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Abstract
The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing 
scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. 
This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this 
model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible 
for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution 
performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this 
weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning preci-
sion and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, 
Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity 
resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from 
different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level 
positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are 
required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions.

Keywords RTK · GLONASS FDMA · Integer ambiguity resolution · Partial fixing · Difference test · Best integer 
equivariant estimation · Multi-GNSS

Introduction

With the exception of the Russian GLONASS, all current 
satellite navigation systems such as GPS, Galileo, BeiDou, 
and QZSS make use of the code division multiple access 
(CDMA) scheme to separate the signals from different sat-
ellites at the user receiver. Since with CDMA the carrier-
phase measurements from all satellites share common wave-
lengths, the resulting double-difference (DD) ambiguities 
are directly estimable as integers.

The GLONASS legacy signals are based on frequency 
division multiple access (FDMA), where different satellites 
transmit on slightly different carrier frequencies. Differ-
encing the carrier phases between two satellites, therefore, 

involves measurements with different wavelengths, so that 
the conventional DD ambiguities are no longer integer esti-
mable. In Teunissen (2019), a new FDMA model was intro-
duced, in which a new set of integer ambiguity parameters 
is defined, that enables integer ambiguity resolution also for 
GLONASS. The performance of this model with GLONASS 
and GPS data was first demonstrated for short baseline posi-
tioning and direction finding in Teunissen and Khodaban-
deh (2019), and for short to long baseline positioning in 
Hou et al. (2020). As shown in Teunissen and Khodabandeh 
(2019), the FDMA model is much weaker than the CDMA 
model in terms of the ambiguity resolution performance so 
that, for instance, GLONASS only reliable single-epoch 
ambiguity resolution is often not possible on short baselines 
with dual-frequency observations as for CDMA systems.

Teunissen (2019) and Teunissen and Khodabandeh 
(2019) pointed out the importance of partial ambiguity reso-
lution (PAR) when using GLONASS data. They showed that 
even with the geometry-fixed model, which is the strong-
est possible model that assumes the relative receiver satel-
lite geometry known, PAR is required for a high ambiguity 
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resolution reliability, thus implying the necessity of PAR 
for any other model. As demonstrated in Odijk et al. (2014), 
Brack (2016), and Nardo et al. (2016) with simulations and 
in Parkins (2011) and Brack (2017a, b) with real GNSS 
data, PAR techniques can greatly enhance the positioning 
performance.

We focus on combined multi-GNSS solutions and give 
a detailed analysis of the capabilities of this new FDMA 
model for single baseline real-time kinematic (RTK) posi-
tioning for combinations of up to five systems. Short, 
medium, and long baselines are considered and analyzed 
formally, through simulations, and with real data from four 
permanent GNSS stations in the area of Perth, Australia. 
Generally, combining systems strongly improves the RTK 
positioning capabilities, as was demonstrated for GPS and 
Galileo (Tiberius et al. 2002; Julien et al. 2003; Odijk et al. 
2012), GPS and BeiDou (Deng et al. 2014; He et al. 2014; 
Teunissen et al. 2014; Zhao et al. 2014; Odolinski et al. 
2015b), and four-system GPS, Galileo, BeiDou, and QZSS 
(Odolinski et al. 2015a). Such improvement can also occur 
when including GLONASS FDMA data (Teunissen and 
Khodabandeh 2019; Hou et al. 2020), but it is shown that 
the ambiguity resolution performance can also be clearly 
reduced compared to the case without GLONASS.

Given the above weakness, it is discussed whether it is 
actually useful to include GLONASS FDMA data when 
already up to four CDMA systems are employed, and how 
they should be included. We show that, with a difference 
test (DT)-based PAR method, including GLONASS data 
is beneficial in all considered cases. This implies a higher 
availability of centimeter-level solutions for instantaneous 
solutions on short and medium baselines, faster solutions for 
long baselines, and improved positioning precision.

Single baseline observation model

The single-system CDMA and FDMA DD observation 
models are introduced. For the combined system analysis 
presented later, all systems are essentially treated separately 
with only the receiver coordinates and the tropospheric 
zenith delay as common parameters. That is, differencing 
between systems with common frequencies after a possible 
calibration of inter-system biases is not considered (Odijk 
and Teunissen 2013; Paziewski and Wielgosz 2015).

