Monte Carlo approach
(e.g. Zhang 2002) which is composed of three main steps.
First, the prior permeability distribution is defined by
geostatistical variogram analysis of sparse permeability data
from wells, and sampled using the SGSim algorithm for gen-
erating an ensemble of 1,000 unconditional realizations of the
aquifer permeability field. Second, the forward problem is
solved for each realization, which is the simulation of hydrau-
lic head drawdown during a long-term pumping test. Third,
the resulting ensemble is analyzed and statistical post-
processing is performed. The third step includes verification
of the prior with state data and analysis of the prior uncertain-
ty. Subsequently, a Metropolis sampling technique is applied
for converging to the posterior probability distribution as pro-
posed by Mosegaard and Tarantola (1995). The statistical
post-processing yields information on the uncertainty of the
aquifer permeability and associated uncertainty of simulated
hydraulic heads for the prior ensemble as well as the posterior
ensemble.

This study focuses on the stochastic investigation of the
hard-rock aquifer permeability and its heterogeneity, because
it is assumed the dominant parameter controlling the aquifer
response to production and the parameter with the largest prior
range of uncertainty. The aquifer response is expected to be
less sensitive to other parameters such as porosity, specific
storage or boundary conditions. This justifies limiting the sto-
chastic analysis to permeability for reducing the complexity of
the stochastic model. The assumption is justified by geologi-
cal expertise. Alternatively, global sensitivity analysis would
provide a sophisticated analysis of the model’s sensitivity to
different parameters (e.g. Scheidt et al. 2018; Hermans et al.
2019).

In the following, this paper describes the application of
these steps to the Hastenrather Graben hard-rock aquifer mod-
el in detail and discusses the approach in light of data scarcity.
The focus is on demonstrating the applicability of the ap-
proach as a practical way of assessing the heterogeneous per-
meability distribution and associated uncertainties in a hard-
rock aquifer despite sparse database from a practitioner’s point
of view. The resulting prior distribution may be used for more
sophisticated stochastic inversion approaches, subsequently.

As the computation of several hundreds to thousands of
realizations of reservoir scale transient flow simulations is
computationally expensive, the Monte Carlo approach re-
quires the use of a parallelized simulation code and of high-
performance computing (HPC) resources or of cloud comput-
ing services. HPC resources are usually accessible for re-
searchers from academia and industry via national or interna-
tional centers such as PRACE (Partnership for advanced com-
puting in Europe). Cloud computing services might be the
right choice for practitioners from industry for performing

computationally demanding simulations (e.g. Hayley 2017).
The presentedMC simulations are performed with the parallel
simulation code SHEMAT-Suite on the supercomputer
JURECA. The section ‘Parallelization and parallel perfor-
mance’ provides information on the code’s parallelization
strategy and its parallel performance.

Hard-rock aquifer case study

The studied catchment area, the Hastenrather Graben, is locat-
ed 15 km east of Aachen, Germany (Fig. 1). Geologically, it
lies at the transition from the Rhenish Massif (to the south) to
the Lower Rhine Embayment (to the north). The NNW–SSE
trending graben structure holds a folded Carboniferous hard-
rock aquifer limited it by the Sandgewand Fault to the SWand
the Omerbach Fault to the NE. Within the graben center,
thrusted Palaeozoic nappes as well as Cenozoic sediments
cover the hard-rock aquifer (Fig. 1).

Since the 1950s, the Hastenrather Graben catchment area
has been used for producing drinking water from this hard-
rock aquifer. Common hydrogeological exploration and pro-
duction data are available such as hydraulic conductivities
inferred from pumping tests, drawdown curves from produc-
tion tests and continuous pressure transducer records from
observation wells (see Burs et al. 2016). This makes this study
area well suited for demonstrating the approach of an
ensemble-based stochastic investigation using data available
from a commercial hydrogeological aquifer operation.
Besides, the Carboniferous hard-rocks are of interest as poten-
tial geothermal energy reservoir rocks in Northwest Europe.

The numerical model is based on a comprehensive three-
dimensional (3D) structural and conceptual model of the
Hastenrather Graben presented by Burs et al. (2016) (Fig.
1c). Readers are referred to this reference (Burs et al. 2016)
and to the references therein for additional and more detailed
information on the geological and hydrogeological back-
ground, and the structural and conceptual model of the study
area. The following paragraph will only point out some as-
pects of the hydrogeological model, which are crucial for un-
derstanding the numerical model set-up.

The Kohlenkalk formation is the rock unit from which
water is produced; however, the numerical model jointly in-
vestigates the Walhorn and Stolberg Layers and the
Kohlenkalk as one hard-rock aquifer unit. The hydrogeologic
conceptual model of the Hastenrather Graben catchment area
reveals that both units are connected hydraulically, caused by
zones of rock disintegration and fractures. Pumping test reac-
tions monitored in the Walhorn and Stolberg Layers, and
hydrochemical samples from the Walhorn and Stolberg
Layers with an increased amount of bicarbonate are proof of
the hydraulic connection to the underlying Kohlenkalk.
Additionally, hydraulic conductivities in both units are in the
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same order of magnitude; thus, it is reasonable to model them
jointly as one aquifer unit, which has also practical reasons,
because it enlarges the database for the aquifer. If the
Kohlenkalk was considered individually, only four

permeability data points and no monitoring wells would be
available, which would prohibit the presented investigations.

Furthermore, the conceptual model assumes a hydraulic
connection between the hard-rock aquifer and the overlying

Fig. 1 a Location of the study
area in western Germany, near
Aachen. b Location of the
Hastenrather Graben catchment
area in a regional geo-tectonic
context (modified after
Chatziliadou 2009). c 3D geolog-
ical model of the Hastenrather
Graben catchment area (adapted
from Burs et al. 2016) with loca-
tions of used wells and indication
of respective data types (circle,
diamonds and crosses). The
Carboniferous hard rocks consti-
tute the main aquifer
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sedimentary aquifer in some parts of the catchment area (Burs
et al. 2016). Separating clay layers between the two aquifers
were found occasionally in driving core samples, which lead
to variably confined and unconfined conditions in the hard-
rock aquifer. Since no comprehensive information on the dis-
tribution of the clay layers is available, they are not included in
the geological and hence in the numerical model.

