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Abstract
The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models
with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297,
2018. https://doi.org/10.1007/s00190-017-1062-6), is extended to multivariate approaches. Multivariate models are used to
describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling
of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise
input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic
model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are
complementary in the sense that the former allows for group-specific degrees of freedom (df ) of the t-distributions (thus,
sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas
the latter allows for such correlations but not for different df s. Within the observation equations, nonlinear (differentiable)
regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are
derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of
stochastic model A) or the cofactor matrix (for stochastic model B), and the df (s). To enable the validation of the fitted VAR
model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are
applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations.
Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case
study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent
Network (EPN).
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1 Introduction

As Tienstra (1947) noted, “in our observations correlation is
present, always and everywhere.” The importance of model-
ing auto-correlations in the context of regression models has
been pointed out, for instance, by Kuhlmann (2001). In the
context of time seriesmeasured by a sensor, auto-correlations
can be expected, e.g., as a consequence of calibration cor-
rections being applied to all of the measurements (cf. Lira
and Wöger 2006). Due to their efficiency, flexibility and
straightforward relationships with auto-covariance and spec-
tral density functions, autoregressive (AR)models have been
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used in diverse fields of geodetic science1 (e.g., Xu 1988;
Nassar et al. 2004; Amiri-Simkooei et al. 2007; Park and
Gao 2008; Luo et al. 2011; Schuh et al. 2014; Didova et al.
2016; Zeng et al. 2018). In previous geodetic studies involv-
ing AR models, stochastic dependencies between different,
contemporaneously observed times series, have usually been
neglected. Thus, the common practice of multivariate geode-
tic time series analysis consists of a fusion of time series at the
level of a functional (usually spatial regression) model, with
separate modeling of the correlation pattern, say, through
multiple independent AR models (cf. Alkhatib et al. 2018).

However, it is known for certain multivariate geode-
tic observables that stochastic dependencies between them
indeed occur. For instance, spatial correlations between GPS
position time series at different sites have been reported by
Williams et al. (2004). Amiri-Simkooei (2009) suggested
to model such correlations by means of a cross-covariance
matrix involving adjustable variance–covariance compo-
nents. Cross-covariance matrices have been estimated also
by Koch et al. (2010) to analyze the correlations between
coordinates triples of grid points measured by a terrestrial
laser scanner. In analogy to the univariate case, multivariate
(“vector”) AR (VAR)models may be an efficient and flexible
alternative to cross-covariance matrices or functions. How-
ever, to the best knowledge of the authors, VARmodels have
not been considered to describe the colored noise of multi-
variate geodetic observables that include a functional, spatial
regression model. Instead, VAR processes have been applied
in twomain geodetic studies tomodel pure time series, which
are not fused with a spatial model. In the first one, Niedziel-
ski and Kosek (2012) used a VAR process for predictions
of Universal Time (UT1-UTC) based on geodetic and geo-
physical data. In the second one, Zhang and Gui (2015)
modeled double-differenced carrier phase observations by
a VAR process to identify outliers. In climate research, VAR
processes have been used frequently to investigate relation-
ships between different datasets.Mosedale et al. (2006) fitted
daily wintertime sea surface temperatures andNorth Atlantic
Oscillation (NAO) time series by means of a bivariate VAR
model. Strong et al. (2009) employed a VAR process to
quantify feedback between the NAO and winter sea ice vari-
ability. Matthewman and Magnusdottir (2011) fitted weekly
averaged observations of Bering Sea ice concentrations and
the Western Pacific pattern (defined in Wallace and Gut-
zler 1981). Furthermore, Matthewman and Magnusdottir
(2012) applied a VAR-based test of causality to relationships

1 It should be mentioned that the more flexible autoregressive moving
average (ARMA) models have also been employed frequently. How-
ever, the estimation of suchmodels is more involved than the estimation
of AR models (cf. Siemes 2013). As we found algorithms of the type
Footnote1 continued
elaborated in the following papers to be unsuitable for this task due to
lack of convergence, ARMA models are not considered here.

between geopotential height anomalies at different locations.
Recently, Papagiannopoulou et al. (2017) explored climate-
vegetation dynamics in the framework of VAR processes.

To extend the applicability of VAR models to time
series consisting more generally of a deterministic regres-
sion model and a VAR (correlation) model, it is necessary
to more systematically study both the underlying theory
and computationally convenient inferential procedures. In
doing so, it is prudent to incorporate the possibility of out-
liers, which geodetic measurements are often susceptible to.
Outlier-resistant (“robust”) parameter estimation is one of
the main strategies to accounting for outliers. In this cate-
gory, iteratively least squares (IRLS) procedures have been
used by geodesists for decades due to their conceptual sim-
plicity and proven ability to reduce the effect of outliers by
down-weighting outlier-afflicted observations. It should be
mentioned that the robustness of these procedures is usually
limited to adjustment problems which do not contain outliers
that occur in leverage points (i.e., in poorly controlled obser-
vations characterized by very small partial redundancies) or
as clusters. Such problems, which are not considered in the
present paper, can be dealt with by employing a robust esti-
mator with high breakdown point, e.g., the sign-constrained
robust least squares method introduced by Xu (2005). Par-
ticularly popular robust IRLS procedures have been the
L1-norm- and M-estimators (cf. Huber and Ronchetti 2009).
The robustness of these estimators can be explained by the
fact that random errors are modeled by means of a probabil-
ity density function (pdf) f (x) that decreases rather slowly
(often as a power of x , i.e., f (x) ∼ c · x−α) as |x | increases.
Such a pdf is thus characterized by “heavy tails” (cf. Koch
and Kargoll 2013; Alkhatib et al. 2017), which are reflected
by high kurtosis (cf. Westfall 2014). Thus, outliers occur
more likely with a heavy-tailed pdf than with a “light-tailed”
pdf, such as a Gaussian pdf. Therefore, the former may be
expected to define a more realistic stochastic model than
the latter when numerous outliers are present. If outliers
are thus modeled stochastically by means of a heavy-tailed
pdf, then robust maximum likelihood (ML) estimators can
be employed (cf. Wiśniewski 2014). Particularly attractive
appear to be procedures that include the widely used method
of least squares alongside more robust procedures. Since the
true nature of the random error, including the stochastic out-
lier characteristics, is usually unknown, it makes sense to
adjust the actual probability distribution of the random errors
from the given measurements themselves, as already pointed
out byHelmert (1907).Onepossibility for doing so is to adopt
the family of scaled t-distributions (cf. Lange et al. 1989). The
shape characteristics of the pdfs defining the members of this
family are controlled by two parameters: The scale factor
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determines the spread, and the so-called degree of freedom2

(df) is related to the tail behavior. These pdfs have a number of
beneficial mathematical properties such as heavy tails (high
kurtosis), so that t-distributions can be used for the purpose
of robust estimation (cf. Schön et al. 2018; Alkhatib et al.
2017; Briegel and Tresp 1999; Lange et al. 1989). As this
family contains the Gaussian distributions as limit cases (as
the df tends to infinity), the former is merely a generalization
of the latter. Thus, the often-made assumption of a Gaus-
sian random error law is not really abandoned, but becomes
a testable hypothesis in light of the fact that the df of the t-
distribution can be estimated by means of ML estimation (as
demonstrated in Sect. 3). Such an estimator that adapts the
df to the data itself was called a self-tuning robust estimator
by Parzen (1979). The usage of Student distributions with
a relatively low df ν ∈ [3, 4] has also been recommended
by advocates of the Guide to the Expression of Uncertainty
in Measurement (ISO/IEC 2008) in situations, where input
quantities with statistically determined (“type-A”) standard
uncertainties affect the output quantities (i.e., the observables
to be adjusted) (cf. Sommer and Siebert 2004).

Recently, Liu et al. (2017) used the t-distribution in a VAR
process added to a deterministic model consisting solely of
the unknown observation offsets (“intercepts”). While the
focus of that study was on influence diagnostics for model
perturbations, one purpose of our current contribution is to
demonstrate effective estimation algorithms in the more gen-
eral situation where the deterministic model is described by
either a linear or nonlinear regression. This is achieved by
setting up an expectation maximization (EM) algorithm in
the linear case and a generalized expectation maximization
(GEM) algorithm in the nonlinear case. These are suitable
approaches in view of their generally stable convergence and
their capacity to reduce anML estimationwith random errors
(based on the t-distribution) to a computationally simple
IRLS method (cf. McLachlan and Krishnan 2008; Koch and
Kargoll 2013). The expectation step (“E-step”) corresponds
to the computation of the weights in the current iteration,
which are used to downweight outliers in the maximization
step (“M-step”) to solve for the unknown model parameters.
With an EM algorithm in the context of a linear determin-
istic model, the likelihood function is maximized globally
within the M-step. However, when the functional model is
nonlinear and therefore linearized, this cannot be achieved.
In this situation, a GEM algorithm may be applied instead to
compute, after the usual E-step, a solution that increases the
likelihood function, butwhich does not necessarilymaximize
it (cf. Phillips 2002). Our proposed algorithm extends the
GEM algorithm for adjusting nonlinear, multivariate regres-

2 The degree of freedom as a parameter of t-distributions is not to be
confused with the notion of degree of freedom as the redundancy of an
adjustment model.

sion time series where the random errors of each component
follow a univariate AR process with univariate t-distributed
white-noise components (cf. Alkhatib et al. 2018). Algo-
rithms for the simpler case of linear, univariate time series
with AR and t-distributed random errors were independently
investigated by Kargoll et al. (2018a), Tuac et al. (2018) and
Nduka et al. (2018).

The new GEM algorithm dealing more generally with
a VAR process (derived in Sect. 3) will be established in
two variants for two different stochastic models (defined in
Sect. 2): The first stochastic model (“A”) is based on the
assumption that the different white-noise series of the VAR
process have independent, univariate t-distributions whose
scale factors and dfs are time-constant but possibly different
for all series. The second stochastic model (“B”) is defined
by a multivariate t-distribution, which has only a single
df applying to all series jointly, besides a cofactor matrix.
Since these GEM algorithms maximize the original (log-
)likelihood function, information criteria for model selection
are readily available. In particular, a bias-corrected version of
the Akaike information criterion (AIC) is defined. As a tool
specifically for selecting an adequate VAR model order, the
multivariate portmanteau test by Hosking (1980) is adapted
to the current observation models. The convergence behav-
ior of the suggested GEM algorithms is investigated through
Monte Carlo (MC) simulations, the results of which are pre-
sented and analyzed in Sect. 4. In Sect. 5, various Global
Positioning System (GPS) time series from the EUREF Per-
manent Network (EPN) are modeled and adjusted by means
of the proposed methodology. In this numerical example, the
issue of model selection is also discussed.

2 The observationmodels

Our goal is to adjust N groupsL1:, . . . ,LN : of observables,
where each group k ∈ {1, . . . , N } consists of n observables
Lk: = [Lk,1 . . . Lk,n]T , defined to be a regression time
series

Lk,t = hk,t (ξ) + Ek,t (t = 1, . . . , n). (1)

These equations specify then a vector time series3 (Lt | t ∈
{1, . . . , n}) with Lt = [L1,t . . . LN ,t ]T . The measure-
ments �1,1, . . . , �N ,n are used to form the total observation

3 Colons occurring, e.g., in the subscript of Lk:, are used to distin-
guish quantities collected throughout time within a single group k from
quantities, such as Lt , collected within the various groups at a single
time instance t . Unknown parameters are mostly denoted by Greek let-
ters, random variables by calligraphic letters, and constants by Roman
letters. Thus, a random variable (e.g., Et ) and its realization (et ) are dis-
tinguished. Furthermore, matrices and vectors are represented by bold
letters.
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vector �. The observation model on the right-hand side
of (1) is defined by a deterministic model, through pos-
sibly nonlinear (differentiable) functions, hk,t of m < n
unknown parameters ξ = [ξ1, . . . , ξm]T , with random errors
Ek: = [Ek,1 . . . Ek,n]T forming a vector time series with
terms Et = [E1,t . . . EN ,t ]T . Similarly, the vector-valued
function ht can be defined from the scalar functions h1,t , . . .,
hN ,t , so that one can write

Lt = ht (ξ) + Et . (2)

Clearly, observation equations (1) can also be stated in the
form of “random error equations”

Ek,t = Lk,t − hk,t (ξ) (t = 1, . . . , n) (3)
or in vector form

Et = Lt − ht (ξ). (4)

Numerical realizations ek,t of the random errors Ek,t are also
referred to as “residuals” below. To allow for both auto-
correlations within each time series and cross-correlations
between the time series, the random errors Et are modeled
jointly as a p-th order VAR process Et = A(1)Et−1 + · · · +
A(p)Et−p + Ut with components
⎡
⎢⎣
E1,t
...

