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Abstract
The Niederschlag fluorite-barite vein deposit in the Western Erzgebirge, Germany, has been actively mined since 2013. We
present the results of a first comprehensive study of the mineralogy, petrography, fluid inclusions, and trace element geochem-
istry of fluorite related to the Niederschlag deposit. Two different stages of fluorite mineralization are recognized. Stage I fluorite
is older, fine-grained, associated with quartz, and forms complex breccia and replacement textures. Conversely, the younger
Stage II fluorite is accompanied by barite and often occurs as banded and coarse crystalline open-space infill. Fluid inclusion and
REY systematics are distinctly different for these two fluorite stages. Fluid inclusions in fluorite I reveal the presence of a low to
medium saline (7–20% eq. w (NaCl+CaCl2)) fluid with homogenization temperatures of 140–180 °C, whereas fluorite II
inclusions yield distinctly lower (80–120 °C) homogenization temperatures with at least two high salinity fluids involved (18–
27% eq. w (NaCl+CaCl2)). In the absence of geochronological data, the genesis of the earlier generation of fluorite-quartz
mineralization remains enigmatic but is tentatively related to Permian magmatism in the Erzgebirge. The younger fluorite-
barite mineralization, on the other hand, has similarities to many fluorite-barite-Pb-Zn-Cu vein deposits in Europe that are widely
accepted to be related to the Mesozoic opening of the northern Atlantic Ocean.

Keywords Fluorite . Microthermometry . Fluid inclusions . Rare earth elements . Geochemistry . Metallogenesis . Industrial
minerals

Introduction

The Niederschlag fluorite-barite mine is located close to the
town of Oberwiesenthal in the Western Erzgebirge of
Germany. It commenced operation in 2013 and is owned
and opera t ed by the Erzgeb i rg i sche Fluß- und

Schwerspatwerke GmbH (EFS). As the only active fluorite-
barite mine in the Erzgebirge, the Niederschlag deposit pro-
duces around 100,000 t of raw fluorite concentrate per year,
corresponding to ca. 20,000 t of acid grade fluorite product.
Initially, barite was also exploited from the shallower parts of
the deposit and processed at the Clara mine, Schwarzwald
(Kuhn and Duba 2017). The production of barite concentrates
has, however, been discontinued.

Themajor ore body at the Niederschlag deposit is ~ 3–12m
thick, steeply dipping vein with a strike length of about 1 km,
which extends from Germany across the border into the
Czech Republic. On the Czech side, the vein is referred to as
the Kovarska deposit; the name Niederschlag deposit thus
only refers to the vein on the German side. Inferred resources
for the Niederschlag deposit were last reported by (Kuschka
2002) as ~ 1.15 Mt of fluorite and 0.56 Mt of barite. The
shallowest portion of the Niederschlag vein system is also
marked by the occurrence of five-element mineralization,
which was historically exploited for silver and cobalt from
medieval times until the nineteenth century (Lipp and Flach
2003). After World War II, intense exploration for uranium
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was carried out and around 132.7 t of uranium were produced
between 1949 and 1954 (Wismut 1999). The fluorite miner-
alization was only discovered during (rather unsuccessful)
exploration of uranium resources of deeper portions of the
Niederschlag vein. Uranium mining thus ceased in 1954,
when all known reserves of uranium mineralization had been
mined out.

The fluorite-barite mineralization of the Niederschlag de-
posit received renewed interest during the 1970s, when state-
owned companies of the German Democratic Republic
(GDR) carried out an extensive exploration program aimed
to constrain fluorite and barite resources (Kuschka 2002). At
the time, the decision was taken to retain the resources of the
Niederschlag deposit for later development. It is thus not sur-
prising that the decision of the EFS to develop the current
mining operation was based essentially on GDR exploration
results. In fact, no new drill cores were obtained and mineral
processing test work was based on historic bulk samples that
were still available at surface from the 1970’s exploration
program.

Besides the Niederschlag deposit, there are several fluorite-
barite vein deposits known in the Erzgebirge region
(Baumann et al. 2000). All these deposits, though mined in
the past, are currently regarded sub-economic; however, these
may well become interesting targets for renewed exploration,
especially since fluorite and barite are considered as critical
raw materials by the EU Commission (2017). Arguably the
most important example is the Schönbrunn-Bösenbrunn de-
posit that was a major fluorite producer until 1991 when it was
closed as a consequence of German reunification (Kuschka
and Hahn 1996). The Freiberg district, on the other hand,
was a major producer of fluorite and barite until 1969
(Wagenbreth 1988).

The known fluorite-barite veins have in common that the
available geoscientific literature is rather generic (Kuschka
2002) and that modern geochemical data is scant. Genetic
models are thus outdated or not available at all. A notable
exceptions are recent studies on the Freiberg district (Bauer
et al. 2019; Ostendorf et al. 2019), where Sm-Nd geochronol-
ogy and fluid inclusion analyses have illustrated that fluorite-
barite mineralization is of Mesozoic age and related to the
migration and mixing of shallow crustal, highly saline brines.
This mineralization style is very similar to many other
fluorite-barite veins known from Variscan basement expo-
sures in Europe, with examples from Germany, France,
Spain, Poland, Czech Republic, and Great Britain (Boiron
et al. 2010; Kraemer et al. 2019; Muchez et al. 2005; Walter
et al. 2016). The formation of this vein-style mineralization is
typically related to the opening of the northern Atlantic in the
Cretaceous (Walter et al. 2018b) and that share fluid inclusion
systematics (e.g., (Baatartsogt et al. 2007; Walter et al. 2017)).

This contribution is dedicated to place first constraints on
the origin of fluorite-barite mineralization of the Niederschlag

deposit. For this purpose, field geological and petrographic
studies were complemented by bulk rock (solution ICP-MS)
and in situ trace element (LA-ICP-MS) analyses of different
generations of fluorite in order to reconstruct hydrothermal
fluids and ore-forming processes. The results are compared
with other examples of vein-type fluorite-barite deposits in
the Erzgebirge (Trinkler et al. 2005; Wolff et al. 2015b) and
elsewhere in Central Europe (Bau and Dulski 1995; Nadoll
et al. 2019; Schwinn and Markl 2005).

