
1. Introduction
The first Landsat satellite launched in 1972 provided high-resolution data that allowed the first large-scale analy-
sis of cloud properties and their radiative impact on our climate. It was later recognized that spatial inhomogenei-
ties in individual cloud scenes are an important factor determining cloud radiative properties. It quickly appeared 
that an essential step toward better predicting the radiative impact of broken cloud fields (cumulus and strato-
cumulus) consisted in understanding the large-scale characteristics, the organization, as well as the small-scale 
structure of the cloud ensembles including their fractal shapes and size distributions (Kuo et al., 1988; Welch 
et al., 1988; Wielicki & Welch, 1986).

Early observational studies have suggested that cloud size distributions may be approximated by various functional 
forms including exponential (Plank, 1969; Wielicki & Welch, 1986) and lognormal (Houze Jr. & Cheng, 1977; 
Lopez, 1977) distributions. Later, Parker et al.  (1986), Welch et al.  (1988), and Kuo et al.  (1988) introduced 
the power-law as the functional form that best represents cumulus and stratocumulus cloud size distributions. 
Accordingly, the number of clouds n having a certain size l can be described by:
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𝑛𝑛(𝑙𝑙) ∝ 𝑙𝑙
−𝑏𝑏
, (1)

where ∝ should be read “scales as,” and b is a characteristic power-law exponent. Since then, power-laws (or 
derived forms thereof like power-laws with exponential cutoff or broken power-laws) have been universally 
recognized as the best functions to model cloud size distributions obtained from either satellite imagery (Benner 
& Curry, 1998; Bley et al., 2017; Koren et al., 2008; Kuo et al., 1993; Mieslinger et al., 2019; Senf et al., 2018; 
Sengupta et al., 1990; Welch et al., 1988; Wood & Field, 2011; Zhao & Di Girolamo, 2007), aircraft measure-
ments (Benner & Curry, 1998; Jiang et al., 2008; Wood & Field, 2011), or high-resolution simulations (Barron 
et al., 2020; Dawe & Austin, 2012; Garrett et al., 2018; Heus & Seifert, 2013; Jiang et al., 2008; Neggers, Jonker, 
& Siebesma, 2003; Rieck et al., 2014; Senf et al., 2018; van Laar et al., 2019; Xue & Feingold, 2006).

One problem that stands out from the large body of literature existing on cumulus cloud size distributions is the 
large spread in fitted power-law exponents. Values varying between ∼1 (Benner & Curry, 1998) to more than 
3 (Bley et al., 2017; Senf et al., 2018) can indeed be found, although most estimates reported lie between 1.7 
and 2.4. These values are not inconsistent with other natural phenomena exhibiting power-law behaviors and 
for which typical exponents vary between 2 and 3 (Clauset et al., 2009; Newman, 2005). Note that an exponent 
value of 2 constitutes an important threshold since power-laws with exponents b ≤ 2 have undefined mean, while 
power-laws with 2 < b ≤ 3 have finite mean but undefined variance. An important consequence of this is that any 
given observable following a power-law distribution with exponent in the 2–3 range has a directly measurable 
mean, but the undefined variance makes the occurrence of extreme outliers plausible. Nonetheless, we may ask 
ourselves whether this rather large variability in reported exponents can be explained by underlying physical 
processes, environmental conditions, large-scale forcing, or perhaps factors depending on retrieval techniques 
(from detection thresholds used in satellite imagery to model configurations in numerical simulations).

So far, few studies have focused on trying to explain what controls the shape of cumulus cloud size distributions. 
Kuo et al. (1993) suggested that α values tend to increase as clouds become more mature, indicating that α may 
have a connection with the clouds life cycle. Similarly, Neggers et al. (2019) noticed that cumulus cloud size 
distributions in a continental environment and the corresponding fitted power-law exponents follow a certain 
diurnal cycle. This result again points to the fact that cloud size distributions and their exponents depend on 
the maturity of the cloud population, possibly through the physical processes contributing to its organization. 
Besides, it is also known that boundary layer properties, and in particular their depth, may influence the size of 
the biggest clouds identified (Rieck et al., 2014; van Laar et al., 2019), although no clear relationship with power-
law exponents were reported. Finally, Sakradzija and Hohenegger (2017) suggested that the shape of cloud mass 
flux distributions (which were fitted using double Weibull distributions) is to a large extent controlled by the 
Bowen ratio, that is the ratio between sensible and latent heat fluxes at the surface.

While the aforementioned studies suggest that environmental and forcing conditions are indeed likely to affect 
cumulus cloud size distributions, we may still wonder if the broad range of power-law exponents reported in 
the literature solely reflects changes in underlying physical processes. Before examining the impact of these 
processes on power-law exponents, one should first make sure that the methods used to identify power-law scal-
ings in cloud size distributions are statistically robust to avoid possible misinterpretations. In other words, the 
fitting procedures employed should be considered as an additional and potentially large source of uncertainties 
that should also be called into question. It is indeed now generally admitted that fitting power-law distributions is 
a particularly difficult problem (Clauset et al., 2009; Goldstein et al., 2004; White et al., 2008), especially consid-
ering the lack of significant data in the tail of the considered empirical distributions, as well as the narrow and 
indistinct power-law ranges often seen in the data [ideally, power-laws should be valid over at least two decades 
to be considered reliable (Stumpf & Porter, 2012)]. Besides, the improper use of certain statistical fitting methods 
may also yield important biases. A notable common mistake consists in relying solely on the apparent constant 
slope of empirical distributions in log-log coordinates (Goldstein et al., 2004; White et al., 2008), and fit power-
laws using simple linear regression over subjectively determined data ranges. It can be shown in this context that 
linear regression in log-log coordinates can induce exponent errors as large as 40% when fitting a true power-law 
distribution having an exact exponent of 2.5 (Goldstein et al., 2004).

In this work, we seek to reassess the determination of power-law scalings in cloud size distributions by focusing 
on issues related to improper fitting. Although we chose to focus our work on this particular problem that is often 
overlooked in the atmospheric science literature, we do not ignore the fact that the shape and slope of cloud size 
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distributions may also be strongly impacted by physical processes and external conditions. It is claimed however 
that the analysis of the impacts of the latter on cumulus cloud sizes can only be adequately addressed with fitting 
methods able to reliably identify power-law scalings and robustly estimate the associated exponents. A fitting 
approach is thus introduced to alleviate this issue, inspired by a methodology proposed by Clauset et al. (2009) 
who described a complete procedure dedicated to fitting power-law distributions in empirical data. Although the 
procedure has previously been applied to fit rain cluster size distributions (Peters et al., 2010; Traxl et al., 2016), 
we wish here to emphasize following Clauset et al. (2009) that the use of such methods should always be preferred 
over simple linear regression techniques when estimating power-law fits.

The power of the fitting algorithm is demonstrated using cloud size distributions obtained from Cloud Resolv-
ing Model (CRM) simulations of two idealized convective situations: a diurnal transition from shallow to deep 
convection over land (Grabowski et al., 2006), and a case of maritime shallow convection in the trade-winds 
region (vanZanten et al., 2011). These cases were selected as they are representative of cloud populations evolv-
ing at different spatial and temporal scales, with organization patterns driven by different physical mechanisms. 
Besides, the degree of idealization adopted facilitates our analysis by suppressing variability introduced by 
large-scale transport or heterogeneous surface conditions. Our main objective is then to adapt the methodology 
proposed by Clauset et al. (2009) in order to evaluate the hypothesis that cloud sizes in these two case studies are 
indeed power-law distributed and give precise estimates of power-law exponents. Thanks to the robustness of the 
statistical methods on which it is based, it is further demonstrated that the algorithm may be utilized to identify 
and characterize the impact of physical processes (organization) on cumulus cloud sizes.

The paper is organized as follows. The complete fitting procedure and the statistical methods forming the basis of 
the fitting algorithm are first introduced in Section 2. In Section 3, we give details on the numerical experiments 
used to extract cloud size distributions and demonstrate the capabilities of the algorithm. Power-law best fits 
obtained in the two case studies are then presented and assessed in Section 4. Various alternative distributions are 
then evaluated in Section 5, and the role of convective organization in the emergence of power-law behaviors in 
cloud size distributions is discussed in Section 6. Finally, we give our conclusions in Section 7.

2. Fitting Cloud Size Distributions
The fitting algorithm introduced hereafter was implemented in python and is available upon request as described 
in the Open research section of this manuscript.

2.1. The Clauset et al. Method

Clauset et al. (2009) proposed a detailed procedure to identify power-law distributions in empirical data and esti-
mate their exponents with great precision. The whole procedure was thoroughly tested by Clauset et al. (2009) for 
many classical empirical distributions exhibiting power-law behaviors.