Let S denote the number of satellites that are tracked by 
both receivers on F frequencies. The single-epoch system of 
linearized observation equations can be written in the form

(1)
[

p

�

]

=

[

eF ⊗ G q⊗ IS−1
eF ⊗ G −q⊗ IS−1

][

b

�

]

+
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0
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a + �

where p ∈ ℝ
(S−1)F and � ∈ ℝ

(S−1)F contain the DD code 
and carrier-phase observations, b ∈ ℝ

3∕4 the three receiver 
coordinates and optionally the residual between receiver dif-
ferential tropospheric zenith delay, � ∈ ℝ

S−1 the DD iono-
spheric delays on the reference frequency, and a ∈ ℤ

(S−1)F 
the carrier-phase integer ambiguities. The geometry matrix 
is G ∈ ℝ

(S−1)×3∕4 , eF is an F vector of ones, and ⊗ denotes 
the Kronecker product. The vector q ∈ ℝ

F contains the 
coefficients of the first-order ionospheric delays, IS−1 is the 
unit matrix of dimension S − 1 , and � ∈ ℝ

F×F is a diagonal 
matrix with the wavelengths as defined by the center fre-
quencies of the signal bands.

With CDMA, the matrix L ∈ ℝ
(S−1)×(S−1) is simply a unit 

matrix and a are the DD ambiguities. For GLONASS L1 
and L2 FDMA data, the wavelengths are proportional to 
1∕(2848 + �s) , with the satellite-specific channel numbers 
�s ∈ [−7,… , 6] , so that it is not possible to simply set up a 
separate integer ambiguity parameter for each carrier-phase 
DD observation with a common wavelength as a coefficient. 
A lower triangular matrix L defining a set of integer esti-
mable ambiguity combinations was proposed in Teunissen 
(2019). As the ratio between the L1 and L2 frequencies is 
identical for all GLONASS satellites, the ionospheric param-
eterization is still valid.

The additive noise � ∈ ℝ
2(S−1)F is assumed as zero-mean 

Gaussian with covariance matrix

 where Qp = diag
(

𝜎2
p,1
,… , 𝜎2

p,F

)

⊗ DWDT , with �p,f  the 
frequency specific zenith referenced standard deviations of 
the undifferenced code observations, D ∈ ℤ

(S−1)×S 
the between satellite differencing operator, and W ∈ ℝ

S×S a 
diagonal matrix with elevation-dependent exponential noise 
amplification factors from Euler and Goad (1991). The car-
rier-phase covariance matrix Q

�
 is defined accordingly with 

the standard deviations ��,f .
The FDMA-based observations may further be affected 

by inter-channel biases caused by different carrier frequen-
cies. GLONASS inter-channel phase biases are negligible 
and are therefore not considered (Sleewaegen et al. 2012). 
Inter-channel code biases are assumed absent in this con-
tribution, e.g., through the use of similar hardware for both 
receivers or a priori calibration (Yamada et al. 2010; Reuss-
ner and Wanninger 2011; Al-Shaery et al. 2013; Chuang 
et al. 2013).

The expected ambiguity resolution performance of the 
FDMA model can be understood by analyzing the covari-
ance matrix Qâ of the estimated float ambiguities â . Fig-
ure 1 shows the LAMBDA (Teunissen 1995) decorrelated 
conditional ambiguity standard deviations of the FDMA 
model and the corresponding CDMA model, cf. Teunissen 
and Khodabandeh (2019). As discussed in Teunissen (2019) 

(2)Q = 2 ⋅ blkdiag(Qp,Q�
)
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and Teunissen and Khodabandeh (2019), the decorrelated 
FDMA ambiguity spectrum is not flat like the CDMA spec-
trum, but the first F values, which are the last ones to be 
considered, are much larger, which is caused by the struc-
ture of the L matrix in (1). As is shown later, it is virtually 
impossible to quickly and reliably resolve these ambiguities. 
Teunissen (2019) and Teunissen and Khodabandeh (2019) 
proposed a PAR method as a remedy, where these F ele-
ments are excluded from ambiguity fixing, the impact of 
which is discussed later. Further, we can already see that 
the values of FDMA are increased compared to the CDMA 
spectrum, so that we can expect a weaker ambiguity resolu-
tion performance.

The different magnitude of the elements of L that causes 
this behavior might also lead to numerical problems when 
implementing the FDMA model, in particular when using a 
filtered solution. A mathematical equivalent implementation 
is given by replacing a ∈ ℤ

n by the non-integer

when computing float estimates, so that in fact the CDMA 
model is used. By applying the inverse transformation to the 
resulting float solution �a =

(

IF ⊗ L−1
)

�̃a and its covariance 
matrix, the integer estimable ambiguity vector is restored for 
the subsequent integer fixing. This formulation also allows 
for a simpler and more intuitive reparameterization for ris-
ing and setting satellites in a recursive estimation scheme. A 
similar strategy was proposed in Hou et al. (2020).