Regional geological setting

Fluorite-barite mineralization of the Niederschlag deposit is
hosted by Latest Neoproterozoic to Early Paleozoic (570–
460 Ma) sedimentary and igneous units of the Saxo-
Thuringian Zone as a part of the Variscan Orogenic belt
(Rötzler and Plessen 2010). These were deformed and meta-
morphosed during the Paleozoic collision of Gondwana and
Laurussia (Kroner and Romer 2013) with peakmetamorphism
timed at 340 Ma (Kröner and Willner 1998). The metamor-
phic basement units were intruded by voluminous granitoids
(330–315 Ma; (Tichomirowa and Leonhardt 2010), rhyolitic
and lamprophyre dikes (Romer et al. 2010; von Seckendorff
et al. 2004; Seifert 2008) (Fig. 1a). Felsic magmatism (325–
285 Ma) during the late stages of orogenic collapse (Förster
et al. 2007; Hoffmann et al. 2013) was closely associated with
the formation of a variety of types of magmatic-hydrothermal
ore deposits in the Erzgebirge (Burisch et al. 2019; Ostendorf
et al. 2019; Zhang et al. 2017).

The Post-Variscan geological evolution of the Erzgebirge
is poorly constrained due to the almost complete erosion of the
former cover succession. It has, however, been inferred that
subsidence and concomitant basin formation following the
Variscan Orogeny led to a thick sedimentary cover, overlying
the Variscan basement units (Pälchen and Walter 2008).
Apatite fission-track thermochronology indicates that the
maximum thickness of the sedimentary cover reached 2–
3 km during the Mesozoic (Wolff et al. 2015a). During the
Cretaceous, the Elbe rift graben was reactivated, which led to
marine transgressions and sedimentation.

Exhumation of the Erzgebirge was related to the Cenozoic
Eger rift, which was accompanied by the emplacement of
abundant phonolitic and basaltic dikes. Rifting also resulted
in uplift and erosion of the Erzgebirge block, eventually
resulting in the exposure of the metamorphic units—and the
ore deposits hosted therein (Pälchen and Walter 2008).

Local geological setting

Numerous hydrothermal veins with different styles of miner-
alization are known from the Niederschlag-Bärenstein district,
which spans across an area of ~ 10 × 15 km. Veins comprise
different stages and styles of mineralization, which include
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Sn-quar t z , po lymeta l l i c -Pb-Zn- (Cu) -quar t z , U-
carbonate-(quartz), fluorite-quartz, fluorite-barite-Pb-Zn-Cu-
sulfides, and Ag-Bi-Co-Ni-As-carbonate (five element asso-
ciation) assemblages. Most of these veins are sub-economic
(Fig. 1c). The Niederschlag fluorite-barite vein deposit is re-
lated to the Scheibenberg-Niederschlag-Kovàřskà-fault, a dis-
crete NNW-SSE striking fault system that is mineralized
along a strike length of ~ 2.5 km. The economically relevant
fluorite resource is, however, restricted to an only ~ 1 km-long
segment of the structure, with vein thickness ranging from 4 to
12 m (Kuschka 2002). The upper levels of the Niederschlag
deposit cut across a diverse set of rock types comprising
garnet-muscovite schist, paragneisses, marble, quartzite as
well as graphite-rich schist—all belonging to a high-pressure
low-temperature metasedimentary nappe structure of the pas-
sive Gondwana margin having protolith ages of 460–500 Ma
(Mingram 1998; Rötzler and Plessen 2010). Approximately

200 m below the present-day land surface, the host lithology
changes from carbon-rich metasedimentary units to para- and
orthogneisses.

Hydrothermal mineralization and vertical zoning

Mineralization at Niederschlag is polystadial and shows ver-
tical zoning that has been described in great detail by Kuschka
(2002). The most shallow part of the vein predominantly com-
prises of a five element vein assemblage (U-Ag-Co-Ni-As
minerals) associated with fluorite, barite, carbonates, and
quartz (“U-Bi-Co-Ni” after Kuschka 2002). With increasing
depth, the abundance of fluorite increases at the expense of
barite and U-Ag-Co-Ni-As minerals. Seventy meters below
the modern ground level (m.b.g.l.), fluorite and barite prevail
(Fig. 1c). It is the latter assemblage that is currently being
exploited and that has been the subject of this investigation.
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Fig. 1 a Simplified geological map of the Erzgebirge and the
Niederschlag mining district (modified after Sächsisches Landesamt für
Umwelt, 1994 and (Baumann et al. 2000)). Main lithologies are gneisses
of the Cadomian basement (E-Erzgebirge) (Tichomirowa et al. 2012) and
metamorphosed Paleozoic sediments (W-Erzgebirge) (Mingram 1998),

besides late Variscan granites (Förster et al. 1999). Cenozoic volcanic
lithologies are related to the Egergraben-rifting. b Enlarged geological
map of the Niederschlag area modified after Baumann et al. 2000. c
Simplified SW-NE cross-section (Leonhardt 1999) through the zoned
Niederschlag fluorite-barite deposit.
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Underground exposures reveal two distinct stages of fluo-
rite mineralization (Fig. 2a-c): Fluorite I (“flq” after Kuschka
2002) is fine-grained, varicoloured and intergrown with
quartz, forming colloform bands and complex breccia bodies
(Fig. 2c). Intensive alteration (silicification, fluoritization) of
vein selvages and intensely altered fragments of host rock
within the vein are closely associated with fluorite I
mineralization.

Fluorite II cuts across fluorite I and is thus clearly younger
(Fig. 2a). Fluorite II (“bafl” after Kuschka 2002) is coarse
grained; it forms massive aggregates and/or continuous bands
intergrown with variable amounts of barite (Figs. 2b and 3b).
These two minerals are accompanied by quartz and minor

tetrahedrite, sphalerite, galena, and chalcopyrite. Whereas
Stage I mineralization is reported to be present in approxi-
mately equal quantity/thickness and composition throughout
the entire explored vertical depth profile of the Niederschlag
vein, Stage II mineralization has been reported to show a
systematic increase of fluorite and red barite abundance at
the expense of white barite with depth (Kuschka 2002). At
depths shallower than 200 m b.g.l., white barite has been
reported as the most abundant mineral of Stage II, whereas
below this depth, fluorite II becomes more abundant (Kuschka
2002). This distinct change in the mineralogy of the vein-infill
roughly coincides with the lithological change from mica-
schist to gneiss.