The Clauset et al. (2009) method relies first and foremost on the idea that, when dealing with heavy-tailed data, 
best fits should be sought for complementary cumulative distribution functions (denoted CCDF) instead of prob-
ability density functions (PDF). The advantage of using CCDFs is indeed twofold. First, calculating CCDFs does 
not require binning the data, whereas PDFs can be very sensitive to the binning procedure. Second, heavy-tailed 
PDFs may be very noisy, especially in their tail, while the corresponding CCDFs appear to be smoother. Once 
CCDFs have been obtained from empirical data, the Clauset et al. (2009) method then makes use of a combina-
tion of Maximum Likelihood Estimation (MLE) and goodness-of-fit tests to determine power-law best fits and 
estimate the corresponding characteristic exponents.

In the following, a modified version of the method proposed by Peters et al. (2010) and Deluca and Corral (2013) 
is described and used. The modifications introduced allow the application of the procedure to truncated distribu-
tions for which both the lower and upper bounds of validity (denoted lmin and lmax) must be simultaneously esti-
mated. The complete procedure can be summarized as follows (statistical methods are described in Section 2.2):
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1.  Best fit power-law exponents 𝐴𝐴 𝐴𝐴𝐴 are estimated using MLE for all possible values of lmin and lmax.
2.  The goodness of these fits is evaluated for each triplet 𝐴𝐴

{

𝛼𝛼𝛼 𝛼𝛼min𝛼 𝛼𝛼max

}

 using the Kolmogorov-Smirnov (KS) 
goodness-of-fit test.

3.  The best fit triplet is the one that minimizes the KS statistics D (provided it is smaller than an arbitrary 
threshold of 0.1), while the range covered by the fit remains larger than half of the total cloud size range [this 
constitutes the main difference with respect to Deluca and Corral (2013)].

4.  Once a best fit triplet has been obtained, the p-value associated with the KS statistics is computed using 
Monte-Carlo sampling following Clauset et  al.  (2009). The fit is accepted if the p-value is larger than an 
arbitrary threshold of 0.05.

5.  The power-law fit can finally be compared to alternative distributions over the range lmin–lmax using dedicated 
metrics and an alternative statistical test for model selection.

It must be noted that all clouds having a size smaller than 5Δx were systematically ignored when fitting the 
simulated distributions. This choice was made to reflect the inherent limitation of any high-resolution model set 
by the spatial discretization. It is thereby acknowledged that only motions with scales larger than ∼5Δx can be 
faithfully resolved by the model.

2.2. Statistical Methods

The procedure described above makes use of several statistical methods summarized below. Considering first the 
MLE method, let's assume a set of empirical data 𝐴𝐴 𝐱𝐱 = (𝑥𝑥min, . . . , 𝑥𝑥max) that we wish to approximate by a known 
distribution pX|Θ described by N parameters 𝐴𝐴 Θ = (𝜃𝜃1, . . . , 𝜃𝜃𝑁𝑁 ) . Defining the log-likelihood function as:

𝓁𝓁(Θ, 𝐱𝐱) = ln

𝑥𝑥max
∏

𝑥𝑥=𝑥𝑥min

𝑝𝑝𝑋𝑋|Θ(𝑥𝑥), (2)

the set of parameters 𝐴𝐴 Θ̂ yielding the best fit is the one that maximizes 𝐴𝐴 𝓁𝓁(Θ, 𝐱𝐱) . For numerous standard distri-
butions such as non-truncated power-law and exponential distributions, the optimal parameters maximizing 

𝐴𝐴 𝓁𝓁(Θ, 𝐱𝐱) can be found analytically by letting 𝐴𝐴 𝐴𝐴𝓁𝓁(Θ, 𝐱𝐱)∕𝐴𝐴Θ = 0 . In the more general case however, 𝐴𝐴 Θ̂ cannot 
be reduced to a simple analytical formula, and it must be obtained from the numerical maximization of the 
function  ℓ.

In our algorithm, 𝐴𝐴 Θ̂ values maximizing the log-likelihood ℓ are obtained for any couple {xmin, xmax}. The best 
overall fit, corresponding to an optimal range and parameter 𝐴𝐴 Θ̂ , is the one that minimizes the KS statistics D, 
provided that D remains larger than 0.1. D is simply defined as the maximum absolute distance between the 
empirical and theoretical CCDFs over the considered range:

𝐷𝐷 = sup
𝑥𝑥min<𝑥𝑥<𝑥𝑥max

|

|

|

𝑃𝑃𝑒𝑒(𝑥𝑥) − 𝑃𝑃
𝑋𝑋|Θ̂

(𝑥𝑥)
|

|

|

, (3)

where Pe and 𝐴𝐴 𝐴𝐴
𝑋𝑋|Θ̂

 denote the empirical and theoretical cumulative distributions.

Whereas lower D values intuitively indicate better fits, the statistical significance of this quantity depends strongly 
on the sample size. For this reason, the statistics must be complemented by a p − value computed from the PDF 
of D, and allowing one to either accept or reject the null hypothesis that the empirical data was indeed drawn 
from the considered theoretical distribution. In the situation where the distribution's parameters are estimated, 
Monte-Carlo sampling must be used (Clauset et al., 2009). First, n points (n being the number of points in the 
empirical data set) are drawn randomly from the estimated theoretical distribution 𝐴𝐴 𝐴𝐴

𝑋𝑋|Θ̂
 . Next, new values of the 

best fit parameters are obtained for the simulated data, and the associated KS statistics are computed. Repeating 
the procedure a sufficiently large number of times (2,500 in our case), the probability of occurrence of the orig-
inal D value can be estimated: the null hypothesis is then rejected if this probability is lower than a predefined 
threshold set to 0.05.

Finally, Vuong's test (Vuong,  1989) is employed in order to compare the power-law fits to several plausible 
alternatives and select the best overall model. Considering a best fit distribution 𝐴𝐴 𝐴𝐴

𝑋𝑋|Θ̂
 determined over the range 
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xmin–xmax, and any alternative distribution 𝐴𝐴 𝐴𝐴
𝑋𝑋|Φ̂ described by a set of parameters 𝐴𝐴 Φ̂ fitted over the same x range, we 

first define the likelihood ratio LR as:

𝐿𝐿𝐿𝐿 = −2ln



(

Θ̂, 𝐱𝐱

)



(

Φ̂, 𝐱𝐱

) = −2

[

𝓁𝓁

(

Θ̂, 𝐱𝐱

)

− 𝓁𝓁

(

Φ̂, 𝐱𝐱

)]

, (4)

𝐴𝐴  being the standard likelihood function. We can then define a normally distributed Z score as:

𝑍𝑍 = −
𝐿𝐿𝐿𝐿 + (𝑘𝑘Θ − 𝑘𝑘Φ)ln𝑁𝑁

2𝜎𝜎𝓁𝓁

√

𝑁𝑁

, (5)

where k represents the number of degrees of freedom of each distribution tested, N is the sample size and σℓ is 
the standard deviation associated with the log-likelihoods of each individual sample. In our situation, Vuong's 
test possesses two particularly interesting properties: (a) if we consider two distributions providing equivalently 
good fits, Vuong's test will always prefer the simplest model over the more complex one thanks to the explicit 
dependence of Z on k; (b) the Z score is relatively straightforward to interpret since it corresponds to the number 
of standard deviations by which a given statistics deviates from its mean. In the present case, the null (alternative) 
model, 𝐴𝐴 𝐴𝐴

𝑋𝑋|Θ̂
 𝐴𝐴
(

𝑝𝑝
𝑋𝑋|Φ̂

)

 , will be preferred if Z is significantly positive (negative), with a Z threshold arbitrarily set to 
±1.28 (corresponding to a 80% confidence interval).

2.3. Theoretical Distributions

We introduce here six theoretical distributions that are thought to constitute adequate models representing empiri-
cal cloud size distributions. As discussed previously, our starting hypothesis is that cloud size distributions follow 
power-laws. The five other distributions presented constitute our alternative hypotheses. We limited our selection 
to single functions fitting the entire or part of the empirical cloud size distributions, thus excluding distributions 
like broken power-laws (Benner & Curry, 1998; Kuo et al., 1993) or double Weibull distributions (Sakradzija 
& Hohenegger, 2017). Similarly, only theoretical functions having at most two degrees of freedom have been 
considered.

The candidate distributions, 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑙𝑙) (l being the cloud size and X denoting one of the following distributions), are 
introduced hereafter and their choice briefly justified. The corresponding CCDFs are defined as:

𝑃𝑃𝑋𝑋(𝑙𝑙) =
∫

𝑙𝑙max

𝑙𝑙

𝑝𝑝𝑋𝑋(𝑙𝑙
∗)𝑑𝑑𝑙𝑙∗. (6)

In the above, 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑙𝑙) is the probability that clouds have size larger than or equal to l, l being bounded by lmin and 
lmax. The use of truncated functions is here fundamental given that the cloud size distributions analyzed gener-
ally extend over relatively narrow size ranges (less than two decades), cloud sizes being naturally limited by the 
model's horizontal grid spacing Δx on the one hand, and the extent of the numerical domain on the other hand.