EN ,t

⎤
⎥⎦ =

⎡
⎢⎣

α1;1,1 · · · α1;1,N
...

. . .
...

α1;N ,1 · · · α1;N ,N

⎤
⎥⎦

⎡
⎢⎣
E1,t−1

...

EN ,t−1

⎤
⎥⎦ + · · ·

+
⎡
⎢⎣

αp;1,1 · · · αp;1,N
...

. . .
...

αp;N ,1 · · · αp;N ,N

⎤
⎥⎦

⎡
⎢⎣
E1,t−p

...

EN ,t−p

⎤
⎥⎦ +

⎡
⎢⎣
U1,t
...

UN ,t

⎤
⎥⎦

(5)

Here, the entries α1;1,1, . . ., αp;N ,N of the N -by-N matrices
A(1), . . ., A(p) are unknown parameters and U1,1, . . ., UN ,n

are, at least within every group, stochastically independent
random variables, having zero mean and group-specific vari-
ances σ 2

k,0. Since a computationally convenient method of
parameter estimation is desirable, the random errors E0, . . .,
E1−p are all assumed to take the value 0. The conditions for
asymptotic covariance-stationarity of VAR(p) model (5) can
be found, e.g., in Hamilton (1994, p. 259). We now rewrite
process equations (5) as

Ut = Et − A(1)Et−1 − · · · − A(p)Et−p (t = 1, . . . , n).

(6)

Denoting by A( j)
k the kth row of the matrix A( j) with j ∈

{1, . . . , p} and by iTk the kth row of the N -dimensional iden-
tity matrix I, one may write for the kth component of Ut

Uk,t = iTk Et − A(1)
k Et−1 − · · · − A(p)

k Et−p. (7)

It is also assumed that the random variables L0, . . ., L1−p

and the functions hk,0, . . ., hk,1−p occurring after substitution
of lagged versions of (3) into (7) take values of 0. It will be
convenient to collect all VAR coefficients contained in the
kth rows A(1)

k , . . ., A(p)
k within the single (pN × 1)-vector

αk: = [A(1)
k . . . A(p)

k ]T , (8)

and to stack then all of these column vectors within the single
(pN 2 × 1)-vector

α = [αT
1: . . . αT

N :]T . (9)

To set up computationally efficient filter schemes, it is useful
to introduce the notation LZt := Zt−1 and more generally
L jZt := Zt− j , where L is the so-called lag operator that
shifts the time index t by j ∈ {1, 2, . . .} into the past (see
Chap. 2 in Hamilton 1994, for details). As shown in Brock-
well and Davis (2016, p. 243) this lag operator can be used
to define so-called lag polynomials

A(L) = I − A(1)L − · · · − A(p)L p, (10)

Ak(L) = iTk − A(1)
k L − · · · − A(p)

k L p, (11)

which may then be multiplied with some element Zt of a
given time series to obtain filtered quantities

Zt = A(L)Zt (12)

= IZt − A(1)LZt − · · · − A(p)L pZt

= Zt − A(1)Zt−1 − · · · − A(p)Zt−p (13)

and

Zk,t = Ak(L)Zt (14)

= iTk Zt − A(1)
k LZt − · · · − A(p)

k L pZt

= iTk Zt − A(1)
k Zt−1 − · · · − A(p)

k Zt−p. (15)

Thus, (6) and (7) become with (4)

Ut = E t = A(L)Et = A(L)(Lt − ht (ξ)), (16)

Uk,t = Ek,t = Ak(L)Et = Ak(L)(Lt − ht (ξ)). (17)

Here, A(L) and the collection of A1(L), . . ., AN (L) may be
viewed as digital filters, which transform the auto- and cross-
correlated (“colored-noise”) time series (Et | t ∈ {1, . . . , n})
into the “white-noise” time series (Ut | t ∈ {1, . . . , n}). The
white noise components Ut and Uk,t in (16)–(17) simplify
to the right-hand sides of (3)–(4) if the VAR(p) process is
partially “switched off” by setting A(L) = I and Ak(L) =
iTk , respectively. Numerical values uk,t of the white-noise
variables Uk,t will also be called “white-noise residuals” in
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the sequel. Having defined the functional and the correlation
model, the stochastic model is specified next, for which at
least two structurally different alternatives are conceivable.

2.1 Stochastic model A: group-specific univariate
t-distributions

To allow for flexible modeling of random errors, which may
involve heavy tailedness or multiple outliers of unknown
forms, as well as different measurement precisions across
the various observation groups, it may be assumed that the
white-noise variables (Uk,t , k = 1, . . . , N ; t = 1, . . . , n) are
all independently t-distributed with mean 0, group-specific
(generally unknown) df νk and group-specific (generally
unknown) variance component σ 2

k , symbolically,

Uk,t | θ ind.∼ tνk (0, σ
2
k ) (t = 1, . . . , n). (18)

Here, θ = [ξT αT (σ 2)T νT ]T is the complete parameter
vector consisting of the (m×1)-vector ξ of functional param-
eters, the (pN 2 × 1)-vector α of VAR coefficients (8)–(9),
the (N × 1)-vector σ 2 = [σ 2

1 . . . σ 2
N ]T of variance compo-

nents and the (N × 1)-vector ν = [ν1 . . . νN ]T of dfs. The
estimation of the model parameters θ is explained in Sect. 3.
Note that the widely used assumption of normally distributed
random errors is approximated by this model as νk → ∞.
Practically, a close approximation of a normal distribution
is reached already for νk = 120 (cf. Koch 2017). Note also
that the white-noise variance σ 2

k,0 is linked to the variance

component σ 2
k via the relationship σ 2

k,0 = νk
νk−2 · σ 2

k , which
requires that νk > 2.

Due to the assumed stochastic independence of the white-
noise variables, the joint pdf of U factors into

f A(u|θ) = f (u1,1, . . . , uN ,n |θ)

=
N∏

k=1

n∏
t=1

�
(

νk+1
2

)

√
νkπ σk �

( νk
2

)
[
1 +

(
uk,t
σk

)2
/νk

]− νk+1
2

,

(19)

where � is the gamma function and where the realizations
uk,t of Uk,t carry the complete information of the functional
and the correlation model via (17). This extends, in a natural
way, the pdf considered in Alkhatib et al. (2018) from a mul-
tivariate regression time series with independent, univariate
autoregressive random errors to one with random error fol-
lowing a fully multivariate VAR process. The log-likelihood
function based on this pdf, as our basic observation model,
is then given by

log L A(θ; �) = log f (u|θ) =
N∑

k=1

⎛
⎝n log

⎡
⎣ �

(
νk+1
2

)

√
νkπσk�

(
νk
2

)
⎤
⎦

−νk + 1

2
·

n∑
t=1

log

[
1 +

(
Ak(L)(�t − ht (ξ))

σk

)2

/νk

])
.

(20)

Note that the vector-filtering operation Ak(L)(�t −ht (ξ)) in
(20) simplifies to a scalar-filtering operation αk(L)(�k,t −
hk,t (ξ)) used in the log-likelihood function involving mul-
tiple independent AR processes (see Alkhatib et al. 2018,
Eq. (7)). As mentioned before, these filters make use of fixed
boundary conditions for the unobservable pastL0, . . .,L−p,
so that (20) constitutes a conditional log-likelihood function
(see also Hamilton 1994, p. 291).

Before deriving the expectation maximization (EM) algo-
rithm in analogy to the algorithms in Kargoll et al. (2018a)
and Alkhatib et al. (2018), the Student distribution model
is recast as a conditionally Gaussian variance inflation
model. For this purpose, stochastically independent, gamma-
distributed random variables

Wk,t | θ ind.∼ G
(νk

2
,
νk

2

)
(k = 1, . . . , N ; t = 1, . . . , n)

(21)

are introduced, which are viewed as unobservable (“latent”)
variables or “missing data.” Under the conditions that the
randomvariableWk,t takes the valuewk,t and that the param-
eter values θ are also given, the white-noise components are
assumed to be Gaussian random variables

Uk,t | wk,t , θ
ind.∼ N (0, σ 2

k /wk,t ). (22)

Thus, the value wk,t that the distribution of the white
noise component Uk,t is conditional on plays the role of an
additional weight, a decrease of which causes an increase
(“inflation”) of the variance of Uk,t . Since these weights can-
not be observed directly, it will be the essential idea of the
GEM algorithms developed in Sect. 3 to determine their val-
ues as conditional expectations of the latent variables Wk,t

given the observations �k,t and an estimate of the param-
eters θ . The conditional independence in (22) means that
each random variable Uk,t is independent of the white-noise
components Uκ,τ and latent variablesWκ,τ occurring within
the series k at the other time instances (i.e., for κ = k and
τ = 1, . . . , t − 1, t + 1, . . . , n) and within the other series at
all time instances (i.e., for κ = 1, . . . , k − 1, k + 1, . . . , N
and τ = 1, . . . , n), conditional on the valuewk,t . This crucial
assumption enables the simplification

f (uk,t |uk,1, wk,1 . . . , uk,t−1, wk,t−1, uk,t+1, wk,t+1, . . . , uk,n , wk,n

, wk,t , θ) = f (uk,t |wk,t , θ). (23)

Since assumptions (21)–(22) are exactly the same as the ones
applied by Alkhatib et al. (2018) in connection with group-
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specific (univariate) AR processes, their derivation of the
log-likelihood function can be applied to the current model
involving a VAR process with only one modification: uk,t
is not replaced by the quantity αk(L)(�k,t − hk,t (ξ)) using
decorrelation filters αk(L) based on group-specific AR pro-
cesses, but by the quantity Ak(L)(�t − ht (ξ)) where the
decorrelation filterAk(L) is defined by a VAR process. With
thismodification, the log-likelihood function in (20) becomes

log L A(θ; �,w) = n

2
log(2π) − n

2

N∑
k=1

log(σ 2
k )

+ n

2

N∑
k=1

νk log
(νk

2

)
− n

N∑
k=1

log
(
�

(νk

2

))

−
N∑

k=1

n∑
t=1

wk,t

2

[
νk +

(
Ak(L)(�t − ht (ξ))

σk

)2
]

+
N∑

k=1

n∑
t=1

1

2
(νk − 1) log(wk,t ), (24)

A certain disadvantage of this t-distribution model is that it
does not allow for the modeling of stochastic dependence
between the white-noise variables U1,t , . . ., UN ,t at a given
time instance t , so that the stochastic dependence between
the colored-noise variables E1,t , . . ., EN ,t arises merely from
the past time instances t − 1, t − 2, . . ., as shown by (5). The
following type of stochasticmodel overcomes this limitation.

2.2 Stochastic model B: multivariate t-distribution

The second stochastic model uses a multivariate scaled
t-distribution (cf. Lange et al. 1989) in order to model cor-
relations between the white-noise variables U1,t , . . ., UN ,t .
Instead of (18), the stochastic model assumption now is

Ut | θ ind.∼ tν(0,Σ) (t = 1, . . . , n), (25)

where Σ denotes an N -by-N cofactor matrix, being a fac-
tor of the covariance matrix Σ0 = ν

ν−2 · Σ of each random
vector Ut for ν > 2. All unknown entries of the inverse
matrixΣ−1 are treated as parameters to be estimated. Instead
of this variance–covariance model, a variance-component
model as described in Koch (2014) could also be here. When
the covariance matrix Σ0 of the random errors is given a
priori, then the cofactor matrix Σ is computable via the
equationΣ = ν−2

ν
·Σ0. In certain applications, such a covari-

ance matrix might depend on time (e.g., analysis of GNSS
time series preprocessed bymeans of standard software); one
would then simply add the time index to the corresponding
cofactor matrix (Σ t ) in (25) and in the sequel.