In the following, short baselines refer to the case where 
all differential atmospheric delays are negligible and can be 
removed from the model. The differential tropospheric delay 
is estimated for medium baselines, whereas the ionospheric 
delays are modeled as zero-mean additive noise, referred 

(3)ã =
(

IF ⊗ L
)

a, with ã ∈ ℝ
n

to as the ionosphere weighted model (Schaffrin and Bock 
1988; Teunissen 1998b; Odijk 2000). For long baselines, 
both the tropospheric delay and the ionospheric delays in 
(1) are estimated.

Ambiguity resolution methods

We compare three methods for reliable ambiguity resolu-
tion that can be formulated such as to meet a user-defined 
constraint on the maximum tolerable ambiguity failure rate 
Pf and the best integer equivariant estimator.

Two methods are used for full ambiguity resolution 
(FAR), both of which use integer least-squares (ILS) ambi-
guity estimation in combination with an acceptance crite-
rion. The first criterion is the integer bootstrapping (IB) 
failure rate (Teunissen 1998a) as an upper bound of the ILS 
failure rate (IB FAR). As a second criterion, we use the DT 
(Tiberius and De Jonge 1995) with a fixed failure rate criti-
cal value (DT FAR), so that a maximum failure rate of Pf can 
also be guaranteed (Verhagen and Teunissen 2013). With DT 
FAR, reliable ambiguity fixing can still be possible even if 
the IB failure rate, as defined by the system model, is too 
large.

The concept of the DT was extended to PAR in Brack 
and Günther (2014) by means of a per-element DT, in which 
each scalar entry of the ILS ambiguity solution is tested 
for acceptance (DT PAR). A maximum failure rate is again 
guaranteed through a proper choice of the critical value, for 
which the conservative functional approximation in Brack 
(2015) is used.

The concept of the best integer equivariant (BIE) estima-
tor (Teunissen 2003) is to not fix the ambiguities to inte-
gers but to form a weighted sum of integers. The resulting 
estimates of the geometry parameters b are the minimum 
variance unbiased estimates within the integer equivariant 
estimators class, which also contains the float solution and 
all admissible fixed or partially fixed solutions. Therefore, 
the variances of the BIE estimates can serve as benchmark 
results for analyzing the best possible performance of any 
given model.

Experimental setup

The RTK positioning performance of single and combined 
system GPS (G), Galileo (E), BeiDou-2 (C), QZSS (J), and 
GLONASS (R) is analyzed for different baselines. The data 
with a sampling interval of 30 s were collected at the stations 
CUT0, CUTA, PERT (all Trimble NetR9), and NNOR (Sep-
tentrio PolaRx5TR) in the area of Perth, Australia, during 
May 15, 2020. The number of visible satellites with an ele-
vation angle greater than 10◦ is shown in Fig. 2. We can see 
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Fig. 1  Conditional ambiguity standard deviations of the FDMA and 
CDMA models for a single- (top) and dual-frequency (bottom) exam-
ple
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that the number of GLONASS satellites is mostly smaller 
than for the other global systems, which we have to keep in 
mind when interpreting the positioning performance. The 
estimated zenith referenced code standard deviations of the 
considered signals are given in Table 1. They are derived 
from a different day of DD code data in a least-squares sense 
following Teunissen and Amiri-Simkooei (2008) with a pri-
ori fixed coordinates. For CUT0-CUTA, differential atmos-
pheric delays are neglected, whereas for PERT-NNOR the 
ionosphere weighted model is applied, cf. Section "Medium 
baselines," and residual tropospheric delays are ignored. 
The quality of the GLONASS signals is comparable to the 
other systems. The ambiguity failure rate constraint is set 
to Pf = 0.1%.

Short baselines

Instantaneous single- and dual-frequency positioning on the 
8.4m baseline between CUT0 and CUTA is considered. Dif-
ferential atmospheric delays are assumed absent.