2.3.1. Power-Law Distribution

The truncated power-law distribution and corresponding CCDF are defined as:

𝑝𝑝𝑃𝑃𝑃𝑃(𝑙𝑙) = 𝐶𝐶𝑃𝑃𝑃𝑃(𝛼𝛼 − 1)𝑙𝑙−𝛼𝛼 (7)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑙𝑙) =
𝑙𝑙1−𝛼𝛼 − 𝑙𝑙1−𝛼𝛼max

𝑙𝑙1−𝛼𝛼
min

− 𝑙𝑙1−𝛼𝛼max

. (8)

CPL is a normalizing coefficient depending on lmin and lmax, and α is the power-law exponent. As explained in 
introduction, power-laws still constitute the most common choice to fit cloud size distributions and, more gener-
ally, empirical data exhibiting heavy tails. One particularly appealing aspect of power-law distributions is the fact 
that among all generative mechanisms proposed over the years (Newman, 2005; Sornette, 2006), many rely on 
very intuitive arguments that may explain the shape of empirical cloud size distributions. Note that power-law 
distributions can be considered a special case of both the Weibull and cutoff power-law distributions presented 
hereafter.
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2.3.2. Exponential Distribution

The exponential distribution and its corresponding CCDF defined between lmin and lmax are respectively given  by:

𝑝𝑝𝐸𝐸(𝑙𝑙) = 𝐶𝐶𝐸𝐸𝜆𝜆exp(−𝜆𝜆𝑙𝑙) (9)

𝑃𝑃𝐸𝐸(𝑙𝑙) =
exp(−𝜆𝜆𝑙𝑙) − exp(−𝜆𝜆𝑙𝑙max)

exp(−𝜆𝜆𝑙𝑙min) − exp(−𝜆𝜆𝑙𝑙max)
, (10)

with, again, CE a normalizing coefficient and λ the exponential rate parameter. Exponential distributions 
occur commonly in physics and are generally associated with waiting times. In addition, and according to 
the principle of maximum entropy, the exponential distribution is also the most likely distribution (i.e., the 
one maximizing the likelihood) describing data with known mean, but no other constraint. In this context, 
the exponential distribution has been frequently used in atmospheric sciences as one of the simplest models 
capable of representing cloud size and mass flux distributions (Craig & Cohen, 2006; Plank, 1969; Wielicki 
& Welch, 1986).

2.3.3. Rayleigh Distribution

The Rayleigh distribution and its CCDF defined between lmin and lmax are given by:

𝑝𝑝𝑅𝑅(𝑙𝑙) = 𝐶𝐶𝑅𝑅

𝑙𝑙

𝜎𝜎2
exp

(

−
𝑙𝑙2

2𝜎𝜎2

)

 (11)

𝑃𝑃𝑅𝑅(𝑙𝑙) =

exp

(

−
𝑙𝑙2

2𝜎𝜎2

)

− exp

(

−
𝑙𝑙2max

2𝜎𝜎2

)

exp

(

−
𝑙𝑙2
min

2𝜎𝜎2

)

− exp

(

−
𝑙𝑙2max

2𝜎𝜎2

)

. (12)

CR is the normalizing coefficient and σ the distribution's scale parameter. A Rayleigh cloud size distribution is 
obtained by first assuming that the cloud mass flux distribution follows an exponential distribution, as proposed 
by Craig and Cohen (2006). Further noting that the cloud mass flux is proportional to the cloud surface area 
l 2, it can be shown using a simple change of variable that l must follow a Rayleigh distribution. The Rayleigh 
distribution therefore arises by applying the principle of maximum entropy to the cloud mass fluxes (i.e., it is the 
most likely cloud size distribution given a known, imposed total mass flux). Note that the Rayleigh distribution 
constitutes a special case of the Weibull distribution introduced later with β = 2.

2.3.4. The Lognormal Distribution

The truncated lognormal distribution and its CCDF are given by:

𝑝𝑝𝐿𝐿𝐿𝐿 (𝑙𝑙) = 𝐶𝐶𝐿𝐿𝐿𝐿

1

𝑙𝑙𝑙𝑙
√

2𝜋𝜋

exp

[

−
(log 𝑙𝑙 − 𝜇𝜇)

2

2𝑙𝑙2

]

 (13)

𝑃𝑃𝐿𝐿𝐿𝐿 (𝑙𝑙) =

Φ

(

log 𝑙𝑙−𝜇𝜇

𝜈𝜈

)

− Φ

(

log 𝑙𝑙max−𝜇𝜇

𝜈𝜈

)

Φ

(

log 𝑙𝑙min−𝜇𝜇

𝜈𝜈

)

− Φ

(

log 𝑙𝑙max−𝜇𝜇

𝜈𝜈

) (14)

with CLN a normalizing factor, and μ and ν the two parameters of the distribution characterizing the mean of the 
variable's logarithm and its standard deviation, respectively. Φ is here the complementary error function. Lognor-
mal distributions are frequently met in various branches of natural and social sciences. The lognormal distribution 
is notably the distribution of the product of n independent and identically distributed variables, as n becomes large 
(multiplicative central limit theorem). These distributions are thus often appropriate to model systems in which 
multiplicative growth plays an important role [as assumed by Lopez (1977) for cloud sizes]. Besides, lognormal 
and power-law distributions may be easily confused when plotted side by side in log-log coordinates where 
both appear linear, in particular if the lognormal's variance ν 2 is large (Mitzenmacher, 2003). For these reasons, 
lognormal distributions constitute one of the most obvious alternatives to which power-laws should be compared.
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2.3.5. Power-Law Distribution With Exponential Cutoff

The truncated power-law distribution with exponential cutoff and its CCDF are defined as:

𝑝𝑝𝑃𝑃𝑃𝑃(𝑙𝑙) = 𝐶𝐶𝑃𝑃𝑃𝑃𝑙𝑙
−𝜅𝜅exp(−𝜃𝜃𝑙𝑙) (15)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑙𝑙) =
𝛾𝛾(1 − 𝜅𝜅𝜅 𝜅𝜅𝑙𝑙) − 𝛾𝛾(1 − 𝜅𝜅𝜅 𝜅𝜅𝑙𝑙max)

𝛾𝛾(1 − 𝜅𝜅𝜅 𝜅𝜅𝑙𝑙min) − 𝛾𝛾(1 − 𝜅𝜅𝜅 𝜅𝜅𝑙𝑙max)
 (16)

with γ the upper incomplete gamma function defined by:

𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎) =
∫

+∞

𝑎𝑎

𝑥𝑥
𝑎𝑎−1

𝑒𝑒
−𝑥𝑥
𝑑𝑑𝑥𝑥𝑑 (17)

CPE is the corresponding normalizing coefficient, and θ and κ the two parameters of the distribution (κ being the 
power-law exponent and θ the exponential cutoff scale). The power-law with exponential cutoff is introduced 
here as a natural extension of the power-law distribution, noting that power-law distributed data in physics often 
exhibit an exponential decay beyond a certain threshold (Clauset et al., 2009; Newman, 2005). This behavior may 
be explained in particular by finite-size effects in systems otherwise exhibiting scale free properties (Stauffer 
& Ahaorny,  2003). Power-law distributions with exponential cutoffs have notably been employed by Peters 
et al. (2009), Windmiller (2017), and van Laar et al. (2019) to fit cloud size distributions.

2.3.6. The Weibull Distribution

Finally, the truncated Weibull distribution and its CCDF are defined as:

𝑝𝑝𝑊𝑊 (𝑙𝑙) = 𝐶𝐶𝑊𝑊 𝛽𝛽𝛽𝛽𝑙𝑙
𝛽𝛽−1exp

(

−𝛽𝛽𝑙𝑙𝛽𝛽
)

 (18)

𝑃𝑃𝑊𝑊 (𝑙𝑙) =
exp

(

−𝜂𝜂𝑙𝑙𝛽𝛽
)

− exp
(

−𝜂𝜂𝑙𝑙
𝛽𝛽

max

)

exp
(

−𝜂𝜂𝑙𝑙
𝛽𝛽

min

)

− exp
(

−𝜂𝜂𝑙𝑙
𝛽𝛽

max

) (19)

with CW the normalizing coefficient, and β and η the two parameters of the Weibull distribution. Although mech-
anisms generating Weibull distributions are not as simple and well understood as those generating power-laws, 
these distributions nonetheless often provide excellent fits to empirical distributions exhibiting heavy-tails with 
cutoffs. As mentioned by Laherrere and Sornette  (1998), the Weibull distribution may indeed stem from the 
superposition of finite-size scalings and other deviations from pure power-laws (including e.g., subsampling). 
As such, the Weibull distribution may be viewed as a more general form of the power-law distribution with 
exponential cutoff. Besides, Weibull distributions were recently used to model cloud mass flux distributions 
(Sakradzija & Hohenegger, 2017; Sakradzija et al., 2015), noting that these functions appropriately represent 
physical systems exhibiting memory and aging effects: large clouds being generally longer lived than small 
clouds, the probability to find large clouds at any given time is increased compared to what a memoryless expo-
nential distribution would predict.