Besides some unconfined parts of the aquifer, the concep-
tual model identified the area around wells HB5 and G5 (Fig.
1c) as a separate hydraulic unit with a strong direct connection
between the wells and partly artesian conditions. The small-
scale geological situation around those wells, which may
cause this singular hydraulic condition, is unclear.

Here, the aim is to model the permeability and hydraulic
heads of the main hard-rock aquifer system, which is defined
as the confined part of the joint Kohlenkalk and Walhorn and
Stolberg Layers. Therefore, piezometric data from wells,
which drill into areas with different hydraulic behavior, are
not considered for model calibration. All available permeabil-
ity data are considered from each well drilling into either the
Walhorn and Stolberg Layers or the Kohlenkalk Formation.
Figure 1c illustrates the location of the wells and respective
usable data types.

The simulation code

Originally, the Simulator for HEat and MAss Transport
(SHEMAT; Clauser 2003) was written as a forward simulation
code for simulating reactive fluid flow and heat and species
transport in geothermal and hydrogeological applications.
During the last decade, the code has been extended and devel-
oped into a software package for solving forward as well as
inverse problems for parameter estimation (Rath et al. 2006).
Moreover, it has been transformed from a serial into a parallel
application (Wolf 2011). This extended code package is called
SHEMAT-Suite. The following sections describe in more detail
those features of the code, which are used in the presented study.

The forward model

SHEMAT-Suite simulates groundwater flow by solving the
partial differential equation for flow through porous media,
which is a combination of the equation of continuity and
Darcy’s law:

∇ � ρ fg
μ f

k∇h
� �

þ Q ¼ Ss
∂h
∂t

ð1Þ

with hydraulic head h (m), permeability k (m2), source termQ
(m3 s−1), gravity g (m s−2), pore fluid density ρf (kg m−3),
dynamic pore fluid viscosity μf (Pa s), time t (s), and specific
storage coefficient Ss (m

−1). Equation (1) states that the

divergence of the specific discharge (i.e., the balance of total
inflow and outflow) equals the sum of storage and sources and
sinks. Darcy’s law defines specific discharge v (m s−1) as
proportional to the product of the head gradient, fluid proper-
ties, gravity and rock permeability:

ν ¼ −
ρ fg
μ f

k∇h ð2Þ

The specific storage coefficient describes how storage
varies with hydraulic head. It is defined as the variation of
water volume VW per unit volume Vtot with that of hydraulic
head:

Ss ¼ 1

V tot

∂Vw

∂h
ð3Þ

This can be described by measurable physical properties as
follows:

Ss ¼ γw βm þ ϕ βwð Þ ð4Þ
where γw = ρf· g is the specific weight of water (N m−3), ϕ is
the porosity (−), βm is the rock matrix compressibility (m2

N−1) and βw is the compressibility of water (m2 N−1).
In these equations, the physical properties of rock matrix

and fluid are kept constant as the study narrows down to
simulating groundwater flow. SHEMAT-Suite uses the finite
difference approach for solving the coupled equations. More
details on the numerical approaches such as used linear
solvers or time stepping schemes can be found in Clauser
(2003).

Monte Carlo approach and random field generation

The classical Monte Carlo approach consists of three main
steps (e.g. Zhang 2002) - (1) probabilistic generation of a prior
ensemble of parameter field realizations based on
geostatistical parameters, (2) numerical simulation of the de-
terministic forward model for each realization, and (3) statis-
tical analysis of the ensemble’s parameters and state variables.
This approach is incorporated directly in the numerical simu-
lation software package SHEMAT-Suite.

The Sequential Gaussian Simulation algorithm (SGSim;
Deutsch and Journel 1998) is implemented for random field
generation (1). It generates randomly equally likely log10 per-
meability (from here on ‘log-permeability’) fields with respect
to the spatial distribution of the log-permeability which is
characterized by a probability distribution and direction-
dependent correlation lengths and variogram parameters.
The forward model (2) for simulating the hydraulic head is
described in section ‘The forward model’.

The resulting prior ensemble of log-permeability fields and
corresponding forward flow simulations for each permeability
field realization can be characterized by statistical moments
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such as mean and standard deviation. The forward realizations
are analyzed in terms of hydraulic head values. Their standard
deviation is a measure of prior uncertainty.

Subsequently, in a post-processing step a sampling algo-
rithm derived from the Metropolis sampler (Mosegaard and
Tarantola 1995) is applied for sampling the posterior log-
permeability distribution of the stochastic model and receiving
a posterior ensemble of hydraulic head simulations.

Proceeding from the geostatistically generated prior en-
semble, the sampling algorithm works as follows:

1. Randomly draw a model realization mi from the prior
ensemble and evaluate its misfit S(mi).

2. Iterate over i, until prior ensemble size is reached:

a. Draw another realization m* from the prior and eval-
uate its misfit S(m*)

b. Accept the new realization m* with probability α(mi,
m∗)

c. If the new realization m* is accepted, then mi + 1 be-
comes m*, otherwise mi + 1 =mi

The acceptance probability is

α mi;m*� � ¼ exp −
S m*ð Þ−S mið Þ

s2

� �
; if S m*� �

> S mið Þ
1; if S m*� �

≤S mið Þ

8<
:

ð5Þ

The error term s is a combination of measurement error and
model errors. Model errors stem from uncertainty in boundary
conditions, conceptual error, the uncertainty in the variogram
model, discretization errors and further error sources. The
misfit S is evaluated in terms of the equally weighted root
mean square error (RMS) for the complete time series (i.e.,
drawdown curves), the difference between simulated and ob-

served heads at each time step j, hsimi; j and hobsj , respectively:

RMSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

j¼1
hsimi; j −h

obs
j

	 
2
s

ð6Þ

where n is the total number of time-steps.
This means that a realization is accepted for the posterior

ensemble if it improves the quality of fit and accepted with a
certain probability (Eq. 5) if it deteriorates the quality of fit.
The resulting ensemble of all accepted realizations converges
to the posterior distribution and yields the posterior uncertain-
ty of the stochastic model.