The total parameter vector reads θ = [ξT αT (σ−1)T ν]T ,
where σ−1 symbolizes the vectorized matrix Σ−1, that is,

the (N 2 × 1)-vector obtained by stacking the columns of the
matrix Σ−1. A certain drawback of the current model is that
all observation groups share the same df ν and thus the same
tail or outlier characteristics, which might be an unrealistic
assumption in some geodetic applications.

Due to the assumed stochastic independence of the ran-
dom vectors U1, . . ., Un , their joint pdf factors into

fB(u|θ) =
n∏

t=1

fB(ut |θ)

=
n∏

t=1

�
(

ν+N
2

)

(
√

νπ)N
√
detΣ �

(
ν
2

)
(
1 + uTt Σ−1ut

ν

)− ν+N
2

(26)

and leads to the log-likelihood function

log LB(θ; �) = n log

(
�

(
ν+N
2

)

(
√

νπ)N
√
detΣ �

(
ν
2

)
)

− ν + N

2
·

n∑
t=1

log

(
1 + uTt Σ−1ut

ν

)
, (27)

with ut = A(L)(�t − ht (ξ)) according to (16). The variance
inflation model corresponding to this multivariate Student
random error model is now defined by

Wt | θ ind.∼ G
(ν

2
,
ν

2

)
(t = 1, . . . , n) (28)

and

Ut | wt , θ
ind.∼ N

(
0,

1

wt
· Σ

)
, (29)

where the preceding conditional independence means that

f (ut |u1, w1 . . . ,ut−1, wt−1,ut+1, wt+1, . . . ,un, wn, wt , θ)

= f (ut |wt , θ). (30)

In contrast to model (18), a single weight wt is assigned to
the entire time series termUt ; the larger the weight, the more
extreme is the location of the vector ut under themultidimen-
sional tail of the multivariate distribution. The pdfs defining
the preceding distributions are given by

f (wt |θ) =
⎧⎨
⎩

( ν
2 )

ν
2

�( ν
2 )

· w
ν
2−1
t · exp (− ν

2wt
)
for wt > 0

0 for wt ≤ 0

and

fB(ut |wt , θ) = 1√
(2π)N det(Σ/wt )

exp
(
−wt

2
uTt Σ−1ut

)
.
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Then, the joint distribution of all the white-noise variablesU
and all latent variables W can be written as

fB(u,w|θ) =
n∏

t=1

fB(ut , wt |θ)

=
n∏

t=1

f (wt |θ) fB(ut |wt , θ)

=
n∏

t=1

(
ν
2

) ν
2

�
(

ν
2

) w
ν
2−1
t exp

(
−ν

2
wt

)

× 1√
(2π)N det(Σ/wt )

exp
(
−wt

2
uTt Σ−1ut

)

(31)

Since the unknown values u of the white-noise variables
depend on the given observations � as well as the unknown
parameters ξ and α, this pdf may be used as a likelihood
function, for which one obtains

log LB(θ; �,w) = log fB(u,w|θ)

= − Nn

2
log(2π) − n

2
log detΣ + nν

2
log

(ν

2

)

− n log�
(ν

2

)
+

(
N

2
− 1

) n∑
t=1

logwt

− 1

2

n∑
t=1

wt [A(L)(�t − ht (ξ))]TΣ−1

× [A(L)(�t − ht (ξ))] + ν

2

n∑
t=1

(logwt − wt ).

(32)

3 Adjustment of the observationmodels

In this section, ML estimates of the model parameters θ

under the stochastic models A and B are made. For this pur-
pose, the fact that the structure of log-likelihood functions
(24) and (27) allows for the setup of GEM algorithms is
exploited. These algorithms iteratively perform an expecta-
tion (“E-step”) and a maximization step (“M-step”). Let the

number s denote the iteration step and θ̂
(s)

the parameter
estimates obtained in that step. Then, the (s + 1)th iteration
of the E-step consists of the computation of the conditional
expectation

QA/B(θ |̂θ (s)
) = EW |�;̂θ (s)

{
log L A/B (θ; �,W)

}
, (33)

which is called “Q-function” below; “A/B” indicates that
either log-likelihood function (24) for stochastic model A or
log-likelihood function (32) for stochastic model B is sub-

stituted. The E-step will be seen to provide values w of the
latent variablesW . Next, one would solve within theM-step
the maximization problem

θ̂
(s+1) = arg max

θ
QA/B(θ |̂θ (s)

). (34)

3.1 Generalized expectationmaximization
algorithm for stochastic model A

Replacing the decorrelation filter αk(L)(�k,t − hk,t (ξ)) by
Ak(L)(�t −ht (ξ)) as inAlkhatib et al. (2018), theQ-function
of the current stochastic model A can similarly be derived,
that is,

QA(θ |̂θ (s)
) = const. − n

2

N∑
k=1

log(σ 2
k )

−
N∑

k=1

1

2σ 2
k

n∑
t=1

w̃
(s)
k,t

[
Ak(L)(�t − ht (ξ))

]2

+ n

2

N∑
k=1

νk log νk − n
N∑

k=1

log�
(νk

2

)

+ n

2

N∑
k=1

νk

[
ψ

(
ν̂

(s)
k + 1

2

)
− log

(
ν̂

(s)
k + 1

)

+1

n

n∑
t=1

(
log w̃

(s)
k,t − w̃

(s)
k,t

)]
, (35)

where

w̃
(s)
k,t = EWk,t |uk,t ;̂θ (s){Wk,t }

= ν̂
(s)
k + 1

ν̂
(s)
k +

(
Â(s)
k (L)(�t−ht (̂ξ

(s)
)

σ̂ (s)

)2 . (36)

The tilde symbol is used with these conditional expectations
to distinguish these quantities more clearly from parameter
estimates (which obtain a “hat”). The M-step is carried out
in four sequential conditional maximization (CM) steps (in
the sense of Meng and Rubin 1993) that correspond to the
parameter groups ξ , α, σ and ν forming θ . The essential idea
behind conditioning is to substitute the most recent available
estimates for parameters belonging to groups other than the
one to be determined by the current CM-step.

In the first CM-step the functional parameters ξ , which
occur as variables of the nonlinear regression functions hk,t ,
are solved for. To resolve the nonlinearity, the functions
are linearized by Taylor series expansion, which is possi-
ble within the framework of a GEM algorithm, as shown for
instance in Phillips (2002). A natural choice for the Taylor
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point is the solution ξ̂
(s)

from the preceding iteration step s.
GEM algorithm (Algorithm 1) is started with approximate,

initial parameter values ξ̂
(0)

, which may be known from a
previous adjustment or determined as part of a preprocessing
step. Setting the partial derivative of the previous Q-function
with respect to ξ j equals to zero, as shown in Appendix B.2,
one arrives at the normal equations

0 =
N∑

k=1

1

σ 2
k

⎡
⎢⎣
Ak(L)X1,:1 · · · Ak(L)Xn,:1

...
...

Ak(L)X1,:m · · · Ak(L)Xn,:m

⎤
⎥⎦ W̃(s)

k

×
⎡
⎢⎣
Ak(L) (Δ�1 − X1Δξ)

...

Ak(L) (Δ�n − XnΔξ)

⎤
⎥⎦ (37)

with the incremental observations

Δ�t = �t − ht (̂ξ
(s)

), (38)

the incremental parameters

Δξ = ξ − ξ̂
(s)

(39)

and Xt,: j being the j th column of the Jacobi matrix

Xt = ∂ht (ξ)

∂ξ

∣∣∣
ξ=ξ̂

(s) =

⎡
⎢⎢⎣

∂h1,t (ξ)

∂ξ1
· · · ∂h1,t (ξ)

∂ξm
...

...
∂hN ,t (ξ)

∂ξ1
· · · ∂hN ,t (ξ)

∂ξm

⎤
⎥⎥⎦

∣∣∣
ξ=ξ̂

(s) .

(40)

The step number s is omitted for brevity of expressions.
Conditioning these equations on the estimated variance com-
ponents σ̂ (s) and VAR coefficients α̂(s) from the preceding
iteration step s, and performing also filtering operation (14)
on the incremental observations and the Jacobi matrix results
in the estimates

Δ�k,t = Â(s)
k (L)Δ�t , (41)

Xt,k, j = Â(s)
k (L)Xt,: j , (42)

Xt,k: = Â(s)
k (L)Xt , (43)

where Xt,k, j is the entry in the kth row and the j th column
of the filtered Jacobi matrix at time t andXt,k: is accordingly
the kth row of that matrix. The solution Δ̂ξ

(s+1)
satisfies

0 =
N∑

k=1

1

(σ 2
k )(s)

⎡
⎢⎣
X1,k,1 · · · Xn,k,1

...
...

X1,k,m · · · Xn,k,m

⎤
⎥⎦ W̃(s)

k

×

⎡
⎢⎢⎣

Δ�k,1 − X1,k:Δ̂ξ
(s+1)

...

Δ�k,n − Xn,k:Δ̂ξ
(s+1)

⎤
⎥⎥⎦

=
N∑

k=1

1

(̂σ 2
k )(s)

⎡
⎢⎣
X1,k,1 · · · Xn,k,1

...
...

X1,k,m · · · Xn,k,m

⎤
⎥⎦ W̃(s)

k

×
⎛
⎜⎝

⎡
⎢⎣

Δ�k,1
...

Δ�k,n

⎤
⎥⎦ −

⎡
⎢⎣
X1,k,1 · · · X1,k,m

...

Xn,k,1 · · · Xn,k,m

⎤
⎥⎦ Δ̂ξ

(s+1)

⎞
⎟⎠

=:
N∑

k=1

1

(̂σ 2
k )(s)

X
T
k:W̃

(s)
k

(
Δ�k: − Xk:Δ̂ξ

(s+1)
)

.

If the matrices X1:, . . ., XN : have full rank m, estimates of
the incremental parameters can be computed by

Δ̂ξ
(s+1) =

(
N∑

k=1

1

(̂σ 2
k )(s)

X
T
k:W̃

(s)
k Xk:

)−1

×
N∑

k=1

1

(̂σ 2
k )(s)

X
T
k:W̃

(s)
k Δ�k:, (44)

which yield with (39) the new solution for the full parameters

ξ̂
(s+1) = ξ̂

(s) + Δ̂ξ
(s+1)

. (45)

Notice that (44) involves additions of the normal equation

matrices X
T
k:W̃

(s)
k Xk: and corresponding “right-hand sides”

X
T
k:W̃

(s)
k Δ�k: across the N individual time series, because

the white-noise time series were modeled independently by
univariate (t-)distributions.

Next, estimates of random errors (4), also called “colored-
noise residuals” below, are immediately obtained through

ê(s+1)
t = �t − ht (̂ξ

(s+1)
). (46)

To derive the new solution for the VAR coefficients α within
the second CM-step, the matrix

Ê(s+1) =

⎡
⎢⎢⎣
ê(s+1)T
0 · · · ê(s+1)T

1−p
...

...