3. Numerical Experiments
3.1. Model Configuration

The first experiment is based on the Large-scale Biosphere-Atmosphere (LBA) intercomparison study (Grabowski 
et al., 2006), with modifications similar to Böing et al. (2012) and Savre (2021). The initial potential tempera-
ture profile is taken from Grabowski et al. (2006), while the initial moisture content is modified with a relative 
humidity held constant and equal to 80% between the surface and 2.5 km, and decreasing linearly to 15% up to 
18 km. Horizontal winds are initially set to 0 m s −1 everywhere. Although a diurnal cycle is imposed through 
time dependent surface fluxes in the original case description, we chose here to adopt constant fluxes equal to 161 
and 343 W m −2 (sensible and latent fluxes respectively) following Böing et al. (2012). The numerical model is 
doubly periodic and uses a constant horizontal grid spacing of 100 m with 1,024 × 1,024 grid points. The domain 
extends vertically to 14,250 m with 180 grid points. The vertical grid spacing is held constant and equal to 25 m 
below 2 km, and increases geometrically above. A Rayleigh damping layer with characteristic time scale of 2 hr 
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is prescribed above 12 km, and horizontal winds are nudged everywhere to their initial value with a time scale of 
6 hr. The simulation was run for a total of 10 hr, but the first 4 hr were discarded.

The second case follows the Rain In Cumulus over the Ocean (RICO) model intercomparison (vanZanten 
et al., 2011). The overall setup follows closely the description given by vanZanten et al. (2011), with similar initial 
potential temperature, total water mixing ratio, horizontal wind, and large scale forcing profiles. No interactive 
radiation is employed, but net radiative cooling is accounted for in the prescribed forcing. Surface fluxes are 
computed using bulk formula with a prescribed surface temperature of 299.8 K, and surface water vapor assumed 
to be at saturation. The numerical domain extends over 20 × 20 km 2 in the horizontal plane, with a homogeneous 
grid spacing of 26 m (768 × 768 grid points). This is similar to the setup employed by Heus and Seifert (2013) 
despite a slightly smaller domain (25 km 2 in Heus and Seifert  (2013)). The domain extends vertically up to 
3.9 km with a constant spacing of 26 m. A Rayleigh damping layer with characteristic time scale of 2 hr is used 
above 3.2 km. The simulation was run for 16 hr, and the results analyzed after 8 hr.

Figure 1 displays the temporal evolution of the simulated cloud water mixing ratio q in the LBA and RICO cases. 
The LBA simulation exhibits a fast transition from shallow to deep, precipitating convection, with clouds reach-
ing an altitude of about 4 km after only 3 hr. The cloud population then continues to evolve under the influence of 
subcloud layer organization (Böing et al., 2012), with clouds continuously deepening and eventually reaching an 
altitude of 9 km after 8 hr. After this, the cloud layer remains quasi-stationary despite the fact that the boundary 
layer slowly deepens. In contrast, the RICO case is mostly driven by the large-scale forcing held constant during 
the course of the simulation. After an initial spin-up time of about 4 hr, the cloud population evolves only slowly 
and clouds remain relatively shallow with cloud tops reaching at most 2.8 km in altitude, consistent with previous 
studies (Heus & Seifert, 2013; Radtke et al., 2021). The mean cloud base remains at a constant altitude of about 
600 m and only light drizzle is observed in the subcloud layer and at the surface. Whereas cloud organization 
in the LBA case is primarily controlled by cold pool dynamics, vertical wind shear plays an important role in 
the RICO simulation with clouds aligning along parallel rolls (see Text S1 in Supporting Information S1 for an 
impression of the cloud population and organization in both cases).

Both experiments were carried out using the MISU-MIT Cloud and Aerosol (MIMICA) model solving anelastic 
governing equations for potential temperature, total water mass mixing ratio and momentum (Savre, 2021; Savre 
et al., 2014). The numerical methods employed in both cases are similar: scalar advection uses a flux-limited 
version of the Lax-Wendroff scheme, momentum advection uses fourth order central finite differences, and time 
integration is performed using a second order Runge-Kutta method. Turbulent mixing is parameterized using the 
Smagorinsky-Lilly closure, whereas no interactive radiation is necessary in either case. Different microphysical 
schemes are employed for the LBA and RICO simulations. In the first case, we use the simple one-moment 
microphysics from Grabowski (1998) which only distinguishes between precipitating and non-precipitating cloud 

Figure 1. Time series of condensed water content q in the LBA (a) and RICO (b) simulations. Solid black lines denote the positions of the mean cloud base and 
maximum cloud top altitudes attained in each case. The vertical dashed lines indicate the locations in time when the cloud scenes and cloud size distributions are 
analyzed, whereas the horizontal red dashed lines denote the altitudes at which clouds were identified.
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particles, and partitions liquid and ice based on a linear function of temperature. In the second case, the warm 
part of the more advanced two-moment microphysics scheme from Seifert and Beheng (2006) is used with a fixed 
cloud droplet number concentration of 70 cm −3.

3.2. Cloud Identification

The first step toward estimating cloud size distributions is to define cloud objects and calculate their properties. 
Two different criteria are used to identify clouds: a cloud water mixing ratio (q) exceeding 10 −3 g kg −1 combined 
with a vertical velocity (w) threshold of 0.1 m s −1 in the lower troposphere (hereafter referred to as the “updraft 
criterion”), or a Condensed Water Path (CWP, including both liquid and ice particles) exceeding 50 g m −2 in the 
LBA case, or 10 g m −2 in the RICO case (hereafter referred to as the “CWP criterion”). The updraft criterion is 
applied within horizontal slices extracted at 2,000 m and 800 m in the LBA and RICO cases, respectively. These 
two levels were selected as they consistently remain above cloud base, as seen on Figure 1, and allow the identi-
fication of most of the clouds rooted in the boundary layer while leaving cloud remnants at higher altitudes out 
of the analysis. For the CWP criterion, two different thresholds were chosen in the two cases to account for the 
different cloud depths.

Clouds are then identified as clusters of connected grid boxes respecting either criterion given above. Four point 
connectivity is considered, that is grid boxes must at least share a face to belong to the same cloud object. Once 
cloud objects are identified, their equivalent sizes are calculated as 𝐴𝐴 𝐴𝐴 =

√

Δ𝑥𝑥Δ𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝 , with Npts the number of grid 
points belonging to a cloud.

The distinction between clouds identified from updraft and CWP criteria is here justified by the fact that both 
definitions correspond to distinct situations commonly met in the literature. The CWP criterion allows the iden-
tification of clouds as seen from above, by analogy with clouds retrieved from satellite imagery. In contrast, the 
updraft criterion is relevant in the context of convection parameterizations, these latter being concerned with the 
representation of upward transport in the lower troposphere.

4. Evaluating the Power-Law Hypothesis
We are initially only interested in fitting simulated cloud size distributions to power-law functions. The objec-
tive is to evaluate the null hypothesis that cloud size distributions are suitably modeled by power-laws using the 
Clauset et al. method introduced in Section 2.1.

4.1. Visual Inspection

Cloud size CCDFs extracted at three different times into the LBA and RICO simulations are shown in Figures 2 
and 3, respectively. Each distribution is multiplied by the total number of clouds identified in each scene and 
therefore represents the number of clouds with size larger than or equal to a given value l. At this point, we are 
only concerned with the empirical distributions depicted as thick gray lines. Cloud size density distributions are 
also available as Text S2 in Supporting Information S1 and essentially exhibit the same features as the CCDFs.

In the LBA simulation, starting at 4 hr, clouds identified using a CWP threshold are generally bigger and twice 
as numerous as those determined from the updraft criterion (∼6,000 with CWP as opposed to ∼2,200 with the 
updraft criterion). At later times, the largest clouds have widths of 1.5 and 4 km when determined based on the 
updraft and CWP criteria, respectively. The number of clouds identified using CWP is also largely reduced to 
∼3,000. The emergence of much bigger clouds indicates the development of convective outflows and the possible 
merging of cloud objects as convection becomes deeper. After 10 hr, a clear linear scaling in log-log coordinates 
between 200 m and over 2,000 m is visible, and the largest clouds reach up to 9 km in size. Still no clear linear 
scaling is visible on the cloud size CCDF obtained from the updraft criterion.