Qtz I

Brt

Host rock

Fl II

Stage IStage II
a

0.5 m

Fl I

Stage I
c

Fl I

Qtz I

30 cm

Host rock

clasts

40 cm

b

Brt

Stage II

Fl II

Fig. 2 a Exposure of the main hydrothermal vein at level 6.2 north of the
Niederschlag underground mine. Massive Stage I fluorite is cross-cut by
banded fluorite and barite of Stage II. b Stage II mineralization composed
of banded barite (of) and bluish fluorite (flII). c Green and purple stage I

fluorite exhibits banded and colloform textures. Intensively altered
(bleached and silicified) host rock clasts are encapsulated by fluorite
and quartz (photo taken by: Dr. Uwe Lehmann, Sächsisches Landesamt
für Umwelt, Landwirtschaft und Geologie)
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An intense alteration halo that extends between 20 cm and
up to 3 m into the host rock can be recognized around the
Niederschlag vein (Kuschka 2002). Alteration is characterized
by strong silicification of the wall rock and is invariably asso-
ciated with stage I fluorite. In direct contact to the vein, the
primary minerals of the host rock may be entirely replaced by
quartz, with only minor amounts of kaolinite. Thin marble
units show the most intensive alteration, being completely
replaced by fluorite and quartz (Kuschka 2002).

Alteration related to Stage II is significantly less pro-
nounced and usually affects only a few millimeters to

centimeters of the vein selvage (Kuschka 2002). The alter-
ation assemblage related to Stage II comprises mostly clay
minerals, which selectively replaced metamorphic micas.

Cenozoic phonolitic dikes cut the Niederschlag vein,
resulting in distinct discoloration and recrystallization of fluo-
rite in the immediate contact (cm to a few dm) with the dike
(Friedländer 2019). This contact metamorphic overprint af-
fects the fluorite only very locally and, therefore, will not be
described in detail in this contribution. The phonolite dikes are
associated with multi-stadial magmatism related to the
Cenozoic Eger Graben rifting (Ulrych et al. 2011) with a
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Fig. 3 a Sample MbNds01 showing stage I fluorite mineralization. The
hand specimen is composed of coarse grains fluorite and fine-grained
fluorite intergrown with quartz (disseminated). b Coarse-grained fluorite
II accompanied by reddish barite and minor amounts of secondary

malachite (sample SHNdsP8). c Cathodoluminescence image of fluorite
I crystal (fl I) showing complex crystal zonation (Sample SHFB-Nds-10).
d Cathodoluminescence image of sample SH-FB-Nds-09 showing
Fluorite II (fl II) with oscillatory zonation
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particular age of 26 Ma for the dike crosscutting the
Niederschlag deposit (Walther 2005). The crosscutting rela-
tion between fluorite mineralization and the phonolite dykes
thus provides a minimum age for fluorite mineralization.

Samples and methodology

Sampling

Thirtytwo fluorite samples including both fluorite stages were
collected from two exposures in the active underground mine
(mine levels 5.1 North at 240 m b.g.l. and 6.1 level South at
280 m b.g.l.); from drill cores from the 1970s exploration
program that are stored at the Geological Survey of the Free
State of Saxony (drill cores 33/74 and 139/36) and from the
geoscientific collections of the TU Bergakademie Freiberg.
Twentyeight doubly polished thick sections (~ 250 μm) were
p r e p a r e d f o r p e t r o g r a ph i c s t u d i e s , i n c l u d i n g
cathodoluminescence imaging, scanning electronmicroscopy,
and fluid inclusion analyses. Six of these sections were used
for LA-ICP-MS analyses. Eight bulk rock samples from var-
ious parts of the vein were used for bulk ICP-MS analyses.

Microscopy

All samples were studied by optical (transmitted and reflected
light) microscopy and the investigations were complemented
by scanning electron microscopy. Mineral textures were in-
vestigated using a Carl Zeiss Axio Imager M1m light micro-
scope (transmitted and reflected light), equipped with an
AxioCamMRc5 camera. Backscattered electron images and
energy-dispersive X-ray spectra were acquired using a
Quanta FEG 600 scanning electron microscope with two
Bruker Quantax Dual XFlash 5010 detectors. Measurement
conditions were 25 kV acceleration voltage and a beam cur-
rent of 10 nA. Cathodoluminescence imaging (CL) was exe-
cuted on carbon-coated, polished thin sections using a “hot
cathode” CL microscope HC1-LM (cf., Neuser et al. 1995).
The system was operated at 14 kV accelerating voltage and a
current of 0.2 mA (current density of about 10 μA/mm2).
Luminescence images were captured “on-line” during CL op-
erations using a Peltier cooled digital video-camera
(OLYMPUS DP72).

Microthermometry

Microthermometric analyses were carried out with a Linkam
THSMG600 fluid inclusion stage combined with an Olympus
BX53microscope. The following phase transitions of synthet-
ic standards of CO2–H2O and H2O inclusions were used for
calibration: Tm (CO2), Tm (ice) and Th. Standard material
was analyzed daily before each measurement campaign to

check for potential calibration drifts. Petrographic descriptions
of fluid inclusion assemblages (FIAs) were classified as pri-
mary (p), secondary (s), pseudo-secondary (ps), or isolated (i)
fluid inclusions (van den Kerkhof and Hein 2001). Liquid-
vapor ratios were estimated by image analysis and are given
as LxVy (x + y = 1). To ensure reproducibility, each phase
transition was measured three times. Phase changes were mea-
sured with a heating rate of 1 °C/min, resulting in instrumental
uncertainties of ± 0.2 °C for melting temperatures and ± 1 °C
for homogenization temperatures. Fluid inclusions (FIs) with
signs of post- entrapment alteration (e.g., necking down) or
evidence of metastable behavior (e.g., absence of hydrohalite
for FIs with Te of − 52 °C) were excluded from the data set.
Based on the presence of hydrohalite and final ice melting
temperatures, salinities and molar Na/(Ca + Na) ratios were
calculated using the spreadsheet provided by Steele-
MacInnis et al. (2011) for the Na-Ca-Cl-H2O system.