ê(s+1)T
n−1 · · · ê(s+1)T

n−p

⎤
⎥⎥⎦ (47)

is defined. As the colored-noise residuals can be computed
by (46) only for t = 1, . . . , n, the residuals ê(s+1)

0 , ê(s+1)
−1 ,

. . . with nonpositive time index values occurring in matrix
(47) are undefined. To account for these missing values, the
initial conditions ê(s+1)

0 = ê(s+1)
−1 = · · · = 0 are used.
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Appendix B.3 shows that the first-order conditions for αk:
result in

α̂
(s+1)
k: =

(
Ê(s+1)T W̃(s)

k Ê(s+1)
)−1

Ê(s+1)T W̃(s)
k ê(s+1)

k: ,

(48)

given that the matrix Ê(s+1) has full rank. Note that this
matrix is the same for each group k ∈ {1, . . . , N }. Stacking
the vectors α̂

(s+1)
1: , . . ., α̂(s+1)

N : yields the vector α̂(s+1), which
defines the updated VAR(p) model. Applying the decorrela-
tion filter based on this model to correlated residuals (46), as
indicated by (16), gives

û(s+1)
t = Â(s+1)(L )̂e(s+1)

t . (49)

Now, the variance components are estimated in the third CM-
step group-by-group according to

(̂σ 2
k )(s+1) = 1

n

n∑
t=1

w̃
(s)
k,t û

(s+1)2
k,t (50)

= û(i+1)T
k: W̃(s)

k û(s+1)
k:

n
, (51)

as the result of the corresponding first-order condition (see
AppendixB.4 for details). To increase the computational effi-
ciency of the remaining estimation of the df, the first-order
condition with respect to the original log-likelihood function
L A(θ; �) is used. This turns the fourth CM-step into a CM
either-v(CME-) step (as suggested by Liu and Rubin 1994),
which consists of the group-wise zero search of the equation
(derived in Appendix B.5)

0 = log ν̂
(s+1)
k + 1 − ψ

(
ν̂

(s+1)
k

2

)
+ ψ

(
ν̂

(s+1)
k + 1

2

)

− log
(
ν̂

(s+1)
k + 1

)
+ 1

n

n∑
t=1

(
log w̃

(s+1)
k,t − w̃

(s+1)
k,t

)

(52)

with

w̃
(s+1)
k,t = ν̂

(s+1)
k + 1

ν̂
(s+1)
k +

(
Â(s+1)
k (L)(�t−ht (̂ξ

(s+1)
)

σ̂ (s+1)

)2 (53)

The steps of the current GEM algorithm under stochastic
model A can be implemented easily as shown in following
Algorithm 1, which includes the initialization and stop crite-
rion.

Algorithm 1: GEM algorithm for stoch. model A

Input : �1, . . . , �n ; h1(ξ), . . . ,hn(ξ); ξ̂
(0)

; p; itermax; ε, εν

Output: ξ̂ ; α̂; σ̂ 2
1 , . . . , σ̂ 2

N ; ν̂1, . . . , ν̂N ; w̃1, . . . , w̃n

Set initial weights w̃
(0)
1,1 = · · · = w̃

(0)
N ,n = 1

Set initial filter Â(0)(L) = I
Compute incremental observations Δ�1, . . . ,Δ�n by (38)
Compute Jacobi matrices X1, . . . ,Xn by (40)

Compute functional parameter update Δ̂ξ
(1)

by (44) using
Δ�t = Δ�t and Xt = Xt (t = 1, . . . , n)

Compute functional parameter solution ξ̂
(1)

by (45)
Compute colored-noise residuals ê(1)

1 , . . . , ê(1)
n by (46)

Compute VAR coefficients α̂(1) via (48)
Compute white-noise residuals û(1)

1 , . . . , û(1)
n by (49)

Compute variance components (̂σ 2
1 )(1), . . . , (σ̂N

2)(1) by (50)
Set df ν̂(1) = 30
for s = 1 . . . itermax do

Compute weights w̃
(s)
1,1, . . . , w̃

(s)
N ,n by (36)

Compute incremental observations Δ�1, . . . ,Δ�n by (38)
Compute Jacobi matrices X1, . . . ,Xn by (40)
Filter incremental observations: Δ�1,1, . . . ,Δ�N ,n by (41)
Filter Jacobi matrices: X1, . . . ,Xn by (42)

Compute functional parameter update Δ̂ξ
(s+1)

by (44)

Compute functional parameter solution ξ̂
(s+1)

by (45)
Compute colored-noise residuals ê(s+1)

1 , . . . , ê(s+1)
n by (46)

Compute VAR coefficients α̂(s+1) via (48)
Compute white-noise residuals û(s+1)

1 , . . . , û(s+1)
n by (49)

Compute variance components (̂σ 2
1 )(s+1), . . . , (̂σ 2

N )(s+1) by
(50)
Search zeros (dfs) ν̂

(s+1)
1 , . . . , ν̂

(s+1)
N in (52)

Compute maximum absolute parameter changes

d = max(max |̂ξ (s) − ξ̂
(s+1)|,max |̂α(s) − α̂(s+1)|,

max
k

|(̂σ 2
k )(s) − (̂σ 2

k )(s+1)|),
dν = max

k
|̂ν(s)
k − ν̂

(s+1)
k |

if d > ε or dν > εν then
s = s + 1

else
break

Set ξ̂ = ξ̂
(s+1)

, α̂ = α̂(s+1), σ̂ 2
1 = (̂σ 2

1 )(s+1), . . .,

σ̂ 2
N = (̂σ 2

N )(s+1), w̃1,1 = w̃
(s)
1,1, . . . , w̃N ,n = w̃

(s)
N ,n

3.2 Generalized expectationmaximization
algorithm for stochastic model B

The solution of maximization problem (34) for the log-
likelihood function log LB(θ; �,w) involves the multivariate
t-distribution. To bring out clearly themodifications that have
to be applied to the previously given derivation of EM algo-
rithms in the univariate case (cf. Koch and Kargoll 2013;
Kargoll et al. 2018a), the E-step is firstly elaborated in some
detail.
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3.2.1 The E-step

To derive the E-step analytically, it is convenient to separate
within log-likelihood function (32) the terms involving wt

from those involving logwt , that is,

log LB(θ; �,w) = −Nn

2
log(2π) − n

2
log detΣ

+ nν

2
log

(ν

2

)
− n log�

(ν

2

)

−
n∑

t=1

1

2

(
ν + [A(L)(�t − ht (ξ))]TΣ−1

×[A(L)(�t − ht (ξ))])wt

+
n∑

t=1

1

2
(ν + N − 2) logwt .

Asmentioned in Appendix A, the previously considered uni-
variate case is embedded in this multivariate case as the
special case N = 1. Having defined the probabilistic model
of the random variables in U , we condition directly on the
values u, so that the Q-function becomes

QB(θ |̂θ (s)
) = EW |u;̂θ (s) {log LB (θ; �,W)} = − Nn

2
log(2π)

− n

2
log detΣ + nν

2
log

(ν

2

)
− n log�

(ν

2

)

−
n∑

t=1

1

2

(
ν + [A(L)(�t − ht (ξ))]TΣ−1

×[A(L)(�t − ht (ξ))]) EW |u;̂θ (s){Wt }

+
n∑

t=1

1

2
(ν − 1)EW |u;̂θ (s){logWt }. (54)

The conditional expectations are determined in analogy
to those occurring in the Q-function for the univariate t-
distribution model (see Kargoll et al. 2018a, Eqs. (39)–(41)).
In the present case, the required conditional distribution of

Wt |ut ; θ̂
(s)

can be shown to be a univariate gamma distri-

bution with parameter values a = ν̂(s)+N
2 and b = 1

2 (̂ν
(s) +

uTt (Σ̂
(s)

)−1ut ), according to Appendix B.1. Using the prop-
erty that the expected value of a gamma-distributed random
variable is given by a/b and that of its natural logarithm by
ψ(a)− log b (see Appendix A.2 in Kargoll et al. 2018a) one
finds

w̃
(s)
t = EW |u;̂θ (s){Wt } = EWt |ut ;̂θ (s){Wt }

= ν̂(s) + N

ν̂(s) + uTt (Σ̂
(s)

)−1ut
(55)

as well as

EW |u;̂θ (s){logWt } = EWt |ut ;̂θ (s){logWt } = ψ

(
ν̂(s) + N

2

)

− log

(
1

2

[
ν̂(s) + uTt (Σ̂

(s)
)−1ut

])

= log w̃
(s)
t + ψ

(
ν̂(s) + N

2

)

− log

(
ν̂(s) + N

2

)
. (56)

Since (55) is conditioned on ut and θ̂
(s)

in (55), (16) becomes

ut = Â(s)(L)(�t − ht (̂ξ
(s)

)), which is substituted into (55).
Substituting these into (54) and omitting all terms that do not
involve any parameter in θ , the Q-function can be written as

QB(θ |̂θ (s)
) = −n

2
log detΣ − 1

2

n∑
t=1

w̃
(s)
t [A(L)(�t − ht (ξ))]T

× Σ−1[A(L)(�t − ht (ξ))] + nν

2
log ν

− n log�
(ν

2

)
+ nν

2

[
ψ

(
ν̂(s) + N

2

)

− log
(
ν̂(s) + N

)
+ 1

n

n∑
t=1

(
log w̃

(s)
t − w̃

(s)
t

)]
.

(57)

The omission of parameter-independent constants will not
affect maximization with respect to the parameters θ , which
is described next.

3.2.2 The M-step

To obtain estimates of the regression parameters in the first
CM-step, the regression function is linearized exactly as
before (see Sect. 3.1). The first-order conditions with respect
to ξ can then be shown to lead to the normal equations

n∑
t=1

[A(L)Xt ]T
[
w̃

(s)
t Σ−1

]
[A(L)(Δ�t − XtΔξ)] (58)

with the incremental observations Δ�t computed by (38),
incremental parameters Δξ by (39), and Jacobi matrix Xt

by (40). If these equations depend on the latest available

estimates Σ̂
(s)

and α̂(s), and the incremental observations
and the Jacobi matrix are filtered as in (12) to obtain the
vectors

Δ�t = Â(s)(L)Δ�t , (59)

Xt = Â(s)(L)Xt , (60)
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then one can write for the normal equations

0 =
n∑

t=1

X
T
t

[
w̃

(s)
t (Σ̂

(s)
)−1

] (
Δ�t − XtΔ̂ξ

(s+1)
)

.

Given that the filtered Jacobi matrices have full rank, the
solution of the normal equations is given by

Δ̂ξ
(s+1) =

(
n∑

t=1

X
T
t

[
w̃

(s)
t (Σ̂

(s)
)−1

]
Xt

)−1

×
n∑

t=1

X
T
t

[
w̃

(s)
t (Σ̂

(s)
)−1

]
Δ�t , (61)

resulting in the new solution ξ̂
(s+1)

via (45). Since the white-
noise time series are now generally correlated across the
N groups through the multivariate t-distribution, the normal

equation matrices X
T
t [w̃(s)

t (Σ̂
(s)

)−1]Xt and right-hand sides

X
T
t [w̃(s)

t (Σ̂
(s)

)−1]Δ�t are formed group-wise. As the white-
noise vectors are stochastically independent throughout time,
these normal equations can be added up accordingly, as
shown in (61). Next, the residuals ê(s+1)

t and the associated
matrix Ê(s+1) are computed as in (46) and (47), respectively.

Regarding the second CM-step, one obtains from the first-
order conditions with respect to the VAR coefficient matrices
(see Appendix B.3)

[
Â(1)(s+1) · · · Â(p)(s+1)

] =
[
ê(s+1)
1 · · · ê(s+1)

n

]
W̃(s)Ê(s+1)

×
(
Ê(s+1)T W̃(s)Ê(s+1)

)−1
.

(62)

The new filter Â(L)(s+1) enables the estimation of the white-
noise errors û(s+1)

t through (49). These enter, alongside the
current weights, the third CM-step, in which the cofactor
matrix Σ is estimated. Observe that the relevant first two
terms of Q-function (57) are similar to the log-likelihood
function for the multivariate Gauss–Markov model based on
normally distributed observations, so that the first-order con-
ditions with respect to Σ−1 can be shown to lead to (see
Appendix B.4)

Σ̂
(s+1) = 1

n

n∑
t=1

w̃
(s)
t û(s+1)

t û(s+1)T
t . (63)

Finally, the first-order condition with respect to the log-
likelihood function and ν yields the fourth CM-step (in the
form of CME, similarly as shown for stochastic model A in

Appendix B.5), consisting of the zero search

0 = log ν̂(s+1) + 1 − ψ

(
ν̂(s+1)

2

)
+ ψ

(
ν̂(s+1) + N

2

)

− log
(
ν̂(s+1) + N

)
+ 1

n

n∑
t=1

(
log w̃

(s+1)
t − w̃

(s+1)
t

)

(64)

where

w̃
(s+1)
t = ν̂(s+1) + N

ν̂(s+1) + uTt (Σ̂
(s+1)

)−1ut
(65)

andut = Â(s+1)(L)(�t−ht (̂ξ
(s+1)

)). FollowingAlgorithm2
summarizes the computational steps of the E- and M-step
under the current stochastic model B.