Formal and simulation analysis

The average ambiguity float and fixed single-epoch posi-
tioning precision for the east, north, and up component is 
given in Table 2 for different systems. The ambiguity-fixed 
precision values are derived from the conditional coordi-
nate covariance matrices and do not reflect whether it is 
possible to reliably resolve the ambiguities. For the GLO-
NASS only cases, only epochs with six or more visible satel-
lites are included. As mentioned above, the F least precise 
LAMBDA-transformed ambiguities are removed for GLO-
NASS. The single-system GLONASS results are worse com-
pared to single-system GPS, which can be attributed to fewer 
visible satellites. However, sub-centimeter-level horizontal 
positioning results should also be possible already with sin-
gle-frequency GLONASS data. The gain of combined sys-
tem GPS + Galileo and GPS + GLONASS compared to GPS 
only is on a similar level, in particular when considering the 
lower number of GLONASS satellites. Even for the already 
very strong four-system GPS + Galileo + BeiDou-2 + QZSS 
case, adding GLONASS data still improves the precision.

The ambiguity-fixed precision values are only meaning-
ful, given that it is actually possible to reliably resolve the 
ambiguities. To formally analyze the different models’ ambi-
guity resolution capabilities, we consider the IB success rate 
and the ambiguity dilution of precision (ADOP, Teunissen 
1997), a measure for the strength of the model for success-
ful ambiguity resolution. It was found that an ADOP ≤ 0.12 
generally allows for reliable ILS ambiguity resolution with 
a failure rate of less than 0.1% (Odijk and Teunissen 2008). 
The average IB success rates in Fig. 3 show that the single-
system, single-frequency model is too weak to support reli-
able ambiguity resolution, whereas the dual-frequency GPS 
or single-frequency GPS + Galileo model is strong enough. 
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Fig. 2  Number of visible GNSS satellites in Perth, Australia, during 
May 15, 2020

Table 1  Estimated zenith referenced standard deviations �p,f  of 
the code observables in (cm) for GPS L1/L2, Galileo E1/E5a, Bei-
Dou-2 B1/B2, QZSS L1/L2, and GLONASS L1/L2 for two differ-
ent baselines. The carrier-phase standard deviations are assumed as 
��,f = 2mm

CUT0-CUTA PERT-NNOR

GPS 37∕23 29∕19

Galileo 23∕18 19∕18

BeiDou-2 40∕26 32∕21

QZSS 43∕23 40∕23

GLONASS 40∕20 27∕23

Table 2  Average formal ambiguity float and fixed positioning stand-
ard deviations for the east/north/up components with single- and 
dual-frequency observations

Float (cm) Fixed (mm)

G 1F 52∕62∕144 2.8∕3.4∕7.8

G 2F 27∕33∕76 2.0∕2.4∕5.5

R 1F 86∕74∕260 6.6∕7.8∕21.8

R 2F 38∕33∕116 4.0∕5.3∕14.7

G + R 1F 43∕46∕115 2.4∕2.7∕6.3

G + R 2F 22∕23∕58 1.7∕1.9∕4.5

G + E 1F 30∕33∕80 2.1∕2.4∕5.6

G + E 2F 17∕19∕46 1.5∕1.7∕4.0

G + E + C + J 1F 26∕29∕70 1.6∕1.8∕4.5

G + E + C + J 2F 15∕16∕40 1.1∕1.3∕3.2

G + E + C + J + R 1F 25∕26∕66 1.5∕1.7∕4.1

G + E + C + J + R 2F 14∕14∕36 1.1∕1.2∕2.9
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For GLONASS, we consider three cases, where R reduced 
(red.) stands for the above case of removing the F least 
precise ambiguities, R full means that all ambiguities are 
included, and R CDMA means that GLONASS is simulated 
as if it was a CDMA system, i.e., all channel numbers �s are 
assumed as zero. The dual-frequency results clearly show 
that we cannot expect to resolve all GLONASS ambiguities. 
Even when removing the two least precise elements, the IB 
success rates are still considerably lower than for the CDMA 
model, whose results are comparable to GPS. Reliable dual-
frequency GLONASS ambiguity resolution only becomes 
possible, starting from about eight satellites. The IB success 
rates of the single-frequency combined GPS + GLONASS 
model are also lower than the ones of the GPS + Galileo 
counterpart. The average ADOP values confirm these find-
ings in Fig. 4, where the black line indicates an ADOP of 
0.12 cycles.