Laser ablation inductively-coupled mass-
spectrometry

LA-ICP-MS analyses of fluorite were carried out on six
polished thin sections at the GeoForschungsZentrum-
Potsdam with a Geolas Compex Pro 193 nm excimer laser
coupled to a Thermo iCAP TQ mass spectrometer. NIST 610
served as an external standard, while ideal stoichiometric Ca
content was used as internal standard for 44Ca (Gagnon et al.
2003). A spot size of 44 μm with a repetition rate of 5 Hz and
laser energy density of 5 J cm −2 was set for measurements.
Data were processed using the trace elements IS data reduc-
tion scheme (Woodhead et al. 2007) in iolite 3.63 (Paton et al.
2011). The following isotopes were measured with their
repespective average detection limits given in brackets: 7Li
(4.38 mg/kg), 23 Na (91.77 mg/kg), 24Mg (2.84 mg/kg), 39 K
(26.34 mg/kg), 45Sc (3.28 mg/kg), 55Mn (8.71 mg/kg) 57Fe
(40.15 mg/kg), 66Zn (7.37 mg/kg), 71Ga (0.36 mg/kg), 85Rb
(0.54 mg/kg), 88Sr (0.08 mg/kg), 89Y (0.13 mg/kg), 137Ba
(0.32 mg/kg), 139La (0.52 mg/kg), 140Ce (0.56 mg/kg), 141Pr
(0.14 mg/kg), 146Nd (0.38 mg/kg), 147Sm (0.39 mg/kg), 153Eu
(0.04 mg/kg), 157Gd (0.21 mg/kg), 159Tb (0.03 mg/kg), 153Dy
(0.10 mg/kg), 165Ho (0.02 mg/kg), 166Er (0.01 mg/kg), 169Tm
(0.02 mg/kg), 172Yb (0.07 mg/kg), 175Lu (0.02 mg/kg), 208Pb
(0.27 mg/kg).

Solution ICP-MS

Handpicked fluorite separates (over 99% fluorite) were rinsed
with deionized water, dried and powdered in an agate mortar
in a planetary mill at the Helmholtz Institute Freiberg for
Resource Technology to a grain size smaller than 63 μm.
The powders were acid-digested according to the protocol of
Kraemer et al. (2019) with a mixture of suprapure HF-HClO4

in a Picotrace DAS digestion unit and analyzed with a Perkin-

1076 Miner Deposita (2021) 56:1071–1086



Elmer Nexion 350x ICP-MS at the Geochemistry Laboratory
of Jacobs University Bremen. REY concentrations are nor-
malized to European Shale (EUS) of Bau et al. (2018).
Normalized data is indicated with the subscript SN (shale-
normalized).

Results

The following sections summarize macroscopic and micro-
scopic petrographic observations of both fluorite stages as
well as fluid inclusion and trace-element data. The complete
background data set is provided in the electronic supplement
(Table ES1, ES2, ES3, and ES4).

Macroscopic and microscopic observations

The two underground exposures that were available for this
study reflect full horizontal profiles from the host rock through
the Niederschlag vein with a width of about 4 m. The contact
of the host rock and vein is marked by a distinct and intense
alteration halo, which extends about 3 m wide into the host
rock on both sides of the vein. Consistent with observation
reported by Kuschka (2002), host rock alteration is character-
ized by strong silification. The contact between the altered
host rock and Stage I mineralization is typically sharp, but
intense brecciation of the host rock is common. At the selvage
of the vein, fluorite I is intimately intergrown with fine-
grained quartz, which together form mineralization Stage I.
No other minerals were observed for Stage I; however,
perimorphs of quartz and fluorite with rhombohedral outlines
are common and may represent former carbonates. Stage I
comprises multiple generations of thin (1 mm to 1 cm), irreg-
ularly shaped collomorphous bands of fluorite and quartz/
chalcedony, which all together form masses that may reach
up to several meters in thickness (Fig. 2c). Crystal sizes range
from sub-mm to centimeters. Fluorite within Stage I forms
continuous layers but may also occur as disseminated
euhedral fluorite grains enclosed by fine-grained quartz
(Fig. 3a-b). Massive fluorite domains exhibit a distinct alter-
nating layering of purple and green colored fluorite. Less com-
monly, pale yellow to colorless fluorite can be observed.
Mostly green and purple fluorite layers exhibit botryoidal tex-
tures, which are composed of individual prismatic fluorite
grains. These layered masses are often brecciated and re-
cemented by younger generatins of layered purple and green
fluorite. Complex sectoral zoning is characteristic of purple
fluorite (Fig. 3c). The sector zonation ranges from deep blue to
yellow-blue colors, indicating primary growth features. In
contrast, massive green fluorite is characterized by blue lumi-
nescence color without distinct sectoral zoning. Chalcedony
with disseminated hematite fills microfractures in fluorite I;
this marks the end of mineralization Stage I.

Minerals of the second fluorite stage (fluorite II) cuts Stage
I mineralization. Coarse-grained fluorite II crystals are up to
several centimeters in size and show cubic crystal shapes.
Fluorite II is commonly of pale bluish color. Less frequently,
yellowish to white-colored colors are observed. Fluorite II is
distinctly zoned, with massive cores and rims that display
oscillatory zoning (Fig. 3d). Similar zoning patterns have been
frequently reported in studies from other fluorite vein deposits
e.g., (Schwinn and Markl 2005).

Fluorite II is accompanied by barite and minor amounts of
base metal sulfides and quartz (Fig. 3a-b). Red-colored barite
(with fine-grained hematite) is present as aggregates, up to
5 cm in size, or forms discrete bands of up to several centime-
ters in thickness, which are intergrown with variable amounts
of fluorite II. Locally, barite is pseudomorphously replaced by
quartz (Burisch et al. 2017). The intensity of this replacement
process appears to be high, where barite is entirely encapsu-
lated by fluorite II. Millimeter to a few centimeter-sized, large
aggregates of sulfides (mostly chalcopyrite, galena, and
tetrahedrite) occur in variable abundances associated with
fluorite II and quartz.

Fluid inclusion petrography

Suitable fluid inclusions for microthermometric analyses were
recognized in fluorite of Stages I and II. Fluorite and quartz of
the first mineralization stage yield only few primary fluid in-
clusions suitable for microthermometry. There are zones in
fluorite I crystals that are strongly enriched in fluid inclusions;
the inclusions do show heterogeneous fluid inclusion assem-
blages with unsystematic behavior of the measured fluid in-
clusions. CL imaging revealed a very fine-grained texture of
these inclusion-rich fluorite grains (Fig. 4c-d), strongly sug-
gesting that these fluid inclusions (FIs) are related to recrys-
tallization of fluorite I and thus record no primary information
(Sander and Black 1988) and have therefore been rigorously
excluded from the data set. Fluid inclusions that can unambig-
uously be identified as primary occur as clusters in massive
purple fluorite I and have diameters that range from 20 to
30 μm. Secondary inclusions are widespread in fluorite I.
They are mostly present along discrete micro-fractures and
do propagate across grain boundaries.