3.3 Model selection

In practical situations, itmight not be clear at the outsetwhich
VAR model order p or which stochastic model (A or B) is
most adequate for the given observations. Therefore, this sec-
tion provides some techniques for identifying the model that
is best in a statistical sense. First, a statistical white noise
test is elaborated, which enables one to assess the capability
of an estimated VAR model to fully capture the auto- and
cross-correlation pattern. Subsequently, a standard informa-
tion criterion adapted to the generic observation models of
Sect. 2 is defined.

3.3.1 Multivariate portmanteau test

The portmanteau test by Box and Pierce (1970) may be used
to test whether the residuals of an autoregressive moving
average (ARMA) are uncorrelated. Hosking (1980) sug-
gested an extension of the portmanteau statistic to vector
ARMA (VARMA) models, of which the VAR models con-
sidered in our current paper constitute special cases. This
statistic has an approximate Chi-square distribution with df
N 2(h − p) and may be written as

P = n
h∑

l=1

vec(Σ̂ l)
T

(
Σ̂

−1
0 ⊗ Σ̂

−1
0

)
vec(Σ̂ l), (66)

where h is the maximum lag to be considered and Σ̂ l the
empirical covariance matrix at lag l with respect to the
decorrelation-filtered residuals ût—estimated by

Σ̂ l = 1

n

n∑
t=1

ût ûTt+l (l = 0, . . . , h). (67)

123



51 Page 12 of 26 B. Kargoll et al.

Algorithm 2: GEM algorithm for stoch. model B

Input : �1, . . . , �n ; h1(ξ), . . . ,hn(ξ); ξ̂
(0)

; p; itermax; ε, εν

Output: ξ̂ ; α̂; Σ̂ ; ν̂; w̃1, . . . , w̃n

Set initial weights w̃
(0)
1 = · · · = w̃

(0)
n = 1

Set initial filter Â(0)(L) = I
Compute incremental observations Δ�1, . . . ,Δ�n by (38)
Compute Jacobi matrices X1, . . . ,Xn by (40)

Compute functional parameter update Δ̂ξ
(1)

by (61) using
Δ�t = Δ�t and Xt = Xt (t = 1, . . . , n)

Compute functional parameter solution ξ̂
(1)

by (45)
Compute colored-noise residuals ê(1)

1 , . . . , ê(1)
n by (46)

Compute VAR coefficients α̂(1) via (62)
Compute white-noise residuals û(1)

1 , . . . , û(1)
n by (49)

Compute cofactor matrix Σ̂
(1)

by (63)
Set df ν̂(1) = 30
for s = 1 . . . itermax do

Compute weights w̃
(s)
1 , . . . , w̃

(s)
n by (55)

Compute incremental observations Δ�1, . . . ,Δ�n by (38)
Compute Jacobi matrices X1, . . . ,Xn by (40)
Filter incremental observations: Δ�1, . . . ,Δ�n by (59)
Filter Jacobi matrices: X1, . . . ,Xn by (60)

Compute functional parameter update Δ̂ξ
(s+1)

by (61)

Compute functional parameter solution ξ̂
(s+1)

by (45)
Compute colored-noise residuals ê(s+1)

1 , . . . , ê(s+1)
n by (46)

Compute VAR coefficients α̂(s+1) via (62)
Compute white-noise residuals û(s+1)

1 , . . . , û(s+1)
n by (49)

Compute cofactor matrix Σ̂
(s+1)

by (63)
Search zero (df) ν̂(s+1) in (64)
Compute maximum absolute parameter changes

d = max(max |̂ξ (s) − ξ̂
(s+1)|,max |̂α(s) − α̂(s+1)|,

max |Σ̂ (s) − Σ̂
(s+1)|),

dν = max |̂ν(s) − ν̂(s+1)|
if d > ε or dν > εν then

s = s + 1
else

break

Set ξ̂ = ξ̂
(s+1)

, α̂ = α̂(s+1), Σ̂ = Σ̂
(s+1)

,
w̃1 = w̃

(s)
1 , . . . , w̃n = w̃

(s)
n

In particular, the matrix Σ̂0 occurring in (66) represents the
empirical covariance matrix at lag l = 0. Furthermore, “vec”
is the vectorization operator that stacks all columns of a
matrix within a single column vector, and ⊗ is the Kro-
necker product. In view of the similarity of the estimation
of the lag-dependent covariance matrix with third CM step
(63), we propose to replace estimates (67) by the reweighted
estimates

Σ̂ l = 1

n

n∑
t=1

w̃t ût ûTt+l (l = 0, . . . , h). (68)

in connection with the multivariate t-distribution of stochas-
tic model B. Similarly, the weights regarding the univariate

t-distributions of stochastic model A can be taken into
account by

Σ̂ l = 1

n

n∑
t=1

√
w̃t w̃t+l ût ûTt+l (l = 0, . . . , h). (69)

In Sect. 4.2 the effects of these modifications regarding the
portmanteau test’s type-I error rate are quantified in a Monte
Carlo simulation.

3.3.2 Akaike information criterion

Various information criteria for selecting an adequate AR
model order p have been proposed (cf. Brockwell and Davis
2016, Sect. 5.5). Although our focus is not on forecasting,
we follow these authors’ recommendation to adopt a cri-
terion that strongly penalizes and thus avoids overly large
model orders. Since the assumption that the auto-and cross-
correlation pattern of a measured geodetic time series is
always generated by an AR process appears to be unrealis-
tic (see Sect. 5), the Bayesian information criterion (BIC) is
not considered in the sequel. Instead, the Akaike information
criterion (AIC) and a bias-corrected version of the AIC, com-
monly termed AIC corrected (AICC), will be used for VAR
model selection (cf. Brockwell and Davis 2016, Sects. 5.5.2
and 8.6). Since the usual assumption of normally distributed
white noise is in general not justified for the stochastic mod-
els A and B, the general definitions of the AIC and AICC (cf.
Burnham and Anderson 2002, Sects. 2.2 and 2.4) are consid-
ered here. Using log-likelihood functions (20) and (27) and
letting

KA = m + N 2 · p + 2N , (70)

KB = m + N 2 · p + N 2 + 1 (71)

be the corresponding total numbers of unknown model
parameters (where N is the number of groups of observa-
tions,m the number of parameters of the deterministicmodel,
and p the order of the VAR process specified by the user) for
stochastic model A and B, the corresponding AIC and AICC
are then given by

AICA = −2 log L A (̂θ; �) + 2KA, (72)

AICB = −2 log LB (̂θ; �) + 2KB, (73)

AICCA = −2 log L A (̂θ; �) + 2KA + 2KA(KA + 1)

N · n − KA − 1
,

(74)

AICCB = −2 log LB (̂θ; �) + 2KB + 2KB(KB + 1)

N · n − KB − 1
.

(75)
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The required log-likelihood values are computable using the
outputs ofGEMAlgorithms 1 and 2,whereas the scalar quan-
tities KA and KB determined by (70)–(71) are computed in
the setup of the adjustment problem.

4 Monte Carlo results

4.1 Parameter estimation

In the first part of this section, the performance of Algo-
rithms 1 and 2 in producing correct estimates within aMonte
Carlo simulation is studied. For this purpose, generated mea-
surements are approximated by a 3D circle defined by the
(nonlinear) equations

xt = �1,t = h1,t (r , cx , cy, cz, r , ϕ, ω)

= −r cos(Tt ) cos(ϕ) + cx (76)

yt = �2,t = h2,t (r , cx , cy, cz, r , ϕ, ω)

= r cos(Tt ) sin(ϕ) sin(ω) + r sin(Tt ) cos(ω) + cy (77)

zt = �3,t = h3,t (r , cx , cy, cz, r , ϕ, ω)

= −r cos(Tt ) sin(ϕ) cos(ω) + r sin(Tt ) sin(ω) + cz,
(78)

where the center coordinates cx , cy, cz , the radius r and the
rotation angles ϕ, ω about the x- and y-axis, respectively, are
treated as unknown parameters to be estimated. The (simu-
lated) true values are specified by

ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

cx
cy
cz
r
ϕ

ω

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1663.1
1223.4
1.6
29.7
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This model approximately describes the trajectory of two
GNSS receiversmounted on a terrestrial laser scanner (TLS),
which rotates about the z-axis. The GNSS data are observed
for the purpose of geo-referencing the TLS point clouds
by using 3D coordinates in a coordinate frame of super-
ordinate precision (see Paffenholz 2012, for details of this
multi-sensor system and the geo-referencing methodology).
In our current simulation study, the time instances are sim-
ply determined by Tt = (t − 1) · 2π

n s for t ∈ {1, . . . , n},
where n = 1000, n = 10,000 or n = 100,000 is the total
number of modeled 3D points �t = [xt , yt , zt ]T . Thus, the
measurements are equidistantly distributed along the circle.
The numerical realizations et = [e1,t , e2,t , e3,t ]T of the cor-
responding random errors are assumed to be determined by

the VAR process
⎡
⎣
e1,t
e2,t
e3,t

⎤
⎦ =

⎡
⎣

0.5653 −0.0066 −0.0197
0.0150 0.6657 0.0102

−0.0431 0.0207 0.7577

⎤
⎦

⎡
⎣
e1,t−1

e2,t−1

e3,t−1

⎤
⎦ +

⎡
⎣
u1,t
u2,t
u3,t

⎤
⎦ ,

where randomnumbersut = [u1,t , u2,t , u3,t ]T for thewhite-
noise components are generated based on the following
instances of stochastic model A and B:

(A1) stochasticmodel Awith an approximate normal distri-
bution (ν = 120) and different variance components:

U1,t
ind.∼ t120(0, σ

2
0 ),

U2,t
ind.∼ t120(0, 2σ

2
0 ),

U3,t
ind.∼ t120(0, 4σ

2
0 ).

with σ 2
0 = 0.0012.

(B1) stochastic model B with an approximate normal dis-
tribution (ν = 120) and a fully populated cofactor
matrix:

⎡
⎣
U1,t

U2,t

U3,t

⎤
⎦ ind.∼ t120

⎛
⎝

⎡
⎣
0
0
0

⎤
⎦ , σ 2

0 ·
⎡
⎣

1 0.98 1.4
0.98 2 1.96
1.4 1.96 4

⎤
⎦

⎞
⎠ ,

where the given cofactor matrix reflects the assump-
tion that the entries of Ut are pairwise correlated by
correlation coefficient ρ = 0.7.

(A2) stochastic model A with variance components as in
model A1 and different small dfs:

U1,t
ind.∼ t3(0, σ

2
0 ),

U2,t
ind.∼ t4(0, 2σ

2
0 ),

U3,t
ind.∼ t5(0, 4σ

2
0 ).

(B2) stochastic model B with cofactor matrix as in model
B1 and small df:

⎡
⎣
U1,t

U2,t

U3,t

⎤
⎦ ind.∼ t3

⎛
⎝

⎡
⎣
0
0
0

⎤
⎦ , σ 2

0 ·
⎡
⎣

1 0.98 1.4
0.98 2 1.96
1.4 1.96 4

⎤
⎦

⎞
⎠ ,

In total 1000 Monte Carlo (MC) samples of the white-noise
components for the stochasticmodels A1–B2were randomly
generated using MATLAB’s trnd and mvtrnd routines.
The resulting simulated observations in models A1 and A2
were then adjusted by means of GEM Algorithm 1, whereas
the samples in models B1 and B2 were adjusted using Algo-
rithm 2. The maximum number of iterations was set to
itermax = 100, and the convergence thresholds to ε = 10−8
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and εν = 0.0001. For each MC run i the root-mean-square
errors (RMSE) was computed for different parameters. For
example, the RMSE for the center of the circle was obtained
by

RMSE(i)
c =

[(
cx − ĉ(i)

x

)2 +
(
cy − ĉ(i)

y

)2 +
(
cz − ĉ(i)

z

)2]1/2
,

where cx , cy, cz and ĉ(i)
x , ĉ(i)

y , ĉ(i)
z , respectively, are the true

values and the estimates. The RMSE for the other parameters
shown in Table 1 is defined similarly (the RMSEwith respect
to the VAR coefficients was also determined collectively).
Only the results for the Student random error models A2
and B2 are given since the RMSE values for the Gaussian
random error models A1 and B1 were similar. To compute
the interval estimates, the empirical 2.5 and 97.5 percentiles
were determined from the sorted MC estimates; e.g., r̂0.025
and r̂0.975 for the radius estimates r̂ (i), so that

P (̂r0.025 < r < r̂0.975) = 0.95.