As expected, cloud size CCDFs extracted from the RICO simulation (Figure 3) do not show the same evident 
temporal evolution as the ones obtained from the LBA case. The total number of clouds identified based on 
the updraft criterion is relatively constant, between 300 and 400, which constitutes a relatively small sample to 
guarantee the estimation of reliable fits. This is especially true if one is interested in fitting power-laws given 
the narrow size range over which the empirical distributions extend (up to ∼700 m). Again, more clouds can be 
identified using a CWP threshold (between 600 and 700), with cloud objects reaching up to 3.3 km in size after 
16 hr. No clear power-law behavior is evident, regardless of the cloud identification criterion considered.
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Figure 2. Cloud size CCDFs calculated for the LBA case, at three different times into the simulation. From top to bottom: at 4, 7, and 10 hr. Left column: clouds 
identified based on the updraft criterion at 2,000 m. Right column: clouds identified based on the CWP criterion. Best fits obtained with all theoretical distributions 
are also plotted. The corresponding best fit parameters are collected in Table 1. The range of sizes not included when fitting the cloud size CCDFs (clouds smaller than 
5Δx) is indicated by the gray shading.

Table 1 
Best Fit Parameters Estimated From the Cloud Size CCDFs Obtained in the LBA Simulation (Fits Are Shown on Figure 2)

Time 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝜆𝜆  𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴 -𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴  -𝐴𝐴 𝛽𝛽 𝐴𝐴 𝐴𝐴𝐴  -𝐴𝐴 𝜃𝜃

10 hr 3.57 4.04 × 10 −3 424.7 −5.32–2.17 0.045–43.1 3.25–0.37 × 10 −3

7 hr 4.58 6.06 × 10 −3 327.7 4.46–0.77 0.09–21.2 2.94–2.18 × 10 −3

4 hr 5.46 8.67 × 10 −3 248.6 5.90–0.35 0.10–22.1 −2.97–0.013

10 hr 2.02 − − 1.31–2.42 0.13–3.63 1.81–0.12 × 10 −5

7 hr 2.02 1.88 × 10 −3 − 1.38–2.32 0.08–7.57 1.68–0.33 × 10 −3

4 hr 2.29 3.12 × 10 −3 415.7 6.12–0.60 0.16–3.09 −0.68–4.03 × 10 −3

Note. Cloud objects are identified based either on the updraft criterion (see text) at z = 2,000 m (top rows), or the CWP 
criterion (bottom rows). The parameters reported correspond to (from left to right): power-law, exponential, Rayleigh, 
lognormal, Weibull and cutoff power-law distributions.
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As highlighted above, the visual determination of power-law behaviors from empirical cloud size CCDFs is not 
always evident. Besides the fact that the considered distributions may eventually not obey power-law scalings at 
all, it must be stressed that truncated power-law distributions, generally reflecting the emergence of finite-size 
scalings, do not necessarily follow straight lines in log-log coordinates. This is all the more so true as the data 
ranges considered here (and in most similar studies) remain relatively narrow. It is indeed generally recommended 
that the fitted data extends over at least two decades to obtain reliable power-law fits (Stumpf & Porter, 2012). 

Figure 3. Same as Figure 2 for the RICO case. From top to bottom: at 8, 12, and 16 hr. The corresponding best fit parameters are collected in Table 2.

Table 2 
Same as Table 1 but for the RICO Simulation (Fits Are Shown on Figure 3)

Time 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝜆𝜆  𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴 -𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴  -𝐴𝐴 𝛽𝛽 𝐴𝐴 𝐴𝐴𝐴  -𝐴𝐴 𝜃𝜃

16 hr 2.76 0.011 − 3.08–1.17 0.15–5.34 1.93–3.37 × 10 −3

12 hr 1.59 9.67 × 10 −3 104.8 −595−32 3.02 × 10 −3−192.5 1.59–0

8 hr 2.17 0.011 - −300–16.1 5.17 × 10 −3−221.6 2.17–0

16 hr 2.04 − − 3.74–1.40 0.34–0.57 1.56–1.25 × 10 −3

12 hr 2.46 4.40 × 10 −3 − 3.37–1.39 0.24–1.57 1.99–0.85 × 10 −3

8 hr 2.27 4.49 × 10 −3 − −312–15.8 4.80 × 10 −3−258 2.27–0
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The non-linearity of truncated power-laws in log-log coordinates can be illustrated by taking the logarithm of the 
left- and right-hand sides of Equation 8, yielding:

log𝑃𝑃𝑃𝑃𝑃𝑃(𝑙𝑙) = (1 − 𝛼𝛼)log

(

𝑙𝑙

𝑙𝑙min

)

+ log

⎡

⎢

⎢
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1 −

(

𝑙𝑙max

𝑙𝑙

)1−𝛼𝛼

1 −
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𝑙𝑙max
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)1−𝛼𝛼

⎤

⎥

⎥

⎥

⎦

. (20)

The first term on the right-hand side is linear with respect to l in log-log coordinates, but the second term is 
clearly non-linear and arises because of the introduction of the upper size bound lmax. Note that if empirical 
distributions indeed follow truncated power-laws defined by Equation 8, a pure linear behavior in log-log coor-
dinates will still be observed as l approaches lmin, and the extent of the linear part will be larger as α is increased.

4.2. Power-Law Best Fits

Figure 4 shows the temporal evolution of the best fit power-law exponents α obtained for the LBA and RICO 
cloud size CCDFs. The power-law hypothesis appears to be plausible (circles in Figure 4) at most times analyzed 
in both cases based on a p-value threshold arbitrarily set to 0.05. This result however merely suggests that the 
amount of samples used in each case to obtain the fits is sufficient given the constraints imposed by the algorithm 
(Section 2.1). This test alone is not designed to evaluate the quality of each fit, and dedicated statistics must be 
used to this end (see Section 5.2).

Considering only clouds defined based on CWP in the LBA case, fitted α values remain relatively constant in 
time over the whole period, in particular after 6 hr, with an average α computed from 6.5 hr onwards equal to 2.03. 
Larger overall exponents and more temporal variability are found over the same time period for clouds identified 
based on the updraft criterion, with a mean α of 4.12. To further evaluate the robustness of our estimates, Root 
Mean Square Errors (RMSE) can be computed for each fit using a standard bootstrapping procedure. The method 
involves resampling the empirical data with replacement, computing the corresponding best fit parameters for the 
resampled data, and repeating the fitting operation a sufficient number of times (here 2,500 times) to calculate 
reliable statistics. The average RMSE (represented by error bars on Figure 4) computed between 6.5 and 10 hr 
for clouds defined based on CWP remains low at about 0.06, indicating that the power-law scaling is a robust 
feature of these distributions. Again, more variability is found when cloudy updrafts are considered with a RMSE 
of 0.34 over the same period, making the power-law fits less reliable. In fact, the large variability observed on 
Figure 4 as well as the large RMSE could be interpreted as indications that cloud sizes are, in this situation, not 
power-law distributed.

Figure 4. Time series of power-law exponents α estimated in the LBA (left) and RICO (right) cases. Uncertainty bars correspond to the root mean square errors 
computed from standard bootstrapping (see text). Estimates that satisfy the p − value condition (also obtained from standard bootstrapping, with a p threshold 
arbitrarily set to 0.05) are represented as circles. Estimates that do not satisfy the condition are represented as crosses.
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In the RICO simulation, average best fit α values amount to 2.19 for clouds determined based on CWP and 2.58 
for cloud identified based on the updraft criterion. The corresponding RMSE values are equal to 0.1 and 0.34, 
respectively. Again, both Figure 4 and the RMSE values reported previously indicate that the power-law fits 
determined from CWP clouds are more robust than those obtained with the other cloud criterion.

Power-law exponents estimated by our algorithm for CWP clouds during RICO are associated with relatively 
large temporal fluctuations (at least compared to the LBA case) despite the fact that the cloud population does 
not evolve significantly after 8 hr. This variability likely stems from fluctuations in the tail of the distributions, α 
being found to correlate particularly well with lmax. For example, for clouds identified based on CWP, α steadily 
increases from ∼1.9 for lmax ≈ 1,000 m to ∼2.6 for lmax ≈ 2,500 m. It can be further verified that the α RMSE can 
be significantly reduced when the fits are performed over fixed size ranges (a mean α of 2.07 with a RMSE of 
0.07 were founds for fits performed over the range 150–800 m). This result is most likely indicative of a subsam-
pling issue, the number of large clouds available within each instantaneous snapshot being insufficient to provide 
robust α estimates. A similar sampling issue within instantaneous shallow cumulus cloud scenes was discussed 
by Neggers et al. (2019) who noted increased cloud number variability when considering smaller spatial domains 
in which the largest clouds can be severely undersampled. Note that no such relationship between α and lmax was 
found in the LBA case which further supports our assumption as well as the reliability of the LBA fits.