Parallelization and parallel performance

Computationally expensive parts of the forward flow and
transport model in SHEMAT-Suite use the OpenMP

programing paradigm for shared-memory parallel program-
ming (Wolf 2011). This way, simulations can run in parallel
using a moderate number of concurrent threads (e.g. Chapman
et al. 2008); however, an optimal scalability on modern high-
performance computers requires a parallelization for
distributed-memory systems using a distributed-memory pro-
gramming paradigm such as the Message Passing Interface
(MPI; Snir et al. 1998; Gropp et al. 1998). Therefore, an
MPI-parallel or hybridly parallelized code is essential for sto-
chastic simulations of computationally expensive and memo-
ry intensive 3D models. Consequently, SHEMAT-Suite uses
MPI parallelization for the sequential stochastic field genera-
tion. Each realization of an ensemble in the Monte Carlo sim-
ulation can be computed in parallel, distributed over a number
of processes - for example, 504 processes (21 nodes) on the
JURECA (Jülich Research on Exascale Cluster Architectures)
supercomputer at Jülich Supercomputing Center (JSC) com-
puted a Monte Carlo run with 504 realizations.

The usage of supercomputers requires the applied software
to be scalable, i.e. to use the supercomputer resources effi-
ciently. For memory-bound problems such as Monte Carlo
simulations, it means that when the workload is increased in
direct proportion to the number of processes, the application’s
run time should ideally stay constant. This is called weak
scaling. Aweak scaling test on the JURECA architecture dem-
onstrates the code’s weak scaling efficiency. Here, each node
comprises two 12 core Intel Xeon E5–2680 v3Haswell CPUs.
In the weak scaling test, the ensemble size increases simulta-
neously with the number of cores from 24 to 576. The weak
scaling efficiency Eweak scaled to 24 cores for p cores is given
by

Eweakp ¼
t24
tp

� 100 %ð Þ ð7Þ

where tp is CPU time on p cores.
The aquifer model described in section ‘Numerical

model setup’ comprises around 7.5 million grid cells
and requires 10 GB memory for one realization. The
Monte Carlo simulation with SHEMAT-Suite scales well
for up to 600 processes (Table 1; Fig. 2): weak scaling
efficiency is above 90% for 600 parallel processes,
where memory demand limits the parallel simulation.
The memory demand of the simulation increases with
increasing number of realizations, until it exceeds the
memory available on the JURECA nodes at an ensem-
ble size of 600. Simulation time for one single realiza-
tion or 600 parallel realizations is around 75 min mean-
ing that 600 serial realizations would consume 1 month
of computing time. An additional scaling test with a
smaller synthetic model (around 105 grid cells,
182 MB memory per realization) shows a satisfying
scaling behavior of over 70% for up to 2,000 processes
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(Fig. 2). Deviation from the ideal scaling can be caused
by overhead associated with synchronization or hard-
ware issues such as cache effects or memory bandwidth.

A prospective MPI parallelization of the forward simula-
tion involving domain decomposition may prevent the ob-
served limitation of parallel performance caused by memory
demand of the model. For large model domains with big pa-
rameter fields, the memory needed for one forward flow mod-
el can exceed the memory available on one compute core. An
MPI parallel forward simulation using domain decomposition
would spread the model domain over several compute cores.

Numerical model setup

The 3D geological model of the study area (Burs et al. 2016) is
gridded in finite volume blocks for the numerical simulations.
A subset of 3,623 m to the east, 2,870 m to the north and 720
m depth is divided into a structured, hexahedral grid with a
uniform cell size of 10 m × 10 m × 10 m. The resulting grid
has 362 cells in x-direction, 287 cells in y-direction, and 72
cells in z-direction, resulting in a total number of approximate-
ly 7.5 million grid cells. The model’s reference depth z0= 0 m
corresponds to a depth of –500 m above mean sea level (m
asl). The model consists of six geological units (Table 2). The
hard-rock aquifer system comprises the Kohlenkalk
Formation and the Walhorn and Stolberg Layers (Fig. 1c,
section ‘Hard-rock aquifer case study’). Six monitoring points
are placed within the aquifer, according to locations and filter
depths of monitoring and production wells at the study site
(Fig. 1c).

Initial steady-state model

A calibrated deterministic steady-state model with homoge-
neous zonation and confined conditions serves as the initial
model for subsequent transient and stochastic simulations
(Fig. 3). Each rock zone is characterized by average hydraulic
parameters representative for the study area and inferred from
measurements or the literature (see Burs et al. 2016).
Permeability was calculated from hydraulic conductivity data
for conditions at 10 °C. Hydraulic conductivities of the aquifer
units result from several pumping tests in the area, which were
commissioned by the local water company or conducted by
researchers (see Burs et al. 2016 for details). No anisotropy is
assumed between vertical and horizontal permeability.

The steady-state model represents the aquifer under natural
conditions without any pumping activities. It provides the
initial conditions for further transient simulations (Fig. 3).