Fluorite II, in constrast, contains abundant fluid inclusion
assemblages of primary, pseudo-secondary, and secondary
origin with inclusions up to 100 μm in size (Fig. 4c-d). The
inclusions mostly occur in clusters of primary origin or, rarely,
aligned along growth zones. Two-phase liquid-vapor inclu-
sions are dominant, though three-phase liquid-vapor-solid in-
clusions can also occasionally be observed (Fig. 4d). The solid
phases are irregularly shaped and do not melt upon heating.
Some inclusions show evidence for post-entrapment modifi-
cation; these were excluded from the data set.
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Microthermometry

Microthermometric analyses of 34 primary inclusions in 9
assemblages hosted by fluorite I show eutectic temperatures
(Te) around − 52 °C, which indicates that the fluid inclusions
can best be described in the NaCl-CaCl2-H2O system.
Hydrohalite was detected in all analyzed inclusions; it is ob-
served to melt invariably before ice upon heating. Hydrohalite
melting temperatures (Tm (hh)) range between − 21.2 °C and
− 25.6 °C. Final ice melting temperatures (Tm (ice)) are be-
tween − 4.4 °C and − 15 °C. Corresponding total salinities
range from 7.1 to 19.6% eq. w (NaCl+CaCl2) with the Na/
(Na + Ca) ratio ranging from 1 to 0.52 (Figs. 5b, 6a-c). The
variation of total salinities and Na/(Na + Ca) ratios within flu-
id inclusion assemblages is relatively small, namely, < 2% eq.
w (NaCl+CaCl2) and < 0.3, respectively (Table 1).

Microthermometric data of 124 individual fluid inclusions
in 25 assemblages related to fluorite II (Fig. 4) show eutectic
temperatures of around − 52 °C, which again indicates that
they can best be described as NaCl-CaCl2-H2O-fluids.
Calculated salinities vary between 19 and 27% eq. w

(NaCl+CaCl2) (Fig. 6a-c); this variability is observed not only
between but also within fluid inclusion assemblages (FIA).
Average Na/(Ca + Na) ratios of FIAs vary between 0.43 and
0.82, again very similar to the variability documented within
individual FIAs (0.41–0.73). There is no obvious correlation
between Na/(Na + Ca)-ratio and temperature or total
salinity (Table 2). Some of the primary FI contain unknown
greenish, prismatic solid inclusions; these do not show disso-
lution nor any recognizable volume change upon heating to
200 °C. Fluid inclusions containing such solid inclusions are
marked bymore variable microthermometric results than fluid
inclusions without solid inclusions.

REY geochemistry

REY data are reported here for three samples of fluorite I and
five samples of fluorite II that were analyzed as mineral sep-
arates using ICP-MS. These results are reported together with
mineral chemical data for the two fluorite generations obtain-
edwith LA-ICP-MS on three thick sections containing fluorite
I, and three thick sections containing fluorite II. Results

b

Micro-crystalline texture

Well crystallized

500 µm

a
Fl I

Fluid inclusions

500 µm

600 µm

Growth zones

dD

50 µm

Ice Hydrohalite

Liquid

Vapor

c

Fig. 4 a Transmitted light microphotograph of sample SH-FB-Nds-10
showing euhedral to subhedral fluorite I crystals. The core of the larger
fluorite crystal is free of fluid inclusion, whereas its rim contains numer-
ous fluid inclusions. b Cathodoluminescence microphotograph of the
section showed in A, reveals the micro-crystalline texture of the larger
fluorite grain, while the smaller euhedral grain (upper right) is well-

crystalized. c Transmitted light microphotograph of sample SHNds-
P8A showing a euhedral fluorite II crystal with growth zones that host
numerous primary fluid inclusions as well as fine-grained Fe-Mn oxides.
d Transmitted light microphotograph of sample SHNds-P8C showing a
primary fluid inclusion containing ice, hydrohalite, liquid, and vapor at −
30 °C
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obtained by both analytical approaches are consistent with one
anotherr (Fig. 7).

Fluorite I has relatively low absolute REY concentrations
with values ranging from 82.0 to 124.0 mg/kg total REY
content (Fig. 7a) in the bulk samples. Shale-normalized
REY (REYSN) patterns show conspicuously flat trends.
Small negative Ce and positive Y anomalies can be observed.
Despite their different macroscopic appearance, green and
purple fluorite I varieties show the same REYSN patterns. In
situ LA-ICP-MS analyses of fluorite I show more substantial
variations in REY compositions between individual laser

spots (Fig. 7a). Particularly, LREE vary considerably even
within single crystals (Fig. 7a).

Stage II fluorite, in contrast, has distinctly higher total REY
concentrations, ranging from 177.9 to 272.0 mg/kg. The
REYSN patterns of Stage II fluorite are characterized by de-
pletion of LREE and HREE, while MREE are distinctly
enriched, resulting in a bell-shaped REYSN pattern (Fig. 7b).
Individual LA-ICP-MS analyses of Stage II fluorite show rel-
atively uniform REYSN patterns. Yttrium shows a positive
anomaly, whereas the LREE are systematically depleted.