We cannot expect to reliably resolve the F least precise 
ambiguities for GLONASS, so the question is whether they 
are actually relevant for positioning, and if so, can we make 
use of them? The formal ambiguity-fixed precision for the 
GPS + GLONASS case in Table 3 indeed shows a slight 
penalty in the average standard deviations when ignoring 
those ambiguities, although on the sub-millimeter level. 
The BIE estimator leads to the highest possible precision 
values that can actually be obtained so that applying the 
BIE to the full GLONASS ambiguity set shows the mod-
el’s capability. Comparing these BIE results to those of the 
reduced case, in which the integer property of F ambiguities 
is ignored, shows the potential loss of the reduced scenario. 
For the single-frequency case, there is a slight advantage 
when including also those F ambiguities. More interest-
ing, for the stronger dual-frequency case where on average 

sub-centimeter positioning is possible, the BIE results of the 
reduced and full set are identical, and they are also identical 
to the fixed precision with the reduced set. Therefore, the 
strategy to remove those F least precise ambiguities is very 
reasonable, since even when they are included optimally, 
they do not noticeably contribute to the positioning preci-
sion. For a reliable integer fixing of the GLONASS ambi-
guities, excluding those F elements is essential (Teunissen 
2019; Teunissen and Khodabandeh 2019). From now on, we 
only consider this reduced case for GLONASS, so that the 
IB success rates and ADOP values refer to this case, and the 
two FAR methods and DT PAR are applied to the reduced 
ambiguity set. That is, with GLONASS data, all considered 
methods are, in fact, partial ambiguity resolution methods.

Although the above-presented IB success rate and ADOP 
are very useful measures for the models’ ambiguity resolu-
tion capabilities, high-precision positioning might still be 
possible even for seemingly weak models when using the 
DT-based methods for FAR and PAR. The simulated average 
availability of coordinate estimates with a formal precision 
of 3 cm or better for the horizontal components and 15 cm 

4 6 8 10 12 14 16
Number of satellites

0

0.5

1

IB
 s

uc
ce

ss
 r

at
e G

R red.
R full
R CDMA
GR red.
GE

0

0.5

1
IB

 s
uc

ce
ss

 r
at

e

Fig. 3  Average IB success rates versus the number of satellites for 
single- (top) and dual-frequency (bottom) observations
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Fig. 4  Average ADOP versus the number of satellites for single- (top) 
and dual-frequency (bottom) observations. The black line marks 0.12 
cycles

Table 3  Average formal ambiguity-fixed and simulated BIE position-
ing precision for the east/north/up components with single- and dual-
frequency observations

Fixed (mm) BIE (mm)

G + R red. 1F 2.4∕2.7∕6.3 91.5∕100.2∕227.5

G + R full 1F 2.3∕2.4∕6.1 91.2∕100.2∕227.9

G + R red. 2F 1.7∕1.9∕4.5 1.7∕1.9∕4.5

G + R full 2F 1.6∕1.7∕4.3 1.7∕1.9∕4.5
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for the up component is given in Table 4, where the DT 
FAR and DT PAR results are computed by Monte Carlo 
integration. As expected, the single-frequency GPS model is 
too weak for reliable ambiguity resolution, but the dual-fre-
quency counterpart is sufficiently strong. Adding GLONASS 
data improves significantly the single-frequency results, 
where the DT-based methods are again clearly superior to 
the IB FAR scheme. For the dual-frequency case, however, 
we can see that adding GLONASS may even worsen the 
ambiguity resolution performance, especially for IB FAR, 
whereas with DT PAR, one can expect full availability. The 
same is observed for the by itself very strong four-system 
model, where adding GLONASS data when attempting FAR 
decreases the availability, whereas DT PAR can again guar-
antee full availability.

Real data analysis

For the real data analysis, the conventional IB FAR method 
and DT PAR are considered. Standalone GLONASS was 
shown to be too weak for instantaneous positioning with 
reliable ambiguity resolution. Figure 5 shows the dual-fre-
quency IB FAR results when combining three consecutive 
epochs. When the model is sufficiently strong so that an 
integer solution can be accepted, centimeter-level results are 
possible.

The benefit of integrating GLONASS FDMA data in 
a multi-GNSS solution is shown in Fig. 6 for single-fre-
quency GPS + GLONASS positioning. With IB FAR, reli-
able ambiguity resolution for GPS only is not possible, and 
DT PAR only allows for centimeter-level results for a very 
limited number of epochs. In the combined model, as pre-
dicted by the simulations, the acceptance rate of IB FAR is 
clearly improved, although still limited, and DT PAR further 
increases the availability of precise results.