Model boundaries coincide with no-flow boundaries in the
east and west— in the east it is the catchment boundary and in
the southwest it is the hydraulically active Sandgewand Fault
and the catchment boundary. At the southern and northern
boundaries, Dirichlet boundary conditions are used for
adjusting the corresponding inflow and outflow. Their con-
stant head values depend on the date, which the steady-state
model represents, because they were inferred from hydraulic
head data at a certain time. The situation at 16 July 2006
represents natural conditions before the beginning of water
withdrawal during the long-term production test.

Head contour lines are constructed from piezometer data
from six available wells which have been drilled into the main
hard-rock aquifer system and are located in the model center
(see Fig. 1c). These contour lines are extrapolated linearly to
the northern and southern model boundaries, according to
their mean northward flow gradient of 0.004. Extrapolation

Table 1 Weak scaling efficiency Eweak of SHEMAT-Suite Monte Carlo
simulations on Intel Xeon E5–2680 v3 Haswell CPUs of the JURECA
system at JSC. This test was performed with 24 model realizations per
node. Test model: 105 cells, 182 MB memory per realization. Aquifer
model: 7.5 ∙ 106 cells, 10 GB memory per realization

Model type No. of
nodes

No. of
processes

CPU time
(s)

Eweak

(%)

Test model 1 24 354 100

28 672 389 91

42 1,008 399 89

84 2,016 473 75

Aquifer
model

1 24 4,436 100

2 48 4,231 105

4 96 4,557 97

8 192 4,496 99

16 384 4,828 92

20 480 4,888 91

24 576 4,837 92

25 600 4,827 92

26 624 4,901 91

50

60

70

80

90

100

110

0 500 1000 1500 2000

E
w

ea
kp

p

Aquifer model
Test model
Ideal weak scaling efficiency

Fig. 2 Weak scaling efficiency Eweak ofMonte Carlo simulations on Intel
Xeon E5–2680 v3 Haswell CPUs of the JURECA system at JSC versus
number of cores p. In addition, see Table 1 for test results and information
on the models
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results in Dirichlet boundaries of 154 m asl in the north and
165 m asl in the south. There is no other flow boundary such
as local recharge considered in the model since there is no
evidence for it — see also Burs et al. (2016) for more details
on the hydrogeological conceptual model.

The steady-state simulation results in an RMS error of 0.34
for confined conditions (Table 3; Fig. 4) for the calibration at
the six monitoring wells. The northward flow gradient of
0.004 yields a volume flow of 2.6 · 10−1 m3 s−1 or 8.2 ·
106 m3 year−1 through the model domain in the confined case.
Figure 5 shows contour lines of the simulated head and model
boundaries in a slice at 615 m model reference depth for con-
fined conditions.

The head at well G2 is not matched well by the model
because permeability measured at this location is one order
of magnitude lower than the average permeability which is
used in this deterministic steady-state model. The even higher
head deviation at well G6 is probably also caused by a perme-
ability deviation, but no permeability data is available here.

This underlines the need for incorporating a heterogeneous
permeability into the model.

Transient production test model

The inflow rates at the southern and outflow rates at the north-
ern boundary resulting from steady-state model calibration are
used as Neumann boundary conditions in subsequent transient
simulations. The specific storage coefficient is constant for
each rock zone and computed from porosities (Table 2) ac-
cording to Eq. (4), assuming default rock and fluid compress-
ibility of 10−10 Pa−1 and 5 · 10−8 Pa−1 respectively. This results
in specific storage coefficients of 4.02 · 10−5 for the Walhorn
and Stolberg Layers and 5.89 · 10−6 for the Kohlenkalk.

The transient model simulates a multiple step production
test, performed by the water supplier in the Hastenrather
Graben between July 2006 and November 2006. Table 4 lists
the varying production rates within the four production wells
HB3, HB4, HB5, and HB6 during the different stages. The
simulation of the production test starts 3 days before the be-
ginning of stage 0. This way, the model reaches a quasi-
steady-state initial condition before the production starts.

Fig. 3 Numerical model showing
initial steady-state conditions and
lateral boundary conditions (see
Fig. 1c for color code of model
units and location of wells). The
y-axis points towards the north

Table 2 Average porosity and permeability values for the six model
units as inferred from measurements or the literature (Burs et al. 2016).
Arithmetic means were calculated where measurement data were avail-
able. Hard-rock aquifer units are in italic type

Model unit Matrix
porosity (−)

Permeability
(m2)

Hydraulic
conductivity (m s−1)

Quaternary
sediments

0.10 1.32 ∙ 10−10 1.00 ∙ 10−3

Tertiary sediments
(Köln Layer)

0.30 6.61 ∙ 10−12 5.00 ∙ 10−5

Walhorn and
Stolberg Layers

0.01 1.51 ∙ 10−12 1.14 ∙ 10−5

Kohlenkalk 0.08 1.10 ∙ 10−11 8.31 ∙ 10−5

Condroz Layer 0.02 1.01 ∙ 10−12 7.60 ∙ 10−6

Massenkalk 0.08 1.06 ∙ 10−11 8.00 ∙ 10−5

Friesenrath Layer 0.01 1.32 ∙ 10−14 1.00 ∙ 10−7

Table 3 Steady-state model calibration results for constant head
boundaries of 154 m asl in the north and 165 m asl in the south at six
monitoring wells in the hard-rock aquifer system. The root mean square
error is 0.34

Well Observed head
(m asl)

Simulated head
(m asl)

Head difference (m)

G2 158.76 158.50 −0.26
G3 158.30 158.33 0.03

G6 159.14 158.42 −0.72
HB3 157.55 157.55 0.00

HB4 156.90 157.20 0.30

HB6 158.20 158.29 0.09
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This is necessary especially for models with a heterogeneous
permeability field where the initial situation differs from that
of the homogeneous permeability scenario. Production rates
scaled to the cell size (i.e., multiplied by 10−1) are applied as
time-dependent Neumann boundary conditions in cells where
the filter sections are located. The pumping test period of 116
days is divided into 46 time steps.When a new pumping stage
starts, the discretization is half a day for 1 day, and 1 day for
the next day. During the distinct pumping levels, the
discretization is around 4 days.