Table 1 Fluid inclusion microthermometry data of fluorite I and II of the Niederschlag fluorite deposit summarized as fluid inclusion assemblages

Assemblage code Stage n Avg. Th
in °C

Min. Th
in °C

Max. Th
in °C

Avg.
salinity

Min.
salinity

Max.
salinity

Avg. Na-Ca-
ratio

Min. Na-Ca-
ratio

Max. Na-
Ca-ratio

MBNds01aCFlclustera1 I 3 157 156 159 7.12 7.10 7.13 0.73 0.71 0.75

MbNds01aCFlclusterc1 I 3 170 170 171 18.65 13.10 13.20 0.84 0.73 1.00

MbNds01aGFlclusterd1 I 3 162 160 164 18.61 18.61 18.61 0.65 0.81 0.81

MbNds01aCFlclusterc2 I 3 170 170 171 13.17 13.09 13.20 0.82 0.73 1.00

MbNds01aCFlclusterd1 I 3 177 176 180 9.65 9.57 9.82 0.82 0.73 1.00

MbNds01aCFlclustere1 I 4 163 161 166 11.18 11.14 11.20 0.64 0.62 0.72

MbNds01aCFlclusterg1 I 4 158 156 160 18.01 17.47 19.61 0.62 0.65 0.65

MbNds01aGFlclusterc1 I 4 157 150 163 16.82 16.82 16.82 0.52 0.52 0.52

MbNds01aGFlclusterd1 I 3 162 160 164 18.61 18.61 18.61 0.81 0.81 0.81

SHNdsP8-CBFlP2 II 4 105 96 112 21.48 20.85 23.34 0.68 0.63 0.78

SHNdsP8-AAFlP1 II 5 99 88 110 22.98 19.66 25.37 0.66 0.60 0.79

SHNdsP7-BGFlP11 II 5 98 86 107 19.71 19.14 20.16 0.61 0.57 0.65

SHNdsP8-DAFlP11 II 5 89 87 93 26.17 25.45 27.37 0.63 0.41 0.73

SHNdsP7-EFFlp11 II 4 104 101 106 24.72 24.69 25.69 0.79 0.79 0.79

SHNdsP7-EhFlp21 II 4 108 90 111 21.22 18.95 24.98 0.82 0.59 0.98

SHNdsP8AaFlp31 II 4 103 104 117 20.68 19.22 24.98 0.59 0.59 0.74

SHNdsP7-DEFlp31 II 4 113 109 117 20.45 20.32 20.51 0.73 0.73 0.74

SHNdsP7-DEFlp41 II 6 107 101 115 21.14 20.24 22.14 0.71 0.69 0.75

SHNdsP7-BEFlp31 II 5 102 92 110 21.15 20.30 22.44 0.69 0.69 0.69

SHNdsP8-DAFlp21 II 5 103 93 107 20.68 20.04 21.05 0.56 0.56 0.56

SHNdsP8-DAFlp31 II 5 94 83 106 20.00 19.07 20.51 0.43 0.42 0.44

SHNdsP7-AFlps11 II 3 123 116 130 20.60 19.27 22.20 0.70 0.63 0.80

SHNdsP7-AFlps21 II 5 91 82 96 25.64 25.55 26.45 0.74 0.61 0.80

SHFB-Nds-05bFlbps5 II 5 96 92 101 26.42 20.14 26.45 0.63 0.43 0.72

SHFB-Nds-03Fla1 II 4 113 107 117 24.68 24.68 24.68 0.69 0.69 0.69

SHFB-Nds-03Fla1 II 4 124 121 126 19.97 19.60 20.14 0.44 0.43 0.45

SHFB-Nds-03Flb1 II 3 103 98 113 19.69 19.69 19.69 0.53 0.53 0.53

SHFB-Nds-03Fla1 II 4 110 104 115 21.49 21.36 21.53 0.46 0.39 0.59

SHFB-Nds-03Flp11 II 6 111 108 113 21.50 21.50 21.50 0.82 0.82 0.82

SHFB-Nds-03Flp21 II 5 112 108 120 21.08 21.08 21.08 0.75 0.75 0.75

SHFB-Nds-03Flp11 II 5 110 108 113 21.18 20.41 21.59 0.72 0.63 0.80

SHFB-Nds-03Flp21 II 7 112 112 112 20.75 20.75 20.75 0.79 0.79 0.79

SHFB-Nds-03Flp31 II 6 121 117 124 21.77 21.77 21.77 0.70 0.70 0.70

SHFB-Nds-03Flp11 II 6 97 94 105 21.16 20.87 21.49 0.57 0.56 0.57

SHFB-Nds-03Flp11 II 5 96 90 101 20.88 20.42 21.24 0.61 0.56 0.63
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A distinct positive YSN anomaly is evident in both stages,
but the concentration of Y in Stage II fluorite is about an order
of magnitude higher than in Stage I fluorite. All fluorite sam-
ples investigated in this study show a fractionation of Y from
Ho and comprise similar Y/Ho fractionation ratios, ranging
from 53.9–72.3 in fluorite I and 53.4–73.2 in fluorite II.

Discussion

I n t h e f o l l ow i n g , w e d i s c u s s p e t r o g r a p h i c ,
microthermometric, and geochemical data of the two different
fluorite generations to constrain the nature of the associated
fluids and the ore-forming processes. In the absence of geo-
chronological evidence, we will only briefly speculate on pos-
sible geodynamic settings of the two mineralization stages.

Nature of hydrothermal fluids

Fluid inclusion evidence suggests low temperatures of forma-
tion (140 to 180 °C) for the fluorite-quartz assemblage of
Stage I. Fluorite I was precipitated from a low to medium
saline Na-Ca-Cl-H2O-fluid. The absence of S-bearing min-
erals (neither sulfides nor sulfates) in this stage is rather un-
usual (Burisch et al. 2017; Burisch et al. 2018; Keim et al.
2018; Kraemer et al. 2019) and indicates that the fluids that
were involved in the formation of the fluorite mineralization

were nominally S-free. Furthermore, intense host rock alter-
ation associated with Stage I suggests a high reactivity of the
fluid towards the silicate-dominated host rock (gneiss, mica
schist). Silicification, weak kaolinization, as well as the re-
placement of presumably early carbonates and marble hori-
zons are all indicative of low pH fluids.

Fluid inclusion assemblages in fluorite II, in contrast, yield
even lower temperatures (80–120 °C), but higher salinities
(18–27% eq. w (NaCl+CaCl2)) that can also be best-
described in the Na-Ca-Cl-H2O system (Fig. 6c). Fluorite II
is invariably associatedwith sulfides and substantial quantities
of barite, indicating that both reduced and oxidized sulfur as
well as Pb, Zn, Cu, and Ba were available during ore forma-
tion. Host rock alteration related to this stage is very subordi-
nate at best, macroscopically often not visible at all. This may
suggest that the hydrothermal fluid responsible for fluorite II–
barite mineralization was non-reactive or close to equilibrium
with the silicate host rock. Similar characteristics have been
reported from many fluorite vein deposits in Central Europe.
They have been interpreted as mixtures of a deep-seated base-
ment brine with certain proportions of a saline sedimentary
fluid (Bauer et al. 2019; Boiron et al. 2010; Fusswinkel et al.
2013; Gleeson et al. 2001).