Considering only situations in which the algorithm returns robust α estimates (i.e., for clouds determined based on 
CWP), most fitted exponents take values between 1.5 and 2.5 regardless of the case considered. For comparison, 
mean exponents reported in the literature generally range between ∼1 and ∼3.3, depending on the case and source 
of the data. For example, for deep convective cases (like LBA), exponents between ∼1.9 (Rieck et al., 2014) 
and ∼2.6–3.3 (Bley et al., 2017; Senf et al., 2018) were reported from high-resolution simulations. Exponents 
derived from high-resolution satellite imagery in similar situations vary between 1.7 (Kuo et al., 1993) and ∼3.05 
(Bley et al., 2017). Considering maritime shallow convection, our average α estimates are significantly smaller 
than the reference values (without cloud tracking) of 2.42–2.61 reported by Heus and Seifert (2013) for similar 
RICO simulations. Heus and Seifert  (2013) however showed that α could vary greatly depending on model 
configuration (domain size, numerical advection, cloud detection thresholds…) although most of their estimates 
were still larger than 2.19. Exponents reported for other shallow convection simulations are generally smaller, 
from 1.7 (Neggers, Duynkerke, & Rodts, 2003; Neggers, Jonker, & Siebesma, 2003; Xue & Feingold, 2006) to 
1.9 (Dawe & Austin, 2012), which was interpreted by Heus and Seifert (2013) as being a consequence of clouds 
remaining too shallow. Finally, satellite retrievals generally yield exponents ranging between 1.6 and 2.2 (Benner 
& Curry, 1998; Koren et al., 2008; Rodts et al., 2003; Wood & Field, 2011; Zhao & Di Girolamo, 2007), consist-
ent with our data. The latter studies are in general particularly relevant as cloud size distributions extending over 
several orders of magnitudes [up to 5 decades in Wood and Field (2011)] can be retrieved from satellite imagery, 
therefore providing more reliable fits.

4.3. Linear Regression in Log-Log Coordinates

In general, trying to fit power-laws over size ranges simply guessed from visual inspection, and using linear 
regression in log-log coordinates are two common sources of fitting inaccuracies. To evaluate these two prop-
ositions, power-law exponents were recomputed using linear regression applied over varying size ranges for all 
empirical distributions analyzed previously.

To begin with, linear regression is applied over fixed size ranges determined visually from the distributions 
plotted in Figures 2 and 3. Logarithmic binning, which already reduces fitting errors a lot (Goldstein et al., 2004; 
White et al., 2008), is employed to estimate the power-law exponents. Exponents obtained from linear regression 
are compared to our MLE estimates on Figure 5. In the LBA case, linear regression is able to reproduce the 
power-law exponent predicted by MLE with relatively good accuracy, giving α values for clouds identified based 
on CWP and updraft criteria averaged between 6.5 and 10 hr of 2.11 and 4.11, respectively (comparable to the 
MLE estimates of 2.03 and 4.12). The corresponding RMSE computed over the same intervals are however twice 
as large at 0.09 and 0.75, making linear regression less reliable than MLE. The largest discrepancies between 
linear regression and MLE are found at earlier times, when no statistically significant power-law fit could be 
identified.

Mean estimates from linear regression computed for the RICO simulation are also found to remain close to the 
MLE values despite showing more variability and being less reliable. Mean exponents obtained using linear 
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regression for clouds identified based on the CWP and updraft criteria indeed amount to 2.15 and 2.26 respec-
tively, with mean RMSEs of 0.24 and 0.63.

To complement the analysis, best fit exponents obtained for CWP clouds using linear regression at time 10 hr 
in the LBA case and 16  hr in the RICO case were recomputed using varying lower and upper size bounds. 
Results are shown on Figure 6. For comparison, the upper and lower size bounds, lmin–lmax, returned by the fitting 
algorithm are equal to 500–6,829 m and 130–2,498 m in the LBA and RICO simulations, respectively. In both 
cases, α takes values between ∼1.7 and 2.4, again consistent with the range of exponents found in the literature 
and mentioned in Section 4.2. α generally increases with increasing lmax as linear regression tends to be overly 

Figure 6. Sensitivity of linearly regressed exponents to the lower and upper size bounds for clouds identified based on CWP in the LBA (left) and RICO (right) cases. 
Best fits were obtained at the end of each simulation, that is at 10 and 16 hr respectively. The horizontal dashed lines correspond to the mean power-law exponents 
returned by the fitting algorithm based on MLE.

Figure 5. Power-law exponents estimated using the MLE based fitting algorithm for the LBA (left) and RICO (right) cases against equivalent estimates obtained from 
linear regression.
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sensitive to the few, noisy points located in the tail of the distributions where 
the slope is steeper. Applying linear regression over too narrow size ranges is 
therefore likely to underestimate the fitted power-law exponents. In contrast, 
α does not show any systematic dependence on lmin although it is clear that 
only small changes in the arbitrarily selected minimum size bound can result 
in relatively large errors of the fitted exponents.

Overall, these results suggest that fitting power-laws using linear regression 
rather than MLE may yield very similar best fit exponents provided that: (a) 
the distributions indeed exhibit a very clear power-law behavior, and (b) the 
size range over which the fit is computed has been properly selected. This 
last point is particularly cirtical since the power-law range over which cloud 
size distributions are fitted is often determined by eye. This may explain, at 
least in part, the wide range of power-law exponents reported in the literature 
(see Section 4.2).

4.4. Subsampling and Finite Size Effects

As seen from the results discussed previously, finite size effects and, in 
particular, subsampling are two important factors likely to introduce large 
biases in the identification and evaluation of power-law scalings in empir-
ical cloud size distributions. Note that sampling issues were specifically 
addressed, although in a slightly different manner, by Neggers et al. (2019).

In the present study, subsampling errors are expected to be particularly large for the RICO data where the amount 
of clouds available in each scene can be as low as ∼200. To estimate the impact of sample size on power-law best 
fit estimates, we first collect all clouds identified in the RICO simulation over a 16 hr period (17 cloud scenes), 
and apply the fitting algorithm to subsamples of different sizes. A series of 7 sampling experiments are conducted 
using Bernoulli sampling with acceptance probabilities of {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, and 1,000 independ-
ent samples were created in each case to obtain reliable statistics. Mean α values and standard deviations obtained 
for each sample size using the fitting algorithm are plotted on Figure 7 for clouds identified based on CWP. Note 
that cloud size CCDFs never exhibit power-law scalings when using the updraft criterion, even when considering 
the entire cloud population obtained from the 17 cloud scenes analyzed.

Clearly, subsampling tends to underestimate the power-law exponent α. When considering a sample size of 
∼600 clouds, which corresponds approximately to the amount of clouds available in each individual cloud 
scene, a mean α value of 2.22 is found, consistent with the mean estimate of 2.19 (Section 4.2), but with a 
comparatively large standard deviation of 0.22. The estimated exponent then increases (and the associated 
standard deviation decreases) when increasing the sample size, up to α = 2.54 when the whole cloud popula-
tion available is considered. This estimate is now in better agreement with the range of exponents reported by 
Heus and Seifert (2013) in their RICO simulations (2.42–2.61). This sensitivity of α to sample size is relatively 
large compared to what we might expect from MLE (see e.g., White et al. (2008)), but this may be explained 
by the narrow size range over which power-law fits generally hold that exaggerates small errors resulting 
from fitting biases (including subsampling). Note that the identification of power-law behaviors in empirical 
distributions obtained from subsampled data, and therefore the reliability of the estimated exponents, is all the 
more questionable that data sampled from pure power-law distributions may not even be power-law distributed 
themselves (Stumpf et al., 2005).

Finite size effects may act on top of this issue to further limit the relevance and precision of estimated power-law 
exponents. By restricting the size of the biggest clouds allowed in the simulation, the use of small numerical 
domains may indeed produce too narrow cloud size distributions which then enhances potential errors made when 
estimating power-law fits. A similar issue was discussed by Heus and Seifert (2013). The authors indeed found 
in their RICO simulations that the largest clouds sampled were smaller when the domain size was reduced, and 
that the estimated power-law exponents were impacted (although slightly). Besides, if not by directly affecting the 
power-law size range, the domain size may also impact the spatial organization of the cloud ensemble and thus 

Figure 7. Sensitivity of best fit α estimates and their standard deviation to 
sample size in the RICO simulation for clouds identified based on CWP. A 
large cloud ensemble was obtained by collecting all clouds identified in the 
simulation within a 16 hr period. Bernoulli sampling was used to create each 
subsample with acceptance probabilities of {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, 
and 1,000 samples were created in each case to produce significant statistics.
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indirectly influence cloud size distributions and their fits. The impact of domain size on convective organization 
is indeed now a well documented issue, in particular in the context of mesoscale aggregation (Wing et al., 2018).

5. Alternative Distributions and Model Selection
5.1. Visual Comparison

Figures 2 and 3 allow us to visually compare best fits obtained for all distributions proposed in Section 2.3. All 
alternative fits were obtained using MLE applied over the same optimal size ranges as those found for power-laws. 
Corresponding best fit parameters are reported in Tables 1 and 2.