Stochastic model

For addressing parameter heterogeneity within the hard-rock
aquifer, the spatially variable permeability is treated as a

random variable that can be generated by a stochastic process
in space. The stochastic modeling of permeability is based on
geostatistical parameters which honor measurement data. This
allows considering the heterogeneity between fractures and
matrix and the spatial variability of permeability due to main
fracture orientations in a single continuum (e.g. Neuman and
Depner 1988; Tsang et al. 1996). Geostatistical parameters of
the log-permeability values are required for generating a ran-
dom log-permeability field by Sequential Gaussian
Simulation (SGSim; Deutsch and Journel 1998). In total, nine
log-permeabilities are available from pumping tests within the
hard-rock aquifer (Burs et al. 2016) which can be used for a
variogram analysis. They clearly exhibit an increasing spatial
trend from southwest (SW) to northeast (NE), which agrees
with one of the two dominant fracture sets identified in the
study area (Becker et al. 2014). This trend was removed be-
fore variogram analysis. Therefore, the data positions were
projected onto a vector in SW–NE direction and a linear re-
gression was performed on the projected data (Fig. 6). The
linear trend revealed from the data is curtailed in the western
and eastern parts of the model area in order to avoid unrealis-
tically low and high permeabilities.
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Ideal fit
Confined conditions

HB4
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HB6 G3
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Fig. 4 Observed hydraulic heads hobs versus simulated hydraulic heads
hsim at six monitoring wells within the hard-rock aquifer system of the
steady-state model with mean permeabilities. Constant heads at the north-
ern and southern model boundaries are 654 m above reference depth and
665 m above reference depth, respectively

Fig. 5 Model slice at 615 m
above reference depth showing
locations of wells (green stars)
and contour lines of the steady-
state hydraulic head solution with
confined conditions

Table 4 Different production stages and pumped volume flowrate of
the different wells during the production test in 2006

Stage Duration (days) Volume flowrate (m3 s−1)

HB3 HB4 HB5 HB6

0 45 0.025 0.000 0.000 0.000

I 14 0.025 0.014 0.000 0.000

II 14 0.025 0.014 0.000 0.008

III 7 0.025 0.014 0.000 0.013

IV 7 0.025 0.019 0.000 0.013

V 14 0.025 0.019 0.007 0.013

Recovery 15 0.025 0.000 0.000 0.000
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The variogram analysis of the log-permeability residuals from
this linear trend relies on a sparse database: nine permeability
data points, resulting in 36 data pairs for the variogram. This is
not a satisfying number in terms of statistic reliability, but reflects
a realistic situation in groundwater projects, especially for
nonshallow aquifers. Consequently, a pragmatic approach for
receiving an experimental variogram which is as meaningful as
possible is to define not less than five lags with at least four data
pairs per lag. This resulted in several alternative experimental
variograms with five or six lag-bins and maximal lag distances
between 1,000 and 1,300 m (i.e., lags between 183 and 260 m),
hence leading to several alternative variogrammodels. For inves-
tigating their variability, four reasonable experimental variograms
were fitted with spherical variogram models each. The models’
range varies between 426 and 664 m, and their sill varies be-
tween 0.18 and 0.2. This comparison reveals a robust sill, where-
as the range is sensitive to the choice of the experimental
variogram. This bears an additional source of uncertainty for

the aquifer permeability that could be considered explicitly in
the modeling process by performing several Monte Carlo simu-
lations with different variogram parameters (i.e., geostatistical
models) each, resulting in different priors (e.g. Hermans et al.
2015). However, the shortcoming of this approach is the addi-
tional computational effort of computing several massive Monte
Carlo ensembles. Considering a practical approach, this study
uses a deterministic geostatistical model which has the shortcom-
ing of not quantifying this so-called scenario uncertainty in the
prior model (e.g. Park et al. 2013).

For the subsequent Monte Carlo simulation, one possible
experimental variogram with five lags of 260 m distance each
is fitted by trial and error and visual inspection (Fig. 7).
Applying more objective mathematical techniques for fitting
the variogrammodel based on extensive statistical approaches
(e.g.Marchant and Lark 2004) is not reasonable in case of data
scarcity. The resulting nested variogrammodel consists of two
variance regions: a Gaussian variogram with a variance con-
tribution of 0.1278 and an exponential variogram with a var-
iance contribution of 0.0547 (Eq. 8; Fig. 7), both with a hor-
izontal range of 575 m. No horizontal anisotropy could be
considered because of the sparse data density. The vertical
range is assumed one third of the horizontal range. The error
of this deterministic variogram model is expressed in terms of
the standard deviation of semivariance at each lag bin (Fig. 7).
The first two lag bins are very certain and fitted well by the
model as the standard deviation of 0.002 reveals. For the other
three lag bins, the model is at least at one end of the uncer-
tainty range. The uncertainty of lag bins 3 and 5 is around 30
times higher than for the first two lag bins.

γ dð Þ ¼ 0:1278 � 1−e
−3d2
5752

	 

þ 0:0547 � 1−e

−3d
575

	 

ð8Þ

Because of the necessary detrending, the stochastic model-
ing has to be performed with the log-permeability residuals as

Fig. 7 Experimental variogram (x-markers) and variogram model
(dashed line) for the log-permeability residuals. Error bars depict the
standard deviation of semivariance at each lag bin
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Fig. 6 Log-permeability data of the hard-rock aquifer versus their posi-
tion projected onto a vector in SW–NE direction (x-markers). The posi-
tion is given as i-index of the numerical model grid. The broken line
shows the linear trend. The unbroken line shows the curtailed trendwhich

later is added again to the residuals field for calculating the random log-
permeability field. The SGSim simulation is unconditioned, since accord-
ing to Vogt (2013) unconditioned simulation is preferable to conditioned
simulation in case of only few spatial data points
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well. After random field generation, these residuals have to be
transformed into corresponding permeabilities for solving the
flow equation by adding the linear trend which is shown in
Fig. 6. This processing step has been implemented directly
into the SHEMAT-Suite code.