As it is intended to analyze the degree to which the bias is
reduced by increasing the number of observations, decimal
floating point numbers are listed with only one digit before
the decimal point of the mantissa.

In themajority of cases themean,minimumandmaximum
RMSE decreases by one order of magnitude when the num-
ber observations per time series are increased from 1000 to
100,000 for themultivariate Student random error model B2.
With model A2 the improvement of the RMSE is notable but
usually less than one order of magnitude. The largest RMSE
values occur for the df and theVAR coefficients. It may there-
fore be concluded that these parameters are most difficult to
estimate. This problem is most obvious for the model involv-
ing univariate t-distributions. A similar finding was obtained
through the MC study in Kargoll et al. (2018a) for the df and
the (univariate) AR coefficients. We therefore conclude that
the estimation of the df of the multivariate Student random
error model is much more accurate than the df of the univari-
ate Student random error models. The improvement of the
accuracy of the estimated df obtained for the former model
when the number of observations per time series is increased
from 1000 to 100,000 is clearly visible in histogram plots
(Fig. 1). On the one hand, the histogram for n = 100,000 is
much narrower and more centered about the true value ν = 3
than the histogram for n = 1000 and n = 10,000. The fact
that these histogram are skewed is a phenomenonwell known
in the context of estimating the df of a Student distribution
(e.g., Koop 2003, Sect. 6.4.3).

4.2 White noise test

Reweighted and weighted multivariate portmanteau statis-
tics (66) based on (67)–(69) were evaluated for 1000 MC
runs with respect to all four simulation models A1–B2 and
by generating either n = 1000, n = 10,000 or n = 100,000
observations per time series. For each of these scenarios the
number of times that the white-noise hypothesis was rejected
due to the test with significance level 0.05 was counted, and
the obtained numbers were divided by the number of MC
samples. Ideally, the resulting rejection rates (see Table 2)
are equal to the significance level since the actual frequency
of falsely rejecting a true null hypothesis corresponds to the
prescribed probability of a type-I error in connection with
the test distribution used. As the MC simulation is a closed-
loop simulation in the sense that the same model is used
both for the generation of the observations and their sub-
sequent adjustment, large deviations of the rejection rates
from the significance level indicate that the model is not
estimated well by the EM algorithm or that the test distribu-
tion does not apply exactly. To differentiate these systematic
deviations from random fluctuations, the rejection rates were
validated by an additionalMC simulation using newly gener-
ated samples. The resulting differences between the rejection
rates of the two MC simulations turned out to be a few per
mille. Based on these results, it can be concluded that differ-
ences between the four rejection rates for model A1 are not
significant. Furthermore, for model B1 there is no substan-
tial difference in rate between reweighted and unweighted
application of the portmanteau test, whereas increasing the
number n of observations per time series from 1000 to
100,000 reduces the deviations from the significance level
notably (giving even the exact value 0.05 for the reweighted
test). With the Student models A2 and B2 the reweighted test
performs slightly better than the unweighted test, whereas an
increase of the number of observations does not bring about
a general improvement. The reweighted test produced rejec-
tion rates between 0.036 and 0.076, which do not grossly
deviate from the specified significance level of 0.05. We
therefore conclude that both the usage of the EM algorithm
and of the approximate test distribution yield satisfactory
estimation and testing results.

5 Analysis of Global Positioning System time
series from the EUREF Permanent Network

5.1 Introduction

The monitoring of geophysical phenomena such as tectonic
velocity can be achieved by analyzing the site velocities of
Global Positioning System (GPS) permanent stations. For
the proper interpretation of the results and deduction of
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Fig. 1 Histograms of the estimated df of the model B2 for n = 1000
(blue), for n = 10,000 (orange) and for n = 100,000 (yellow)

physically relevant processes, knowledge of the noise char-
acteristics of the GPS coordinate time series is required.
This includes a description of their temporal correlations,
the omission of which affects the uncertainty of the esti-
mated quantities, leading to an unrealistic estimation of
precision (Mao et al. 1999; Altamimi et al. 2002; Dong
et al. 2006; Santamaria-Gomez et al. 2011; Klos et al. 2018).
Cross-correlations between time series, sometimes called
spatial correlations, should also be considered, particularly
for regional networks (Williams et al. 2004). This kind of cor-
relation is due, e.g., to atmospheric effects and mismodeling
of satellite orbits or Earth Orientation Parameters (Klos et al.
2015a). A reduction of their impact can be achieved by the
use of stacking filtering techniques (Wdowinski et al. 1997).
Another approach is to model the temporal and spatial cor-
relations within the framework of a multivariate regression
model. Amiri-Simkooei (2009)made use of the least-squares
variance component estimation (LS-VCE) to assess the noise
characteristics of daily GPS time series of permanent sta-
tions, restricting attention to the estimation of a combination
of white and flicker noise. Whereas many empirical stud-
ies confirmed this modeling approach (e.g. Amiri-Simkooei
et al. 2007; Teferle et al. 2008;Kenyeres andBruyninx 2009),
other studies found the noise as being a combination of white
and different power-lawnoises:white, flicker and/or random-
walk or fractional Brownian motion (see, e.g., Mao et al.
1999; Klos et al. 2015b). Spectral indices estimated by MLE
assuming normally distributed noise (Langbein and Johnson
1997;Williams et al. 2004) were shown to depend on the sta-
tions or the component under consideration (North, East, Up,
abbreviated in the following by N, E and U, respectively).

Nearly all previous studies intending to fit a deterministic
AR model to the GPS coordinate time series neglected the
potential cross-correlations (Didova et al. 2016) and used a
simplified AR model. The strength of our methodology, as
developed in the previous sections, is to allow specifically
for their estimation. We follow thus the results of previous
noise analysis and model the noise of GPS coordinate time
series as being a combination of a white and a correlated

Table 2 Rejection rate of the null hypothesis that the decorrelation-
filtered residuals û1, . . . , ûn are uncorrelated both throughout time and
across the three time series

n AN BN AT BT

Reweighted 1000 0.036 0.039 0.042 0.073

10,000 0.039 0.050 0.060 0.076

100,000 0.046 0.048 0.063 0.078

Unweighted 1000 0.037 0.040 0.034 0.081

10,000 0.039 0.049 0.051 0.087

100,000 0.046 0.048 0.047 0.075

noise. To take potential cross-correlations into account, a
VAR model is used, whose coefficients are estimated along-
side functional parameters such as the intercept, trend and
the amplitudes of harmonic functions of the GPS position
time series. As the outlier characteristics are expected to
be heterogeneous, stochastic model A is applied, which
allows for individual variance components and dfs of the
univariate t-distributions associated with the different time
series. As we do not estimate a fractal dimension by setting
up an autoregressive fractionally integrated moving average
(ARFIMA) model (see Hosking 1981), which is beyond the
scope of the present paper, a direct comparison between the
results obtained with the VAR and power law approaches to
describe the noise structure can hardly be done. We believe,
however, that our method allows for an alternative, comple-
mentary determination of the noise structure with respect
to the usual method based on spectral analysis, by achiev-
ing simultaneously a robust estimation of the parameters
of the deterministic observation model. To achieve a robust
adjustment of the GPS data, t-distributions are used for two
reasons: Firstly, the t-distributions are used as outlier distri-
butions to deal with outliers in the GPS time series. To the
best knowledge of the authors, there currently is no other
modeling framework that incorporates a general determin-
istic model, multiple outliers as well as a VAR (auto- and
cross-correlation) model. Secondly, there exists an intimate
connection of t-distributions with the well-known Mátern
covariance model, which has been successfully employed in
the stochastic modeling of GPS time series (e.g., Kermar-
rec and Schön 2014). Using the concept of scale invariance,
Schön et al. (2018) show the relationship between the t-
distribution model and processes having a power spectral
density, such as correlated processes from a Mátern model.
Both models share the property of being heavy tailed. More-
over, whereas most of the previous studies concentrate on the
analysis of the noise of GPS coordinate time series of one
station (univariate model), we make use of a multivariate
regression. Auto-correlations as well as cross-correlations
between GPS coordinate time at different stations can be
easily estimated in one step and if needed, accounted for in
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Fig. 2 Location of the four stations under consideration with their
mutual distances

further calculations. Specific statistical tests for multivariate
observations are further used to judge the goodness of the
decorrelation.

5.2 Description of the dataset

The multivariate regression is applied to the GPS daily
coordinates time series provided by the EUREF Permanent
Network4 (EPN) (cf. Bruyninx et al. 2012). For the sake of
simplicity andwithout loss of generality, we restrict our anal-
ysis to the N component. The aim of this case study is not
to provide a detailed and general description of the noise
structure of GPS position time series, but to highlight a pos-
sible usage of the proposed algorithm. Further contributions
will analyze more systematically how the correlated noise
of the N, E and U components or the velocity can be mod-
eled by means of a VAR process. Four stations located in
the Czech Republic are considered in the following. Their
respective locations are shown in Fig. 2. We intentionally
selected three stations (CPAR, GOPE and CTAB, station A)
close to each other, thereby creating a small network with
a maximum distance between stations of approximately 100
km. The station KRAW (station B of the EPN network) is
400 km away from the other stations and allows us to ana-
lyze medium-distance cross-correlations. A total of 171.85
weeks (i.e., approximately 3 years) of solution were ran-
domly downloaded, starting at GPS second of week 1824
and ending at 1995.857. We followed thus the recommen-
dation of Bos et al. (2010) to avoid an absorbed correlated
noise content in estimating trends of time series and unreli-
able seasonal signals (cf. Blewitt andLavallée 2002). In order
to test the feasibility of the proposed adjustment technique,
neither outliers were removed nor data gaps were interpo-
lated. Instead, missing solutions were filled with random
numbers, which we generated using the MATLAB func-

4 http://www.epncb.oma.be/_networkdata/stationlist.php.

tion trnd as following a t-distribution with df ν = 5 and
scaling σ = 1 mm. The latter value is thus larger than
the estimated standard deviation (0.57 mm) of the white
noise components of the time series. Figure 2 shows the four
stations under consideration. Although it may seem crude
to insert—usually undesired—outliers instead of interpolat-
ing the missing values, our robust multivariate regression
approach will downweight the outlying observations within
the IRLS algorithm and thus yield parameter estimates that
are affected little by irregular observations. It could be further
shown that outliers with higher or lower standard devia-
tion (10 mm and 0.5 mm were tested) did not change the
VAR coefficients by more than 1 percent, indicating a high
robustness of the algorithm. The corresponding results are
not presented for the sake of brevity.

5.3 Functional model

We describe the deterministic part of the observations as a
combination of a mean, a linear trend and periodic effects.
The vector for the N = 4 groups of observations is expressed
as �t = [�GOPE,t , �KRAW,t , �CPAR,t , �CTAB,t ]T . Following
Klos et al. (2015a), we estimate an annual and a semian-
nual period, i.e., 365 and 365/2 days. Since the estimation
of lower periodicities (cf. Amiri-Simkooei et al. 2007) did
not influence the coefficients of the VAR process more than
2 percent, they will not be considered in this contribution.
We acknowledge that further investigations with more obser-
vations are needed to decide whether additional frequency
parameters should be estimated and to adapt their determi-
nation to station specificities. This is, however, beyond the
scope of the present paper on robust multivariate regression.
Interested readers should see Klos et al. (2018) for an anal-
ysis of the impact of misspecifying the functional model on
velocity estimates, aswell as Santamaria-Gomez et al. (2011)
for a detailed description of the frequencies present in GPS
coordinate time series. Consequently, we simplify the model
chosen byAmiri-Simkooei (2009) and express the functional
model for each time series as

hk,t (ξ) = a0 + a1t +
2∑
j=1

[
A j cosω j t + Bj sinω j t

]
(79)

where a0 is the intercept and a1 the slope or trend, which can
be interpreted as the permanent GPS station velocity (Klos
et al. 2015b). A j and Bj are the coefficients with respect to
frequency f j = 2πω j , where ω j is the angular velocity. As
mentioned previously, two periods were considered as hav-
ing a significant amplitude, which correspond to ω1 = 2π

365
and ω2 = 2π

365/2 . Thus, the chosen functional model contains
six parameters to estimate. Here, we apply stochastic model
A (Sect. 2.1), where white noise components are considered
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Fig. 3 Results of the AIC and portmanteau test (p value) obtained for
VAR model orders p = 1, . . . , 38

to be independently t-distributed, which is justified by the
assumption that the noise is station specific.