The single-frequency four-/five-system results with GPS, 
Galileo, BeiDou-2, QZSS, and GLONASS are shown in 
Fig. 7. Without GLONASS, single-epoch FAR is already 

possible with IB FAR at every epoch. Adding GLONASS 
reduces the system model’s ambiguity resolution strength, 
which results in some gaps in which an integer solution can-
not be accepted with IB FAR and we obtain errors at the 
meter level. These gaps can, however, be avoided with DT 
PAR. The root mean square (RMS) positioning errors with-
out GLONASS and IB FAR are 1.6, 1.4, and 3.7 mm for the 
east, north, and up components. They are slightly reduced 
to 1.5, 1.4, and 3.5 mm with GLONASS and DT PAR, so 
that the positioning capabilities still benefit from adding 
GLONASS, although not always the full set of ambiguities 
is resolved.

Almost identical results are obtained for the dual-fre-
quency case with GPS and GLONASS in Fig. 8, where 
GLONASS reduces the RMS errors from 2.1, 2.2, and 5.3 
mm to 1.7, 1.8, and 4.3 mm. The problem of rejected inte-
ger ambiguity solutions with integrated GLONASS data and 
IB FAR also remains when adding further constellations to 
this dual-frequency case, even with five systems (not shown 
here).

Medium baselines

Instantaneous dual-frequency positioning on the 22.4 km 
baseline between CUT0 and PERT and the 88.5 km base-
line between PERT and NNOR is considered. The meas-
urements are a priori corrected for the tropospheric delays 
with the blind MOPS tropospheric model (MOPS 1999) 
and the global mapping function (Böhm et  al. 2006). 

Table 4  Simulated availability of precise coordinate estimates with a 
formal precision of 3 cm for the horizontal components and 15 cm for 
the up component in %

IB FAR DT FAR DT PAR

G 1F 0 21.9 18.8

G 2F 100 100 100

G + R 1F 28.6 77.1 75.3

G + R 2F 91.2 99.0 100

G + E + C + J 1F 100 100 100

G + E + C + J 2F 100 100 100

G + E + C + J + R 1F 91.2 99.2 100

G + E + C + J + R 2F 91.7 99.5 100

-2 0 2
East error [m]

-2

0

2

N
or

th
 e

rr
or

 [m
]

R, IB FAR

-0.05 0 0.05
-0.05

0

0.05

0 6 12 18 24
Time [h]

-5

0

5

U
p 

er
ro

r 
[m

]
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Residual zenith wet tropospheric delays are estimated. The 
ionospheric delays are treated as additional noise, where 
the uncertainty �� of the between receiver differenced iono-
spheric delays is modeled depending on the length of the 
baseline as

to which the elevation-dependent weighting of Euler and 
Goad (1991) is applied. Since the GLONASS only model 

(4)�� =
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is already too weak for single-epoch positioning on short 
baselines, this case is not considered, and the focus is on 
integrating GLONASS FDMA data with data from CDMA 
systems.

Formal and simulation analysis

The average single-epoch ambiguity float and fixed position-
ing precision is shown for the east component in Fig. 9 for 
different systems depending on the length of the baseline. 
The increasing uncertainty of the differential ionospheric 
delays with increasing baseline length transforms into less 
precise positioning results. Adding GLONASS to the GPS 
only case improves the positioning precision both for the 
ambiguity float and fixed cases by roughly 20% , which is 
slightly less but comparable to adding Galileo. Further 
improvements are observed by adding more systems, where 
adding GLONASS is still beneficial when already four sys-
tems are combined.

We now look at the ambiguity resolution capabilities 
of the model with different systems included. The aver-
age values of the IB success rate and ADOP are shown in 
Fig. 10. The IB success rate of GPS quickly drops when 
the length of the baseline exceeds a few kilometers, and 
the ADOP increases to above 0.12 cycles . Adding Galileo 
clearly improves this situation. Based on the ADOP values, 
a range of about 20 km for instantaneous positioning should 
be possible sometimes when using 0.12 cycles as threshold. 
The impact of adding GLONASS to GPS is not so obvious. 
Although the IB success rate is worse than for GPS only, 
the ADOP values are slightly improved. For the four-/five-
system case without and with GLONASS, including GLO-
NASS significantly reduces the IB success rate, but only 
leads to slightly increased ADOP values.