Additionally, the random field generation with SGSim re-
quires a probability distribution of the log-permeability resid-
uals. As data sparsity does not allow for inferring this distribu-
tion directly from measurement data, a random log-normal dis-
tribution around a mean residual of zero is assumed. The stan-
dard deviation of the log-permeability residuals from pumping
test results is 0.4, but as the few data might underestimate stan-
dard deviation, the used standard deviation for the log-normal

distribution is 0.8. The trimming limits of the distribution are set
to three times the data standard deviation, which is 1.2, for
avoiding unrealistically small or large residuals.

Results

Deterministic production test simulation

Figure 8 illustrates the simulation results of the transient, con-
fined forward model with mean permeabilities in each model
unit. The simulated drawdown is too high at all monitoring
wells (G2, G3, G6). At wells G2 and G3 it is up to 5 m higher
than the observed drawdown and also much steeper. In reality,
both wells do not show any reaction to the pumping. In con-
trast, monitoring well G6 shows a slight reaction to the
pumping with a total drawdown of nearly 5 m, which is nearly
captured by the simulation; however, the absolute simulated
head is around 1–2 m lower than the observed head.

The pumping wells (HB3, HB4, HB6) show pronounced
and direct reactions to the pumping test in the observed hy-
draulic heads. The simulation captures the direct reactions on
changes in the pumping stages as well, but they are much less
pronounced. Observed head drawdowns are in the range of
several meters, whereas the simulated head differs only few
centimeters as a reaction to changing pumping rates. These
results emphasize the need for implementing heterogeneous
permeability into the model, as the model with homogeneous
unit permeability does not reproduce the real aquifer behavior.

Conceptually, the aquifer may be unconfined in some parts of
the study area; therefore, the transient model was simulated with
unconfined flow conditions, too. The unconfined simulation re-
sults in a very low drawdown at all monitoring points, which
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Fig. 8 Simulated drawdown h
(broken lines) during the
production test for a model with
homogeneous permeability in
each unit and confined flow
conditions compared to
monitored drawdown curves
(unbroken lines) at six wells
versus pumping test duration D

Fig. 9 Prior log-permeability distribution (solid curve) and posterior log-
permeability distribution (dashed curve) of the main hard-rock aquifer
system. The latter is inferred from 251 posterior samples
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represents the transient flow behavior observed in wells G2 and
G3 satisfactorily. It can therefore be concluded that wells G2 and
G3 drill into an unconfined part of the aquifer, which is why they
are not used as monitoring points for further stochastic investi-
gation of the confined main hard-rock aquifer system.

Ensemble-based stochastic production test
simulations

An ensemble of 1,000 model realizations was generated honor-
ing permeability data and their spatial variability as defined by
the prior model (section ‘Stochastic model’). Figure 9 shows the
prior log-permeability distributionwithmean log-permeability of

–11.66 and a standard deviation of 1.34; subsequently, the tran-
sient production test model was simulated for each realization in
parallel. The simulations ran on JURECA. Resulting drawdown
curves at the monitoring and observation wells within the main
hard-rock aquifer system are plotted in Fig. 10 together with the
prior ensemble mean and standard deviations and in comparison
to the observed drawdown curves. The average RMSE of the
prior drawdown realizations at the four wells is 1.49 m with 1.6
m standard deviation (Table 5). The average standard deviation
of the prior drawdown simulation over the complete time series is
2.5 m (Table 5).

Observed drawdown is within the range covered by the
prior ensemble simulations for the whole time-series. The

Simulated drawdowns, prior (N=1000)
Prior ensemble mean
Prior ensemble standard deviation

Monitored drawdown

Fig. 10 Prior ensemble of 1,000
drawdown curves (blue
area/lines) at four monitoring and
observation wells within the main
hard-rock aquifer system which
honor the described geostatistics
of log-permeability residuals.
What appears as white lines are
gaps between ensemble members.
Solid red lines are the ensemble
means and dashed red lines are
the ensemble standard deviations.
Cyan lines depict the monitored
drawdown data for comparison to
simulation results

Table 5 Root mean square errors
(RMSE) of the deterministic
realization with homogeneous
permeability, the prior ensemble
mean and the posterior ensemble
mean alongside with average
standard deviation (SD) of the
prior and posterior drawdown
realizations respectively.

Well RMSE (m) de-
terministic

RMSE (m) prior en-
semble mean

Prior SD
(m)

RMSE (m) posterior en-
semble mean

Posterior
SD (m)

HB3 3.84 2.13 5.0 1.74 1.2

HB4 4.29 1.06 2.3 1.81 1.0

HB6 3.07 1.86 1.5 2.1 1.2

G6 1.86 0.89 1.0 1.1 0.9

Mean 3.27 1.49 ± 1.6 2.5 1.69 ± 0.69 1.1
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prior ensemble comprises the magnitude of the observed
drawdown during the production test at all four wells and
covers the temporal behavior (i.e., reaction to pumping) well
at wells HB4, HB6 and G6. At well HB3, observations show a
steeper decrease and more pronounced recovery of hydraulic
head than the prior realizations. The prior realizations are

characterized by a continuous linear drawdown, whereas the
observed drawdown is becoming steeper with time until the
recovery phase. A continuous production rate is applied in
well HB3; changes in slope of the drawdown are a direct
reaction to the onset or increase of production in wells HB4
and HB6. Obviously, the prior model does not reproduce that
particular aquifer response exactly. Additionally, the spread of
prior drawdown realizations is largest at well HB3; however,
the prior ensemble does as well encompass the average draw-
down behavior over the complete time-series at well HB3.