REY sources and water-rock interaction

Although REY concentrations obtained for individual spots of
in situ LA-ICP-MS analyses are marked by substantial varia-
tions (especially for fluorite I), average values are consistent
with bulk ICP-MS analyses of fluorite concentrates.
Therefore, the fluorite compositions (Fig. 7a-b) are used as a
reliable indicator for the REY systematics inherent to fluorite I
and fluorite II stages. Although the REY systematics of the
two fluorite stages are very distinct, they share a positive YSN

anomaly. This YSN anomaly is a common feature of many
fluorite occurrences worldwide, such as the ones from the
Pennine Ore field (Great Britain), Harz mountains
(Germany) or the Schwarzwald (Germany) (Fig. 8b) (Bau
and Dulski 1995; Kraemer et al. 2019; Walter et al. 2018b).
It is thought to reflect the the lower stability of YF+2-fluoride
complexes relative to HoF2+-fluoride complexes in hydrother-
mal solutions (Loges et al. 2013).

The overall flat REYSN pattern of fluorite I is very unusual
and has not been reported from other fluorite vein deposits in
Central Europe. It also lacks similarity to fluorite associated
with greisen and skarn deposits in the Erzgebirge that formed
at higher temperatures (Korges et al. 2019; Lefebvre et al.
2019; Wolff et al. 2015b). The flat pattern is, however, very
similar to the REESN patterns of the unaltered host rock
(Mingram et al. 2004; Tichomirowa et al. 2012) (Fig. 8a).
Even the small negative Ce anomaly of fluorite I may have
been derived from the host rocks (Moeller and Bau 1993).
These observations may be used to suggest that intensive

Fluorite

Quartz/chalcedony

Barite

Galena

Chalcopyrite

Sphalerite

Fahlore

Pyrite

Hematite

Carbonate

Stage II

hmba+ bafl *

Stage I

flq*

Fig. 5 Paragenetic sequence of stage I and II (*classification after
(Kuschka 2002)) mineralization at the Niederschlag deposit
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host-rock alteration associated with Stage I buffered the REY
budget of the hydrothermal fluid responsible for the formation
of fluorite I. Heterogeneous fluid inclusions (which were not
included in the microthermometric data set) and long-
prismatic habit of particularly green fluorite layers of stage I
further indicate that precipitation of fluorite I was relatively
fast and far from equilibrium, thus inhibiting mineral-specific
fractionation of REYs.

Bell-shaped REYSN patterns of fluorite II, in contrast, bear
close resemblance to many other low-temperature fluorite
vein deposits across Europe (Bau and Dulski 1995; Kraemer
et al. 2019; Nadoll et al. 2019; Sánchez et al. 2010; Schwinn
and Markl 2005). REYSN patterns—together with the previ-
ously discussed analogies in terms of fluid composition and
mineral paragenesis—provide strong support that Stage II
fluorite-barite mineralization at the Niederschlag deposit was

caused by mixing of at least two chemically contrasting crust-
al fluids (Boiron et al. 2010; Walter et al. 2018a).

Mechanisms of fluorite formation

The solubility of fluorite in aqueous hydrothermal fluids is
mainly dependent on pH, temperature, and the chemical com-
position of the mineralizing fluid(s) (Barnes 2015; Richardson
and Holland 1979). The latter authors have highlighted that
the most efficient mechanisms for fluorite precipitation are
fluid cooling, an increase of pH, fluid-rock interaction, or
mixing of two chemically contrasting fluids. Based on the
fluid inclusion and REY evidence provided in this contribu-
tion, different processes of fluorite precipitation are invoked
for the two stages observed at the Niederschlag deposit.

The range of homogenization temperatures documented by
FIAs in fluorite I (140 to 180 °C) does not appear large enough
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Fig. 6 a Salinity in % eq. w (NaCl+CaCl2) versus homogenization
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comprising 161 analyses of primary fluid inclusions summarized as
fluid inclusion assemblages (FIAs). Data points indicate the average
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Primary fluid inclusions related to stage I are indicated in green.
Primary fluid inclusions related to stage II are indicated in blue. c Fluid
inclusions related to stage I and II fluorite in a ternary H2O-NaCl-CaCl2
plot (mass %). d Close up view of the H2O apex of Fig. 6c
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to support cooling as a major precipitation mechanism. The
high variablility of salinities (7–19% eq. w) (NaCl-CaCl2) and
the fairly constant Na/Ca ratio indicate dilution of the ore-fluid
with meteoric fluids, since admixing of a low salinity meteoric
fluid would affect temperature and salinity, whereas the Na/Ca
would—considering the low absolute mass of dissolved solids
in the meteoric fluid—remain constant. On the other hand,
intense host rock alteration and the similarity of fluorite I
and host rock REYSN patterns indicate that fluid-rock interac-
tion may also have contributed to ore-formation. Stage I
fluorite-quartz mineralization is intimately associated with in-
tense host rock silicification and REY systematics of fluorite I
suggest that the mineralizing system may have been rock-
buffered. The reaction of an acidic hydrothermal fluid with
host rock gneisses, schists, and marble releases, among others,
Ca from plagioclase or carbonate minerals and concomitantly
neutralizes the hydrothermal fluid. Increasing Ca activity and
increasing pH are both favorable for fluorite precipitation.

Water-rock interaction with large volumina of granitoid
rocks is widely regarded as possible source of fluorine to
vein-hosted fluorite deposits similar to Stage II fluorite

mineralization at Niederschlag (Burisch et al. 2016a; Seelig
and Bucher 2010). However, recent studies have demonstrat-
ed that a sedimentary origin of fluorine in such systems is
more likely (Burisch et al. 2016b; Burisch et al. 2018;
Walter et al. 2018a). Mixing of a Ca-rich deep-seated base-
ment brine with a shallower fluorine-bearing sedimentary flu-
id is thus considered the most important process of mineral
formation for the Stage II fluorite-barite-sulfide assemblage at
the Niederschlag deposit.