The simulated average availability of precise coordinate 
estimates with IB FAR, DT FAR, and DT PAR is shown in 
Fig. 11. As expected, IB FAR is only helpful for very short 
baselines. Applying the DT for FAR can slightly extend the 
range for instantaneous positioning, but DT PAR leads to a 
significant improvement, especially for the four and five-sys-
tem cases, where instantaneous results should be possible for 
baselines of up to almost 100 km . The above concern about 
the ambiguity resolution performance with GLONASS data 
is confirmed. With the two FAR methods, which imply that 
the F least precise ambiguities are removed, adding GLO-
NASS mostly decreases the positioning performance, more 
notably for the four-/five-system cases. Adding Galileo to 
GPS, on the other hand, leads to improved results. With 
DT PAR, the availability with GLONASS data is increased.

Real data analysis

Considering the baseline lengths of 22.4 km and 88.5 km , 
the only method that can provide instantaneous centime-
ter-level positioning is DT PAR. GPS and GPS + GLO-
NASS results for CUT0-PERT are shown in Fig. 12. Add-
ing GLONASS clearly improves the availability of the 
GPS only solution. For the four- and five-system cases, 
the more challenging PERT-NNOR baseline is employed. 
Continuous single-epoch centimeter-level positioning 
results with reliable ambiguity resolution are indeed fea-
sible, see Fig. 13. The RMS east, north, and up positioning 
errors of the ambiguity float solution are 12.3 , 14.9 , and 
102.6 cm without and 11.7 , 14.0 , and 91.6 cm with GLO-
NASS. The corresponding partially fixed RMS errors are 
4.4 , 5.4 , and 63.4mm versus 4.3 , 5.3 , and 60.1mm . Includ-
ing GLONASS data into an already strong four-system 

0

0.2

0.4
P

re
c.

 e
as

t [
m

]
G
GR
GE
GECJ
GECJR

0 20 40 60 80 100
Baseline length [km]

0

5

10

P
re

c.
 e

as
t [

m
m

]

Fig. 9  Average dual-frequency formal ambiguity float (top) and 
ambiguity-fixed (bottom) positioning precision versus the length of 
the baseline for the east component

0

0.5

1

IB
 s

uc
ce

ss
 r

at
e G

GR
GE
GECJ
GECJR

0 20 40 60 80 100
Baseline length [km]

0

0.2

0.4

A
D

O
P

 [c
yc

le
]

Fig. 10  Average dual-frequency IB success rates (top) and ADOP 
(bottom) versus the length of the baseline. The black line marks 
0.12 cycles



GPS Solutions (2021) 25:9 

1 3

Page 9 of 13 9

model is therefore still beneficial. As mentioned above, 
nonzero inter-channel code biases can be present in a 
mixed receiver setup like PERT-NNOR. From the results, 

they appear small enough to not visibly affect the posi-
tioning performance, but one has to be very careful when 
ignoring these biases for inhomogeneous receivers.

Long baselines

Both the residual zenith wet tropospheric delay and the 
double-difference ionospheric delays are estimated. Reli-
able ambiguity resolution now requires the use of multiple 
measurement epochs with time constant ambiguity param-
eters. The following analysis is based on dual-frequency 
observations from the 88.5 km baseline between PERT 
and NNOR. Rising satellites are immediately included in 
the processing. The coordinates and ionospheric delays 
are assumed completely unlinked in time, and the zenith 
tropospheric delay is modeled as a random walk with a 
process noise of 2mm∕

√
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Formal and simulation analysis

The average ambiguity float and fixed precision over the 
number of epochs is shown in Fig. 14 for the east com-
ponent. Similar conclusions as for short and medium 
baselines can be drawn, i.e., adding more systems visibly 
improves both the float and fixed precision. This is more 
pronounced for the ambiguity float case, in which the deci-
meter level can be reached much faster for a combined 
approach than for GPS only.

The strength of the models with regard to ambiguity 
resolution as demonstrated with the IB success rate and 
ADOP in Fig. 15 shows that in the present setup adding 
GLONASS to GPS clearly improves the situation, whereas 
adding GLONASS to the four-system case leads to slightly 
inferior results so that, for instance, the IB success rate of 
the GPS + Galileo model is higher than the one of the five-
system model. This again shows the importance of choosing 
a suitable ambiguity resolution strategy when dealing with 
the weaker GLONASS FDMA model. The average number 
of epochs required to reach an IB success rate of less than 
0.1% is shown in Table 5. Adding a second system clearly 
shortens the convergence time, but between the dual-system 
GPS + Galileo case and the four-system case, including also 
BeiDou-2 and QZSS there is almost no difference. This can 
be attributed to more frequently rising satellites with more 
systems. Such problems can be avoided with DT PAR as is 
demonstrated below. Adding GLONASS to the four-system 
case clearly prolongs the convergence time. 