In conclusion, the prior model is consistent with ob-
servation data and cannot be falsified; thus, subsequent
conditioning of the prior to the hydraulic head draw-
down observations in order to converge to the posterior
ensemble is a valid step. A Markov Chain Monte Carlo
method is used for estimating the posterior permeability
distribution and the respective posterior ensemble of
drawdown curves. Applying the algorithm described in
section ‘Monte Carlo approach and random field gener-
ation’, the prior model is conditioned to the drawdown
observations. Each prior realization is evaluated based
on its misfit in terms of RMSE (Eq. 6) and accepted
for the posterior ensemble according to the acceptance
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Fig. 11 Posterior ensemble of
251 drawdown curves (blue
area/lines) at four monitoring and
observation wells which were
sampled from the prior. What
appears as white lines are gaps
between ensemble members.
Solid red lines are the ensemble
means and dashed red lines are
the ensemble standard deviations.
Cyan lines depict the observed
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to simulation results
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Fig. 12 Boxplots of the prior ensemble (N = 1,000) log-permeabilities at
eight monitoring points (blue boxplots) compared to log-permeability
data from pumping tests (black diamonds). No permeability data is avail-
able for well G6. The red boxplots represent log-permeabilities of the
posterior ensemble (N = 251). Note that sampling of the posterior was
based on head drawdown observations from the main hard-rock aquifer
system only (i.e., wells HB3, HB4, HB6 and G6)
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probability given in Eq. (5). The error term s combining
measurement error and model errors is assumed 0.5 m.
This reflects the remaining uncertainties in, e.g. bound-
ary conditions or the variogram and at the same time
results in a reasonable acceptance rate of 251 realiza-
tions for the posterior ensemble.

Figure 11 shows the resulting 251 posterior realizations
alongside the observed drawdown at the four monitoring
and production wells. The spread of the posterior drawdown
ensemble decreased compared to the prior; yet, the posterior
ensemble embraces the observed drawdown at all four wells,
thus providing a meaningful posterior uncertainty quantifica-
tion. The average standard deviation of the posterior draw-
down simulation over the complete time series is 1.1 m.

The constant modest drawdown at well G6 is reproduced
well by the posterior ensemble. The same holds for the com-
parable behavior at wells HB4 and HB6 during the first 45
days of the production test. It is a reaction to the constant
pumping rate in well HB3; however, the reactions to pumping
and changes in pumping rates at wells HB4 and HB6 are more
pronounced in reality than in the posterior mean, but there are
realizations within the posterior that are able to reproduce the
observed aquifer response. Uncertainty in terms of standard
deviation is increased during those periods of direct reactions
to changes in pumping rates.

The resulting posterior log-permeability distribution re-
veals with –11.66 almost the same mean as the prior, but has
a lower standard deviation of 0.83 (Fig. 9). For investigating
the resulting permeabilities more closely, Fig. 12 depicts the
prior and posterior distribution at the well positions as
boxplots. Average log-permeability of the prior follows the
applied trend of decreasing log-permeability from NE to SW
(see Fig. 6). The spread is reduced in the posterior compared
to the prior at wells where conditioning data were available
and at two other wells (G3 and HB5). Measured log-
permeabilities at wells HB3 and G2 are not captured by the
ensemble median but are still within the log-permeability
range of the full ensemble. This somewhat bad fit can likely
be eliminated by conditioning the geostatistical prior model to
the available log-permeability data.

Overall, the posterior reduces the uncertainty both in per-
meability and in simulated drawdown compared to the prior:
uncertainty of log-permeability is reduced by 0.5 and uncer-
tainty of the drawdown simulation is reduced by an average of
1.4 m in terms of standard deviation. Besides enabling the
uncertainty assessment of the aquifer permeability and of re-
lated drawdown simulations, a comparison of the RMSE
(Table 5) illustrates the improvement of the average model
fit by a stochastically simulated heterogeneous permeability
ensemble compared to homogeneous average permeabil-
ity. The average drawdown of the posterior ensemble
matches the observed drawdown with a mean RMSE
of 1.69 m, which shows how stochastic simulations

supported by high performance computing can be ap-
plied to hydrogeological problems for improving
groundwater flow models.

Discussion

Ensemble-based stochastic calibration improves the hard-rock
aquifer flow model of the Hastenrather Graben catchment
area. Advances in computational sciences enable such mas-
sive Monte Carlo simulations. Conditioning the model to
steady-state hydraulic head data does not capture the hetero-
geneity of the hard rock’s permeability. Instead, transient
drawdown data from a production test in several wells distrib-
uted over the model domain accounts for heterogeneity more
sufficiently. Commonly, such production test data become
available through aquifer testing; similarly, concentrations
from tracer tests can be used for inversion and model
calibration.

A stochastic model always depends on geostatistical pa-
rameters. For this study, some educated assumptions had to
be made in order to define all geostatistical parameters neces-
sary for the ensemble generation. Data scarcity made robust
variogrammodeling difficult and results in high uncertainty of
the geostatistical model. More wells or a different spatial dis-
tribution of the wells across the model domain could have
improved the determination of the spatial correlation. This is
worth considering when placing monitoring wells in a catch-
ment area where stochastic simulations are planned,
as stressed by, e.g. Júnez-Ferreira et al. (2019). Bogaert and
Russo (1999) propose, for example, an optimization approach
for spatial sampling design in order to increase the quality of
the variogram estimation. Alternatively, one could introduce
this scenario uncertainty into the estimation process by con-
sidering several potential variogram models simultaneously
instead of using one deterministic model (e.g. Rubin et al.
2018). So far, the presented study did not account for it ex-
plicitly; thus, the results do not fully capture the prior uncer-
tainty. Possible extension of the approach is at the cost of
higher computational burden because several prior ensembles
would have to be computed (e.g. Park et al. 2013; Hermans
et al. 2015).