Mineralizing systems

To our knowledge, there are no analogues to the Stage I
fluorite-quartz mineralization documented here for the
Niederschlag deposit anywhere else in Central Europe. This,
combined with the current lack of geochronological data, ren-
ders the identification of a regional geotectonic context diffi-
cult for this mineralization stage. However, massive fluorite
veins in Central Chinese Orogenic Belt (CCOB, (Pei et al.
2017; Pei et al. 2019; Xiang et al. 2010)) have many charac-
teristics (mineralogy, texture, and geochemistry) similar to

Table 2 REY-concentrations of fluorite stages I and II determined by Bulk solution ICP-MS

mg/kg SHFB-Nds-
05

SHFB-Nds-
03

SH-Nds-
PO8

SH-Nds-
P14

SH-Nds-
P7a

SH-Nds-
P7b

Mb-Ns-
01

MbNs-
02

LOQ

Stage II Stage II Stage II Stage I Stage II Stage II Stage I Stage I

Y 126.71 166.71 113.75 21.97 129.78 198.47 26.64 22.63 0.02

La 2.00 3.66 2.00 17.30 4.77 4.40 10.16 23.08 0.02

Ce 6.27 9.92 6.39 31.10 14.32 9.75 14.72 33.18 0.02

Pr 1.21 1.69 1.28 5.39 2.33 1.45 3.33 6.98 0.01

Nd 6.96 9.44 7.31 21.22 11.80 7.55 13.76 27.24 0.06

Sm 4.35 6.79 4.23 2.93 5.32 4.44 2.98 3.54 0.08

Eu 1.36 2.24 1.35 0.45 1.34 1.38 0.54 0.51 0.02

Gd 10.06 15.97 8.66 2.25 9.78 12.42 2.86 2.39 0.04

Tb 1.63 2.83 1.59 0.24 1.70 2.22 0.38 0.27 0.01

Dy 10.02 16.66 10.75 1.49 11.17 14.87 2.47 1.49 0.04

Ho 1.73 2.78 2.13 0.30 2.21 2.83 0.49 0.32 0.01

Er 3.66 6.68 5.51 0.88 5.57 7.33 1.53 0.96 0.02

Tm 0.35 0.79 0.71 0.13 0.68 0.81 0.24 0.15 0.01

Yb 1.43 4.16 3.57 0.97 3.44 3.61 1.61 1.06 0.02

Lu 0.17 0.56 0.50 0.16 0.47 0.47 0.25 0.16 0.01

Abbreviations: LOQ limit of quantification

Table 3 Overview of genetic characteristics of stage I and II mineralization

Stage I mineralization Stage II mineralization

Analogues Vein-type fluorite deposits in the Central Chinese Orogenic Belt Fluorite-barite Pb-Zn-Cu deposits across Europe

Precipitation mechanism Mixing with meteoric fluids and host rock interaction Fluid mixing of basement and sedimentary fluids

Source of fluorine Possibly Li-F-granites Likely sedimentary derived F

Geotectonic setting Lower Permian post-orogenic rifting Mesozoic rifting
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fluorite I mineralization. The formation of such massive fluo-
rite veins in the CCOB coincides with intense post-orogenic
magmatic activity. This is similar to the geotectonic evolution
in the Erzgebirge in the immediate aftermath of the Variscan
Orogeny in the Permian. Assuming that the formation of fluo-
rite is related to post-orogenic rifting, formation temperatures
of FIs between 140 and 180 °C suggest a significantly en-
hanced geothermal gradient of 70–80 °C/km, taking into ac-
count that not more than 2 km of Variscan basement have
been eroded since Permian times (Bauer et al. 2019; Wolff
et al. 2015a). Such an elevated geothermal gradient at shallow
crustal levels would, in turn, be indicative of a distal/shallow
magmatic-hydrothermal environment (Browne and Ellis
1970; Simmons et al. 2005; Simmons and Browne 2000).
This is in good agreement with fluid composition marked by
low pH and devoid of sulfur and base metals (Table 3). Such a
fluid may well have been associated with Late Variscan high-
F granitoids that abound in the area around the Niederschlag
deposit (e.g., Eibenstock granite). Such granites may well
have served directly (fractional crystallization) or indirectly
(sub-solidus leaching) as the source of fluorine.

In contrast, stage II fluorite-barite-sulfide mineralization of
the Niederschlag deposit shares close similarities to other
vein-hosted fluorite deposits in the Erzgebirge (Bauer et al.
2019; Ostendorf et al. 2019) and elsewhere across Central
Europe. Therefore, it is most likely that the formation of
Stage II fluorite at the Niederschlag deposit is related to the
far-field effects of the opening of the northern Atlantic during
the Mesozoic (Table 3). In this extensional system, fluid
mixing occurs across fluid unconformities (i.e., interface
between two chemically contrasting fluids; Bons et al. 2014;
Burisch et al. 2016b; Burisch et al. 2018) near the base of
sedimentary basins (Boiron et al. 2010; Richard et al. 2013).
The nature of the sedimentary basin present at that time is not
well constrained for the Erzgebirge. However, Jurassic marine
sediments are recorded in the nearby Elbe zone, and apatite U-
He ages suggest that a 3–5 km thick cover was present during
the Jurassic (Wolff et al. 2015a). The thickness of this sedi-
mentary cover constrains the minimum depth of formation of
Stage II fluorite. Homogenization temperatures are consistent
with this consideration, if a normal to the slightly elevated
geothermal gradient (25–35 °C) is assumed.
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in HREE. Compared to fluorite I, fluorite II shows a distinct positive Y-
anomaly

Y
E
R

S
N

0.01

0.1

1

10

a

Stage I

Host rock

b

Stage II

Erzgebirge fluorites

Harz fluorites

0.01

0.1

1

10

Y
E
R

S
N

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu La Ce Pr Nd Pm Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu
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Conclusions

Two very distinct stages of fluorite mineralization can be rec-
ognized at the Niederschlag deposit. These two stages are not
only different by mineral assemblage and textural appearance
but also by fluid inclusion systematics and REY trace element
distribution. These differences document profound disparities
in the nature of the two mineralizing systems that both ex-
plored the same structural conduit at different times. The
Stage I fluorite-quartz assemblage has attributes akin to a
shallow (magmatic-) hydrothermal environment that can be
related to Permian orogenic collapse and subsequent rifting
in the Erzgebirge. This is the first time that (circumstantial)
evidence links the formation of a large fluorite deposit with
this otherwise prolific metallogenetic period. In contrast,
Stage II fluorite—closely associated with barite and base met-
al sulfides—has striking similarities to other fluorite-barite
deposits in Central Europe. It can therefore be safely associ-
ated with the opening of the Atlantic during the Mesozoic.
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