5.4 Determination of the vector-autoregressive
model order

5.4.1 Application of Akaike’s Information Criterion

The order p of the VAR model to be estimated was deter-
mined by means of the Akaike information criteria based on
the log-likelihood function L A with respect to the univariate
t-distributions, as presented in Sect. 3.3.2. For this purpose,
the order was varied from p = 1 up to p = 38 by steps of 1,
and the AIC as well as AICC value was computed for each
model. The results are presented in Fig. 3 (top) only for the
AICsince theAICCgavevery similar values.Usingproposed
functional model (79), the order p = 8 is clearly identified as
the optimal one since the AIC is a minimum there. It should
be mentioned that the identified order may vary depending
on the modeling of the periodic components, in particular on
the number and values of the modeled frequencies. A similar
interaction between a Fourier model and the characteristics
of a fitted univariate ARmodel was observed in Kargoll et al.
(2018a, Sect. 5). The reason for this is the ARmodel’s capac-
ity to capture certain systematic effects not included in the
deterministic model.

5.4.2 Application of the portmanteau test

The multivariate portmanteau test as presented in Sect. 3.3.1
was applied to the adjustment results obtained for the
N = 4 stations and VAR model orders p = 1, . . . , 38, as
was done for the AIC. The significance level was defined
as α = 0.05, and the maximum lag to be considered
was set to h = 20. Due to the lack of practical rec-

Fig. 4 Original observations (top), colored noise residuals (middle) and
white noise residuals (bottom); the four segments of these time series
are sorted per stations versus time in day

ommendations in the literature, these somewhat arbitrary
choices were adopted for use in MATLAB’s Ljung–Box
test, which corresponds to the univariate portmanteau test.
Then, to obtain more detailed information, the p values
resulting from the applications of the multivariate portman-
teau test were computed. Since the test is one-sided in the
sense that the null hypothesis of white noise is rejected
if the value of test statistic (66) exceeds the critical value
of the Chi-square distribution with df N 2(h − p), the p
value (denoted by pv below) is defined as the probabil-
ity that the portmanteau test statistic exceeds the computed
value of the test statistic. This probability can be computed
by

pv = 1 − Fχ2(42·(20−p))(P). (80)

where P is the valueof test statistic (66) and Fχ2(42·(20−p)) the
cumulative distribution function of the Chi-square distribu-
tion with df 42 ·(20− p). A p value below α indicates that this
test statistic exceeds the critical value (and vice versa). Thus,
the p value pv indicates the strength of evidence in favor
of the white noise hypothesis, which hypothesis is rejected
in case of pv < α (= 0.05). Figure 3 (bottom) shows that
the p value pv increases sharply between the VAR model
orders p = 14 and p = 15, taking values pv < 0.05
for p < 15 and pv > 0.05 for p ≥ 15. Thus, p = 15
constitutes the least VAR model order for which the port-
manteau test accepts the white noise hypothesis. A p value
pv < 0.015 is obtained for the optimal model order of 8
found bymeans of the AIC, so that both model selection pro-
cedures prefer quite different orders. This difference could
be linkedwith an inaccuracy of the functional model. Indeed,
modeling the greater number of coefficients may be an over-
fitting of the VAR model and an indication of the presence
of nonperiodic signals or/and amplitude-varying harmonic
components, as displayed by the estimated white noise time
series in Fig. 4. As low-order models should be preferred
for the description of VAR processes, we consider a VAR
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Fig. 5 Estimated VAR coefficients are sorted per distance for the time
series of station GOPE and represented by stars with different colors

model order of p = 8 as more adequate to describe the noise
structure.

5.5 Results

5.5.1 Vector-autoregressive coefficients

Figure 5 depicts the 32 coefficients of the fitted VAR(8)
model, which describe the correlation structure of the time
series of the station GOPE as well the cross-correlations
between GOPE and the three other time series (stations
CPAR, CTAB and KRAW, respectively). The plotted coef-
ficients, which are sorted by distance, generally decrease
in value with increasing lag j = 1, . . . , 8. However, no
clear physically explainable dependency on distance can be
deduced from Fig. 5. The coefficients become smaller as the
distance between stations grows, although the sixth coeffi-
cient for GOPE-KRAW is surprisingly larger than the other
one. This pattern was confirmed for the other stations (not
presented here for the sake of brevity). This large coeffi-
cient may be the reason why an optimal VAR model order
of p = 8 was found with the AIC. The first VAR coefficient
is greater than the other one (distance 0), i.e., current values
depend more strongly on the previous one than on higher
time-lagged values. This dependency does not hold true for
the cross-correlation coefficients. Figure 6 shows the stan-
dardized coefficients, i.e., the coefficients divided by their
estimated standard deviations. The latter have been extracted
after execution of the final EM iteration step from the inverted
normal equationmatrix in (48) multiplied by the correspond-
ing variance component estimate. They clearly have greater
values for the correlation of the GOPE time series (distance
0),which are determinedwith a lower variance than the cross-
correlation coefficients.

Fig. 6 Normalized VAR coefficients (log plot)

Fig. 7 Histogram plot of the weights

5.5.2 Degree of freedom and weights

The df of the t-distribution was found to reach 30 for all
time series, indicating the presence of a low level of heavy-
tailedness or outlier contamination. The histogram of the
adjusted weights is presented in Fig. 7. As found in Koch
and Kargoll (2013) and Kargoll et al. (2018a), the weights
increase rather smoothly from smaller to larger values. The
white-noise components associated with small weights are
located in the tails of the t-distribution, so that the corre-
sponding observations could be labeled as outliers.

5.5.3 Interpretation of the residuals

The colored noise residuals ê1, . . . , ên and the white noise
residuals û1, . . . , ûn are plotted together with the original
observations in Fig. 4. As already mentioned in Sect. 5.4.2,
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Table 3 Ratio of standard deviations of the white and correlated noise
for the four time series analyzed

station GOPE CPAR CTAB KRAW

σu/σe 0.68 0.51 0.52 0.57

someoscillationswhichdonot correspond tophysically plau-
sible ones remain in these residuals (see, e.g., Santamaria-
Gomez et al. 2011). These harmonicsmay stem fromperiodic
loading or multipath effects that (i) cannot be modeled with
the chosen sine and cosine functions or (ii) have varying
amplitudes. The residuals of KRAW, classified as “B sta-
tion” by the EPN clearly show that the low quality of the
observations is transferred into the residuals. In such a case
theVARcoefficients take the role of “waste containers” in the
sense that they express residual deterministic effects rather
than the actual auto- and cross-correlations, so that the coef-
ficients lose their physical meaning as noise. As an example,
Stralkowski et al. (1970) show how some periodic signals
can be modeled by an AR(2) process. Alternatively, a peri-
odic autoregressive moving average (ARMA) model could
be used, or an ARFIMA model to take the fractal dimen-
sion additionally into consideration. This problem may be
the subject of further research, although such fine differences
are mostly interesting for the purpose of forecasting, which
is not a goal of our study. Time-varying (V)AR coefficients
to account for the time variability of the correlations (cf. Kar-
goll et al. 2018b) is another option to investigate, particularly
for longer coordinate time series.

5.5.4 Ratio white noise to correlated noise

The ratios of the standard deviation of the white-noise resid-
uals to the standard deviation of the correlated noise residuals
are given in Table 3. For station GOPE, this ratio is slightly
larger than for the other stations. This result matches the con-
clusions obtained by Amiri-Simkooei (2009) for the ratio
of flicker noise to white-noise amplitude. The power law
descriptionof the noise and itsARmodelingbothhave advan-
tages and shortcomings: Whereas the power laws may be
difficult to estimate accurately, the AR coefficients by them-
selves are physically hardly interpretable.We believe that the
two approaches are complementary and benefit from each
other for a better comprehension of the correlation structure.
Further analysis should be performed in that direction.

6 Conclusions and outlook

Two structurally different stochastic outlier models for
multivariate time series involving generally nonlinear deter-
ministic model functions and a VAR model have been

introduced. The first stochastic model is based on univariate-
scaled t-distributions for the different time series (groups)
and allows for group-specific df (i.e., outlier characteris-
tics), but not for correlations between white-noise variables
at the same time instance. Thus, it is recommended in situ-
ations where time series from independent, heterogeneous
sensors are combined. The second model is based on a
multivariate-scaled t-distribution and allows for the model-
ing of correlations between white-noise variables at the same
time instance, but not for group-specific df. This model in
turn may be useful when time series from different, but inter-
connected sensor components are fused.These two stochastic
frameworks are therefore viewed as complementary. Two
corresponding GEM algorithms were derived, which show
that the estimation of the VAR model is based on normal
equations that are structurally similar to those for the esti-
mation of a single or multiple independent AR model(s).
The extension of the univariate to the multivariate scaled t-
distribution does not complicate the algorithm significantly,
either.

The MC closed-loop simulation demonstrated a fast and
stable convergence of the proposed GEM algorithms for
a nonlinear observation model. Furthermore, it was shown
that the bias decreased for the majority of estimated param-
eters when the number of observations is increased. The
accurate estimation of the df of the model involving uni-
variate t-distributions remains a challenging task to be
investigated in future research. Moreover, it was demon-
strated that the empirical size of the standard multivariate
portmanteau test using the Chi-square distribution is rea-
sonably close to the specified significance level. As this
test allows for an evaluation of the fitted VAR model’s
capacity to fully de-correlate the colored-noise residuals,
it may also serve as a tool for selecting an adequate VAR
model order, as an alternative to Akaike’s information
criterion derived for the two stochastic models consid-
ered.

The GEM algorithm derived for the stochastic model
based on univariate-scaled t-distributions and group-specific
df was tested on observations from the EPN Network for
a particular case study with four stations. We applied the
AIC, which is based directly on the maximum likelihood
estimates obtained by means of the GEM algorithm, to iden-
tify the relatively most adequate order of the VAR model
to model the auto- and cross-correlation structure of the
GPS coordinate time series. We also employed the multi-
variate portmanteau test to evaluate the VAR noise models
of different orders absolutely, by testing whether the decor-
relation of the estimated colored-noise residuals by means
of the inverted VAR models resulted in white noise or
not. Thus, a VAR model of order 8 was found to be rel-
atively optimal by the AIC, whereas an order of 15 was
preferred by the portmanteau test. These findings highlight
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that an AR(1) model, as often assumed, is suboptimal to
describe the correlation structure. However, no physically
explainable dependency of the coefficient values regarding
the distance between stations could be found, a finding we
link to the respective quality of the observations. The pre-
sented approach is an alternative to the usual power-law
noise description. It would, therefore, be very valuable to
compare the performance of these different noise models
in detail. Such comparisons were beyond the scope of our
present contribution since it is focused on the methodol-
ogy of stochastic Student-VAR modeling, which is general
enough to be applicable to different types of geodetic time
series.

Further investigations to improve the modeling of the
noise structure could include, e.g., ARFIMA or periodic
ARMA models. Additionally, the impact of the stochastic
model chosen on velocity estimates should be investigated.
Since these time series have gaps, it would appear to be a
useful further step to extend the proposed GEM algorithms
to handle such missing observations as well.
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A Themultivariate, scaled (Student’s)
t-distribution

If a random vector X = [X1 . . . XN ]T follows a multi-
variate, scaled Student’s t-distribution with ν > 0 degrees
of freedom, location parameter vector μ ∈ R

N and pos-
itive definite (N -by-N ) cofactor matrix Σ , symbolically
X ∼ tν(μ,Σ), then the density of X is given by

fX (x) = �
(

ν+N
2

)

(
√

νπ)N
√
detΣ �

(
ν
2

)
(
1 + (x − μ)T Σ−1(x − μ)

ν

)− ν+N
2

, (81)

with the gamma function �(.); here, if ν > 1, then the
expectation of X is defined and equals μ; if ν > 2, then
the variance–covariance matrix of X is defined and equals

ν
ν−2 · Σ (cf. Lange et al. 1989). Setting N = 1 yields the
univariate scaled t-distribution (mentioned in Kargoll et al.
2018a, Appendix A.1).