The first thing that stands out from Figures  2 and  3 is that the alternative fits are often undistinguishable 
from the power-law fits. This is particularly true when considering the fits obtained with the more complex, 
multi-parameter distributions, that is with the lognormal, Weibull and cutoff power-law distributions. Only in 
rare instances do the more complex alternatives provide visibly better fits than power-laws (see e.g., Figures 3e 
and 3f). Clearly, unambiguously identifying true power-laws from empirical data cannot be done based simply 
on visual inspection.

More obvious discrepancies can be seen when comparing the power-law fits to the ones obtained with exponen-
tial and Rayleigh distributions. The latter rarely constitutes an acceptable alternative, whereas the former only 
provides reasonably good fits when the size of the biggest clouds remains limited and when disregarding the tails 
of the empirical distributions.

5.2. Objective Comparison and Model Selection

In order to compare the individual best fits shown on Figures 2 and 3, we first introduce an RMSE-like score 
calculated between empirical and fitted distributions, defined as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√
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𝑁𝑁
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with Pe and 𝐴𝐴 𝐴𝐴
𝑋𝑋|Θ̂

 the empirical and best fit CCFDs, and N the number of samples over which the fits were 
obtained. In the LBA case, RMSE values reported on Figure 8 confirm our previous observations, namely that 
the two-parameter distributions (lognormal, Weibull and cutoff power-law) generally provide fits as good as, 
but rarely substantially better than, power-laws. In the RICO case, the two-parameter distributions generally 
perform better than power-laws when considering CWP clouds, but RMSEs obtained with power-laws and the 
two-parameter alternatives are again relatively close for clouds identified based on the updraft criterion. Overall, 
RMSE does not give enough details to identify the model that provides the best approximation to the empirical 
cloud size distributions.

As an alternative to the RMSE score above, we now introduce a new statistics, denoted Scc, representing the rela-
tive cloud cover error made when modeling cloud size distributions using one of the theoretical functions defined 
in Section 2.3. Scc is computed as:
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, (22)

where l indicates the size of the N empirical clouds available in each scene, whereas 𝐴𝐴 𝑙𝑙  is used to refer to the size 
of a cloud randomly drawn from a given best fit distribution 𝐴𝐴 𝐴𝐴

𝑋𝑋|Θ̂
 . Scc constitutes a particularly relevant criterion 

to evaluate the various cloud size models provided that the total cloud cover and, by extension, the convective 
mass flux are two important parameters used to characterize convective cloud ensembles.

As shown on Figure 9, the power-law and exponential distributions generally yield the largest cloud cover errors of all 
the distributions tested. Power-law fits tend to overestimate the total cloud cover while exponential fits underestimate 
it. This result may be explained by the fact that, in all situations depicted, half of the total cloud cover is accomplished 
by the 10%–20% largest clouds in the population (see Table 3). This means that small fitting errors made on the 
large cloud side of the spectrum (i.e., clouds larger than the size thresholds indicated in Table 3) lead to large errors 
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in predicted cloud cover. Since these large clouds constitute the tail of the distributions, it can be concluded that the 
best model according to Scc should be the one providing the best fit near the tail of the distributions, that is where the 
exponential and power-law distributions are the least reliable. None of the other alternative distributions tested stands 
out as a better model, as they all outperform the others under specific conditions. Note that the Rayleigh distribution 
yields particularly good results in all situations (at least when a fit can be found) since, by definition, the Rayleigh 
distribution is the most likely distribution (in a maximum entropy sense) describing the known total cloud cover.

In general, Vuong's test constitutes a more robust tool to decide which model should be selected among avail-
able alternatives. Z scores are computed as described in Section 2.2 and shown on Figure 10 choosing the 
power-law as the reference to which all alternative models are compared. Elements depicted in red (blue) 
indicate that the Z score is larger (smaller) than 1.28 (−1.28). When Z is significantly large (larger than 1.28), 
the power-law model can be regarded as the best of the two models. In contrast, when Z is significantly small 
(smaller than −1.28), the alternative constitutes the best model. White squares on Figure 10 indicate Z values 
lying within the ±1.28 confidence interval and none of the two models tested can be said to be better than the 
other.

According to Vuong's test, exponential distributions may constitute viable alternatives to power-laws when clouds 
are identified based on the updraft criterion. Even though they do not provide significantly better results than 
power-laws in terms of RMSE or Scc scores, they do not yield considerably worse results either such that the two 
models can be regarded as being equally good. In contrast, for CWP clouds, exponential fits are now generally 

Figure 8. RMSE errors computed between the empirical and fitted distributions for the LBA (top row) and RICO (bottom row) simulations, and clouds identified 
based on the updraft (left) and CWP (right) criteria. All alternative fits were obtained on the same optimal size range as the power-law fits.
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less reliable than the power-law ones and power-law distributions clearly constitute a better choice. In the LBA 
case, the more complex distributions tested (lognormal, Weibull and cutoff power-law) rarely constitute superior 
alternatives to power-laws, except for clouds identified based on a CWP threshold at 4 hr where the empirical data 
aren't adequately modeled by a power-law. This result is consistent with the RMSE values shown on Figure 8. 

In contrast, in the RICO case, power-law fits are often outperformed by the 
two-parameter distributions, in particular when clouds are identified based 
on CWP.

5.3. Fitting Without Size Restriction

While the results presented previously are instructive, it may in fact be more 
useful to seek best fits for the entire cloud size ranges available instead of 
limiting the analysis to a small subset of the entire cloud population. In the 
following, we therefore estimate best fits including all clouds larger than 5Δx 
available in each scene.

Relative cloud cover errors (Scc) computed in this context are shown on 
Figure 11. Scc is now in general much larger than when the fits are obtained 
on subsets of the whole cloud populations (see Figure  9). Power-law fits 
significantly overestimate the total cloud cover in all cases and consist-

Figure 9. Relative total cloud cover error Scc computed between the empirical and fitted distributions obtained in the LBA (top row) and RICO (bottom row) 
simulations, and for clouds identified based on the updraft (left) and CWP (right) criteria. All alternative fits were obtained on the same optimal size range as the 
power-law fits.

Table 3 
In Each Case Reported, 50% of the Total Cloud Cover Is Accomplished by 
Clouds With Sizes Smaller Than the Indicated Size

Case Time q + w thresholds CWP threshold

LBA 10 hr 84%–714 m 88%–1,934 m

7 hr 83%–557 m 83%–1,371 m

4 hr 79%–412 m 81%–762 m

RICO 16 hr 82%–208 m 89%–385 m

12 hr 80%–201 m 87%–372 m

8 hr 82%–193 m 88%–360 m

Note. The percentages indicate the fraction of the total cloud population 
having sizes smaller than the indicated size.
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ently yield the worst results of all the distributions tested. For clouds identified based on the updraft criterion, 
Figure 11 indicates that the empirical cloud size distributions are best modeled by exponential functions than by 
power-laws. The lognormal and cutoff power-law distributions however tend to minimize Scc, regardless of the 
case and time considered. For clouds identified based on CWP, power-laws again overestimate the total cloud 
cover by up to almost 50% despite the fact that clear power-law scalings could be identified on the empirical 
distributions (in particular in the LBA case). Again, either the lognormal or cutoff power-law distributions yield 
the smallest cloud cover errors.

Figure 10. Results from Vuong's test (Vuong, 1989) applied in the LBA (top) and RICO (bottom) simulations for clouds identified based on the updraft (left) and CWP 
(right) criteria. Vuong's test is applied considering the power-law fits as the reference to which all other alternative models are compared. Colors should be understood 
as follows: Z values smaller than the −1.28 confidence level are in blue and indicate that the alternative distribution constitutes a better model than the power-law, Z 
values larger than the 1.28 confidence level are in red and indicate that the power-law distribution is the best model in a given situation. Values between −1.28 and 1.28 
indicate that neither the power-law nor the alternative can be judged as better than the other. Gray cells indicate that no acceptable fit could be found with the alternative 
distribution. Assuming the Z statistics follows a standard normal distribution, 80% of the data is contained within the ±1.28 confidence interval.
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To understand these results, it must be noted that power-law distributions, even when truncated, consistently 
overestimate the number of large clouds in the tail of the distributions (recall that the simulated total cloud 
cover is dominated by the few large clouds). On the opposite, the fact that cutoff power-laws generally yield 
the best fits overall (they tend to minimize Scc in most cases) suggests that the fast decay in the tail of the distri-
butions can be reasonably well approximated using exponential functions. For this reason, it is recommended 
not to use uncorrected power-law distributed cloud sizes when trying to model the convective cloud cover or 
mass flux. Cutoff power-laws and, to some extent, exponential distributions constitute in this context superior 
options.