The simulated average availability of precise solutions 
with IB FAR, DT FAR, and DT PAR is presented in Fig. 16. 
For GPS only, we cannot expect fast results with any of the 
three methods, and DT PAR shows almost no advantage over 
DT FAR. Adding a second system already leads to signifi-
cant improvements, and the benefit of PAR becomes evident. 
Although GLONASS helps to enhance the performance of 
GPS only, it is clearly inferior to combined GPS and Galileo, 
for which we can expect continuous solutions within about 
15 epochs. For the four- and five-system cases, the improve-
ments with both FAR methods are minor, but with DT PAR 
we should be able to reach precise solutions within only a 
few epochs. We can also see that the problems of reduced 
availability with FAR when adding GLONASS to the four-
system case disappear with DT PAR. The combination of 
all available systems with PAR can, therefore, be considered 
the key to fast positioning when atmospheric delays have to 
be estimated, keeping in mind that with the conventional IB 
FAR method and standalone GPS the average convergence 
time is 52.1 epochs.
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Table 5  Average convergence 
times of IB FAR in terms of 
the number of epochs required 
to reach an IB success rate 
of less than 0.1% . One epoch 
corresponds to 30 s

Epochs

G 2F 52.1

G + R 2F 37.0

G + E 2F 23.6

G + E + C + J 2F 23.3

G + E + C + J + R 2F 34.7
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Real data analysis

It is now verified whether it is actually possible to reach the 
centimeter level on long baselines within only a few epochs. 
We focus on the four- and five-system cases with DT PAR. 
The strategy is to continuously add measurement epochs 
until the formal precision value of the partially fixed solu-
tion reaches 3 cm for the horizontal components and 15 cm 
for the up component. The computation of this solution is 
started at every epoch.

The positioning results for the 88.5 km baseline PERT-
NNOR with the long baseline model are shown in Fig. 17 
for the five-system case. The last row shows the number of 
epochs that were used to obtain the solutions. The distri-
bution on the right shows that although single-epoch posi-
tioning is not possible, mostly only two to four epochs are 
required. The average number of employed epochs is 3.27 
with GLONASS and 3.38 without GLONASS, showing the 
advantage of including GLONASS again. It also means 
that almost instantaneous results can actually be obtained 
when making use of all available systems and applying DT 
PAR. Similar results are obtained for the 109.6 km baseline 
CUT0-NNOR with 4.03 and 4.09 epochs with and without 
GLONASS.

Conclusions

The performance of the GLONASS FDMA model for sin-
gle- and dual-frequency single baseline RTK positioning 
was analyzed. The main conclusions can be summarized 
as follows.

While the formal positioning precision of the FDMA 
model was shown to be comparable to the CDMA model, 
its ambiguity resolution capabilities are clearly inferior. 
Removing the least precise LAMBDA-transformed ambi-
guity on each frequency as suggested in Teunissen (2019) 
and Teunissen and Khodabandeh (2019) strongly enhanced 
the situation, but the CDMA performance could still not be 
reached. Importantly, the achievable positioning precision 
was not visibly impaired by this, as was demonstrated with 
the BIE estimator.

As a result, centimeter-level single-epoch GLONASS 
FDMA only positioning was usually not possible. Inte-
grating GLONASS FDMA data with GPS CDMA data 
improved the availability of ambiguity resolved results 
only in a limited number of cases, namely for short base-
lines with a single frequency and for long baselines with 
two frequencies. For short baselines with two frequencies, 
medium baselines, or when further CDMA systems were 
added, using the FDMA data reduced the availability com-
pared to the cases without it.

To cope with the comparably weaker FDMA model, 
we proposed a PAR approach based on the per-element 
DT. This was demonstrated to lead to higher availability 
of centimeter-level solutions with better precision when 
integrating GLONASS data in all considered cases.

With the combined GPS, Galileo, BeiDou-2, QZSS, and 
GLONASS model and DT PAR, instantaneous centimeter-
level positioning on an 88.5 km baseline was shown to be 
possible with the ionosphere weighted model. An average 
of only 3.27 measurement epochs was shown to be suffi-
cient with the ionosphere float model. This is particularly 
promising since the single baseline ionosphere float model 
is comparable to single receiver ambiguity resolution-ena-
bled precise point positioning (PPP-RTK) without atmos-
pheric corrections, so that almost instantaneous solutions 
can also be expected with this method.
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