B Derivations

The equations of this section constitute multivariate exten-
sions of the equations derived in Kargoll et al. (2018a,
Appendix C). To demonstrate the nature of these extensions,
we maintain the original structure as much as possible.

B.1 A derivation for the E-step

Using the expression for fB(ut , wt |θ) in (31) and the expres-
sion for fB(ut |θ) in (26), one finds

fB (wt |ut ; θ) = fB (ut , wt |θ)
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=
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t
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(
− 1

2
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)
. (82)

This pdf defines the univariate gamma distribution (cf. Kar-
goll et al. 2018a, Appendix A.2) with parameter values
a = ν+N

2 and b = 1
2 (ν + uTt Σ−1ut ).
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B.2 CM-step for �

Concerning stochastic model A, setting the partial derivative
of Q-function (35) with respect to ξ j equal to zero yields

0 = ∂

∂ξ j
QA(θ |̂θ (s)

)

= −
N∑

k=1

1

2σ 2
k

n∑
t=1

w̃
(s)
k,t

∂

∂ξ j

[
Ak(L)(�t − ht (ξ))

]2

≈ −
N∑

k=1

1

2σ 2
k

n∑
t=1

w̃
(s)
k,t

∂

∂ξ j

[
Ak(L)

(
�t −

[
ht (̂ξ

(s)
)

+∂ht (ξ)

∂ξ T

∣∣∣
ξ=ξ̂

(s) · (ξ − ξ̂
(s)

)

])]2

= −
N∑

k=1

1

2σ 2
k

n∑
t=1

w̃
(s)
k,t

∂

∂ξ j

[
Ak(L) (Δ�t − XtΔξ)

]2

= −
N∑

k=1

1

σ 2
k

n∑
t=1

w̃
(s)
k,t

[
Ak(L) (Δ�t − XtΔξ)

]

· ∂

∂ξ j

[−Ak(L)(XtΔξ)
]

with the incremental observations Δ�t , the incremental
parameters Δξ and the Jacobi matrix Xt given in (38)–(40).
Denoting by Xt,: j the j th column of Xt , one then obtains
equivalently

0 =
N∑

k=1

1

σ 2
k

n∑
t=1

w̃
(s)
k,t

[
Ak(L)Xt,: j

] [
Ak(L) (Δ�t − XtΔξ)

]

=
N∑

k=1

1

σ 2
k

[
Ak(L)X1,: j · · · Ak(L)Xn,: j

]
W̃(s)

k

⎡
⎢⎢⎣
Ak(L) (Δ�1 − X1Δξ)

.

.

.

Ak(L) (Δ�n − XnΔξ)

⎤
⎥⎥⎦

One can now write all m of these equations as equations
system (37).

For stochastic model B, one obtains with the same lin-
earization as in the preceding equations

0 = ∂

∂ξ
QB (θ |̂θ (s)

)

= − 1

2

n∑
t=1

w̃
(s)
t

∂

∂ξ
[A(L)(�t − ht (ξ))]T Σ−1[A(L)(�t − ht (ξ))]

≈ − 1

2

n∑
t=1

w̃
(s)
t

∂

∂ξ
[A(L)(Δ�t − XtΔξ)]T Σ−1 [

A(L)(Δ�t − XtΔξ)
]

= −
n∑

t=1

w̃
(s)
t [A(L)(Δ�t − XtΔξ)]Σ−1 · ∂

∂ξ
[−A(L)(XtΔξ)]

=
n∑

t=1

[A(L)Xt ]T
[
w̃

(s)
t Σ−1

]
[A(L)(Δ�t − XtΔξ)],

which is identical with (58).

B.3 CM-step for˛

Setting the first partial derivative of the Q-function for
stochastic model A with respect to the autoregressive coef-
ficient αh;i, j (with h ∈ {1, . . . , p} and i, j ∈ {1, . . . , N })
equal to zero gives

0 = ∂

∂αh;i, j
QA(θ |̂θ (s)

)

= − 1

2σ 2
i

n∑
t=1

w̃
(s)
i,t · ∂

∂αh;i, j
[
Ai (L)(�t − ht (ξ))

]2

= − 1

2σ 2
i

n∑
t=1

w̃
(s)
i,t

· 2 [
Ai (L)(�t − ht (ξ))

] · ∂

∂αh;i, j
[
Ai (L)(�t − ht (ξ))

]

= − 1

σ 2
i

n∑
t=1

w̃
(s)
i,t

[
iTi et − A(1)

i et−1 − · · · − A(p)
i et−p

]

× ∂

∂αh;i, j

[
iTi et − A(1)

i et−1 − · · · − A(p)
i et−p

]

= − 1

σ 2
i

n∑
t=1

e j,t−h w̃
(s)
i,t (ei,t − A(1)

i et−1 − · · · − A(p)
i et−p)

= − 1

σ 2
i

[
e j,1−h . . . e j,n−h

]
W̃(s)

i

⎡
⎢⎢⎣

ei,1 − A(1)
i e0 − · · · − A(p)

i e1−p

.

.

.

ei,n − A(1)
i en−1 − · · · − A(p)

i en−p

⎤
⎥⎥⎦ .

Writing these equations for all j ∈ {1, . . . , N } and all h ∈
{1, . . . , p} in matrix notation results in the system of N · p
equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.
.
.

0
.
.
.

0
.
.
.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,0 · · · e1,n−1

.

.

.
.
.
.

eN ,0 · · · eN ,n−1

.

.

.
.
.
.

e1,1−p · · · e1,n−p

.

.

.
.
.
.

eN ,1−p · · · eN ,n−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W̃(s)
i

⎡
⎢⎢⎣

ei,1 − A(1)
i e0 − · · · − A(p)

i e1−p

.

.

.

ei,n − A(1)
i en−1 − · · · − A(p)

i en−p

⎤
⎥⎥⎦

for every row i ∈ {1, . . . , N } of the matrices A(1)
i , . . ., A(p)

i .
These equation systems read, using vector notation,

⎡
⎢⎢⎣
0
.
.
.

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e0 · · · en−1

.

.

.
.
.
.

e1−p · · · en−p

⎤
⎥⎥⎦ W̃(s)

i

⎛
⎜⎜⎝

⎡
⎢⎢⎣
ei,1
.
.
.

ei,n

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

eT0 · · · eT1−p
.
.
.

.

.

.

eTn−1 · · · eTn−p

⎤
⎥⎥⎦

⎡
⎢⎢⎣
A(1)T
i
.
.
.

A(p)T
i

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

If the available solution ξ = ξ̂
(s+1)

is substituted to compute
the residuals, the normal equations

0 = Ê(s+1)T W̃(s)
i

(
ê(s+1)
i : − Ê(s+1)α̂

(s+1)
i :

)
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can be found. These are solved for every i ∈ {1, . . . , N } and
result in (48).

For stochastic model B, it is convenient to set

0 = ∂

∂A(h)
QB (θ |̂θ (s)

)

= − 1

2

n∑
t=1

w̃
(s)
t

∂

∂A(h)
[A(L)et ]T Σ−1[A(L)et ]

= − 1

2

n∑
t=1

w̃
(s)
t

∂

∂A(h)
[Iet − A(1)et−1 − · · · − A(p)et−p]T Σ−1

× [Iet − A(1)et−1 − · · · − A(p)et−p]

= − 1

2

n∑
t=1

w̃
(s)
t

∂

∂A(h)

⎡
⎣

⎛
⎝et −

p∑
j=1, j �=h

A( j)et− j

⎞
⎠ − A(h)et−h

⎤
⎦
T

Σ−1

×
⎡
⎣

⎛
⎝et −

p∑
j=1, j �=h

A( j)et− j

⎞
⎠ − A(h)et−h

⎤
⎦ .

Using now Eq. (88) in Petersen and Pedersen (2012) to
determine the derivative with respect to the matrix A(h), one
obtains

0 = −1

2

n∑
t=1

w̃
(s)
t · (−2)

· Σ−1

⎡
⎣

⎛
⎝et −

p∑
j=1, j �=h

A( j)et− j

⎞
⎠ − A(h)et−h

⎤
⎦ eTt−h

=
n∑

t=1

w̃
(s)
t Σ−1[A(L)et ]eTt−h .

After transposition of this equation, onemaymultiply it from
the right withΣ and thereby eliminateΣ−1. Writing now all
p of these resulting normal equation systems, one finds

⎡
⎢⎢⎣
0
.
.
.

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

n∑
t=1

w̃
(s)
t et−1[A(L)et ]T

.

.

.
n∑

t=1
w̃

(s)
t et−p[A(L)et ]T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

w̃
(s)
1 e1−1 · · · w̃

(s)
n en−1

.

.

.
.
.
.

w̃
(s)
1 e1−p · · · w̃

(s)
n en−p

⎤
⎥⎥⎦

⎡
⎢⎢⎣

[e1 − A(1)e1−1 − · · · − A(p)e1−p]T
.
.
.

[en − A(1)en−1 − · · · − A(p)en−p]T

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

e0 · · · en−1

.

.

.
.
.
.

e1−p · · · en−p

⎤
⎥⎥⎦ W̃(s)

⎛
⎜⎜⎝

⎡
⎢⎢⎣
eT1
.
.
.

eTn

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

eT0 · · · eT1−p
.
.
.

.

.

.

eTn−1 · · · eTn−p

⎤
⎥⎥⎦

⎡
⎢⎢⎣
A(1)T

.

.

.

A(p)T

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Substitution of ξ = ξ̂
(s+1)

and the resulting residuals ê(s+1)
1 ,

. . ., ê(s+1)
n yields then after transposition (62).

B.4 CM-step for�2 or 6

Setting the first partial derivative of the Q-function for
stochastic model A with respect to the variance component
σ 2
i for observation group i equal to zero, one finds

0 = ∂

∂σ 2
i

QA(θ |̂θ (s)
)

= −n

2

∂

∂σ 2
i

log(σ 2
i ) − ∂

∂σ 2
i

1

2σ 2
i

n∑
t=1

w̃
(s)
i,t

[
Ai (L)(�i,t − hi,t (ξ))

]2

= − n

2σ 2
i

+ 1

2σ 4
i

n∑
t=1

w̃
(s)
i,t

[
Ai (L)(�i,t − hi,t (ξ))

]2
.

Conditioning this equation on the previously determined

solutions ξ̂
(s+1)

and α̂(s+1), and using the resulting residual
estimates ê(s+1)

t as well as û(s+1)
t , we arrive at (50)–(51).

In case of the multivariate t-distribution model, one
obtains (using the arguments given in Koch 1999, Sect. 373)

0 = ∂

∂Σ−1 QB(θ |̂θ (s)
)

= n

2

∂

∂Σ−1 (− log detΣ) − 1

2

n∑
t=1

w̃
(s)
t

∂

∂Σ−1 u
T
t Σ−1ut

= n

2
Σ − 1

2

n∑
t=1

w̃
(s)
t utuTt .

Conditioning on the available residual estimates û(s+1)
t leads

to (63).

B.5 CM-step for �

Setting the first partial derivative of log-likelihood function
(20) under stochastic model A with respect to the degree of
freedom ν2i for observation group i equal to zero, we find

0 = ∂

∂νi
log L A(θ; �)

= n

2
ψ

(
νi + 1

2

)
− n

2
ψ

(νi

2

)
+ n

2
(log νi + 1)

− 1

2

n∑
t=1

log

[
νi +

(
Ai (L)(�i,t − hi,t (ξ))

σi

)2
]

− 1

2
(νi + 1)

n∑
t=1

[
νi +

(
Ai (L)(�i,t − hi,t (ξ))

σi

)2
]−1

.

Conditioning this equation on the solutions ξ̂
(s+1)

, α̂(s+1) and
(̂σ 2

i )(s+1) (as determined in the previous three CM-steps) and

substituting then the estimated residual û(s+1)
i,t , one obtains

(52).
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