The few available data points are spread over a rela-
tively large area; therefore, the geostatistical model covers
relatively large-scale correlations (lag distance in the or-
der of 102), smaller scale correlations cannot be resolved.
Thus, the resulting flow model is not able to simulate
effects, which are caused by small scale heterogeneities,
which might be one reason why the reaction to pumping
in the surrounding wells is not reproduced by the ensem-
ble realizations at well HB3 since small-scale permeabil-
ity variations and, hence, possible flow paths between the
wells are not modeled correctly. However, even the
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introduced level of heterogeneity improves the model
considerably compared to a deterministic model with ho-
mogeneous zonation.

In addition, the data show a spatial trend which had
to be removed before variogram analysis. The applied
detrending is another source of uncertainty and of pos-
sible errors for the modeling process — for example,
the bad permeability match of the prior and posterior
at wells HB3 and G2 are most likely explained by the
fact that it is not well fitted by the trend; however, data
scarcity did not allow for removing any data from the
trend model and from variogram modeling and to con-
sider them separately. Besides, conditioning the
geostatistical prior simulation to the available permeabil-
ity data would have improved the match at the wells,
which should be considered in any potential further sto-
chastic investigations of the Hastenrather Graben catch-
ment area.

The study focuses on the aquifer permeability which is
assumed to be the main hydraulic parameter to affect the
drawdown. Nevertheless, specific storage partly controls the
aquifer’s reaction on pumping as well. Deviations from the
average specific storage applied in the simulation are very
likely in a heterogeneous hard-rock aquifer. Its spatial variabil-
ity could be incorporated and investigated in a similar manner
and would likely improve the simulation; however, here, this
was neglected for the sake of simplicity.

If more spatial data points on permeability are available
in the future, the model could be improved by analyzing
the Kohlenkalk and the Walhorn and Stolberg Layers sep-
arately with distinct geostatistical models. Additionally,
one has to be aware that the model yields valid results only
for the central model domain, where the calibration data
points are located and which is not influenced by boundary
conditions — for example, the simulation yields high head
values which are above elevation in the northern model
domain. This may be caused by the uncertain northern
boundary condition that was extrapolated from the central
model area as no data are available for the north. The high
heads can also be explained by confined conditions due to
the existence of the separating clay layer in that area.
Nevertheless, model results in the outer areas of the model
domain could not be validated by any data.

An improvement of the quality of fit might even be
achieved by using advanced data assimilation methods such
as the Ensemble Kalman Filter (e.g. Gómez-Hernández et al.
1997; Vogt et al. 2012; Kurtz et al. 2014; Keller et al. 2018).
For models of this size (i.e., memory, discretization, number
of realizations), a distributed-memory parallelism of the EnKF
is necessary such as that provided by the Parallel Data
Assimilation Framework (PDAF; Nerger and Hiller 2013);
however, this is not yet integrated into the SHEMAT-Suite
code.

Conclusions

A model with six homogeneous permeability zones was suf-
ficient for calibrating the natural steady-state behavior of the
Hastenrather Graben hard-rock aquifer; however, for simulat-
ing the aquifer’s behavior during production, the interaction
between the wells has to be captured by introducing hetero-
geneous permeability. Quantitative statements on preferential
flow paths within the hard-rock aquifer will only be possible
by direct investigation of conduits (i.e., karst structures and
the fault and fracture network) in the subsurface and their
integration into a numerical model. Geostatistical analysis of
hydraulic data enabled stochastic simulations of the hard-rock
aquifer’s heterogeneous permeability with a Monte Carlo ap-
proach. The computationally expensive simulations were per-
formed on a high-performance computer using the
parallelized simulation software SHEMAT-Suite.

This paper provides a possible geostatistical model of the
hard-rock aquifer permeability at the Hastenrather Graben
catchment area despite data scarcity. Monte Carlo simulations
of 1,000 model realizations allowed for verifying the prior
model and quantifying prior uncertainty of the aquifer perme-
ability and of drawdown simulations. Due to data scarcity, the
variogram model is not very robust and relatively uncertain.
Nevertheless, drawdown observations verify the prior model
and subsequent Markov Chain Monte Carlo sampling could
be performed for converging to the posterior model. A poste-
rior mean log-permeability of –11.66 with an uncertainty of
0.83 is obtained, whereas the corresponding average uncer-
tainty of the drawdown simulation is 1.1 m, while some
sources of uncertainty such as variogram uncertainty, remain
unquantified. Still, this study is an important step towards an
entire uncertainty quantification for a sparsely sampled hard-
rock aquifer, which is crucial for the adequate management of
groundwater resources. It can potentially be the basis for fur-
ther stochastic investigations with advanced methods.

The stochastic simulation of the hard-rock aquifer
permeability improved the flow model compared to a
model with homogeneous permeability. Although perme-
ability data in the study area are sparse and the hard-
rock aquifer is highly heterogeneous, the average fit to
the observed drawdown curves is 1.7 m in terms of
RMSE. This could be achieved by the stochastic ap-
proach without adding any information on the fracture
network of the hard-rock aquifer, which makes it a
practical approach if fracture network data are sparse.
The resulting posterior model of the Hastenrather
Graben catchment area can be used for simulating other
production scenarios providing drawdown predictions
and according uncertainty.

In summary, geostatistical simulations and Markov Chain
Monte Carlo sampling were applied successfully to a sparsely
sampled hard-rock aquifer for analyzing prior and posterior
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uncertainty of the aquifer permeability and its response to
water production. The demonstration of this real-case applica-
tion of stochastic hydrogeological approaches to a complex
hard-rock aquifer might motivate practitioners to apply sto-
chastic methods for uncertainty quantification of subsurface
flow models.
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