These results are generally confirmed by the RMSE score and Vuong's test (not shown) indicating that both the 
power-law and exponential fits are systematically outperformed by the two-parameter distributions (Weibull, lognor-
mal and cutoff power-law), although none of these more complex distributions stands out as a better model overall. 
According to these tests, exponential distributions can again be considered as a better model than power-laws for 
clouds identified based on the updraft criterion, but they do not constitute adequate alternatives for CWP clouds.

Summarizing the results presented in this section, it appears that power-laws rarely constitute the best model 
to represent the empirical cloud size CCDFs extracted from the LBA and RICO simulations. Considering 
clouds determined by the updraft criterion, exponential distributions are generally as good as, if not better 
than power-laws, and should be preferred when trying to represent the total cloud cover (or total mass flux) 
in the lower troposphere. In this situation, the two-parameter distributions also yield very good results, but 

Figure 11. Same as Figure 9 except that best fits are now obtained with each model by considering the entire cloud size range available in each situation (ignoring all 
clouds smaller than 5Δx).
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the improvements made over the simpler power-law and exponential distributions are rarely substantial. In 
contrast, for CWP clouds, alternative two-parameter distributions provide significantly better fits than power-
laws in many situations, and should especially be preferred when one is interested in modeling the total cloud 
cover. In this context, power-laws with an exponential cutoff seem to provide the best alternative to pure 
power-laws.

6. The Emergence of Power-Law Scalings in Cloud Size Distributions
We wish here to give tentative arguments to explain the emergence of power-law scalings (generally exhibiting an 
exponential decay in the tail) in cloud size distributions by drawing an analogy between convective cloud ensem-
bles and percolating systems approaching criticality (Stauffer & Ahaorny, 2003). Note that percolation theory 
bears of lot of similarities with the theory of self-organized criticality (SOC) already invoked to explain behav-
iors observed in convective cloud ensembles (Peters & Neelin, 2006; Peters et al., 2009, 2010; Teo et al., 2017; 
Windmiller, 2017; Yano et al., 2012).

Approximating each cloud as a circle of random radius appearing quasi-randomly in space, the cloud ensemble 
can be mathematically described by the Boolean model which considers the set of overlapping discs whose 
centers are determined by a spatial Poisson point process (Meester & Roy,  1996). When discs overlap, they 
form clusters, and exact as well as asymptotic results can be obtained for cluster size distributions. In particular, 
it can be demonstrated that the bulk of the cluster size distribution exhibits a scale free behavior over a range 
that increases when the system is brought closer to criticality, while the distributions tail in the subcritical phase 
decays exponentially (Meester & Roy, 1996), two properties shared with some of the cloud size distributions 
analyzed in this work. This analogy is further supported by the close similarity between our best fit α expo-
nent found in the LBA case for CWP clouds (2.03) and the theoretical cluster size distribution exponent for 
two-dimensional continuum percolation of 181/97 ≈ 2.05 (Gawlinski & Stanley, 1981). Based on this remark, 
we argue here that the emergence of power-law cloud size distributions results from the progressive merging and 
overlapping of cloud cores, which may themselves exhibit exponential size distributions, as the system is drawn 
toward a critical state.

To further support this discussion, we first take a closer look at the temporal evolution of fitted cloud size distri-
bution statistics obtained in the LBA case (cloud size CCDFs from the RICO simulation did not reveal significant 
changes in time). Figure 12 displays the RMSE score defined by Equation 21 for both exponential and power-
law fits as a function of time. All fits were obtained considering all clouds larger than 5Δx. For CWP clouds, 
the exponential fit produces lower RMSE scores than power-law fits early in the simulation, until 5 hr. A clear 
transition is then seen starting at 5.5 hr with power-law RMSEs continuously decreasing to 0, while exponential 
RMSEs increase dramatically. This transition from nearly exponential to mostly power-law cloud size distributions 

Figure 12. Time evolution of RMSE values computed according to Equation 21 for power-law (blue) and exponential (red) best fits obtained in the LBA case using 
either the updraft (left) or the CWP (right) criterion. The fits were performed on the entire cloud size range available in each case.
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is accompanied by a constant increase in the size of the largest clouds found 
in the domain. For clouds identified based on the updraft criterion, no such 
transition between exponential to power-law cloud size distributions is found.

Cloud merging can be further analyzed by splitting each individual cloud 
into distinct convective cores. This is done by first identifying core centers as 
local vertical velocity maxima with w > 3 m  s −1, provided that each maxi-
mum is separated by a distance of at least 5Δx from its nearest neighbor. Each 
point belonging to a given cloud is then associated to the nearest core center 
belonging to the same cloud (Savre & Craig,  2023). Figure  13 displays the 
temporal evolution of the mean number of cores per cloud thus identified, Ncore. 
Clearly, Ncore increases steadily with time which confirms our intuition that as 
time progresses, clouds become more likely to merge and form larger clouds. 
Interestingly, the increased cloud merging frequency doesn't necessarily occur 
concomitantly with an increase in cloud clustering, quantified for example, by 
the Iorg index proposed by Tompkins and Semie (2017). This index relies on the 
comparison of the nearest neighbor distances calculated for the empirical cloud 
population and a spatially random Poisson process with equivalent intensity. As 
seen from Figure 13, Iorg in the LBA case increases from a value close to 0.5 at 
4 hr (indicating spatial randomness), to ∼0.59 at 6 hr (indicating spatial clus-
tering). Iorg then remains approximately constant until the end of the simulation 

while cloud merging continues to intensity. Note that, in the RICO simulation, Iorg remains close to 0.6 throughout 
the analysis period, but the mean number of cores per cloud remains always close to 1 (not shown). Cloud merging 
therefore rarely happens in this case despite a high degree of organization, which again supports our hypothesis.

Besides, core size CCDFs can also be computed and corresponding exponential and power-law best fits can be 
obtained, as done in Section 4 (the corresponding best fit parameters are reported in Table 4). In general, core 
sizes preferentially follow exponential distributions in any situation, even when cloud sizes are power-law distrib-
uted, as for example, when clouds are identified based on a CWP threshold, after 10 hr. This visual impression is 
confirmed by all goodness-of-fit metrics introduced in the previous sections (not shown).

Overall, these results tend to support the idea that cloud core merging constitutes the main mechanism leading to 
the emergence of cloud size distributions exhibiting scale-free behaviors. While clustering clearly plays a role in 
increasing the probability that clouds will merge by bringing them closer to each other, our results suggest that 
it is not the sole mechanism at play. It may indeed be possible that the progressive moistening of the troposphere 
throughout the convective layer contributes to the increased merging frequency and to the formation of wider 
clouds exhibiting power-law size distributions via a moisture-entrainment feedback as described for example, in 
Derbyshire et al. (2004); Del Genio and Wu (2010).

7. Conclusion
Cumulus cloud sizes have been shown to be power-law distributed for more 
than 30  years. These power-laws can be characterized by their exponent 
whose values reported in the literature generally vary over a relatively broad 
range, from 1 to over 3. Although we do not ignore the fact that variations 
in the shape of cloud size distributions may stem from underlying physical 
processes (organization), external forcings or environmental conditions, it is 
here surmised that at least part of this variability can be explained by the use 
of improper fitting procedures.

In order to unambiguously identify and characterize power-law behaviors in 
cloud size distributions, a fitting algorithm was introduced, inspired by the 
works of Clauset et al. (2009), and applied to two distinct simulated convec-
tive situations. The method relies on robust statistical methods including 
Maximum Likelihood Estimation and goodness-of-fit tests, and allows the 
simultaneous determination of the characteristic power-law exponents, as 

Figure 13. Iorg index and mean core number per cloud plotted as functions 
of time in the LBA case. Clouds are here only identified based on the updraft 
criterion.

Table 4 
Same as Table 2 but for Best Fits Obtained Considering Cloud Core Size 
CCDFs Computed for the LBA Case (Fits Are Shown on Figure 14)

Time 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝜆𝜆  

10 hr 2.70 3.24 × 10 −3

7 hr 3.12 4.23 × 10 −3

4 hr 3.99 6.28 × 10 −3

10 hr 2.07 1.49 × 10 −3

7 hr 2.27 2.18 × 10 −3

4 hr 2.79 3.84 × 10 −3

Note. Best fits were here obtained considering power-law and exponential 
distributions only.
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well as the optimal size ranges over which the fits are valid. The objective of this work was then three-fold: (a) 
reexamine the general hypothesis that cloud sizes are power-law distributed; (b) identify potential alternatives to 
power-law distributions; (c) demonstrate that important information regarding the processes shaping the simu-
lated cloud ensembles may be learned from the systematic use of the fitting algorithm.

Cloud size distributions extracted from both continental deep convection and maritime shallow convection simu-
lations were shown to follow power-laws as long as clouds were identified based on a Condensed Water Path 
(CWP) threshold (corresponding to clouds being observed and identified from above). The two cases analyzed in 
this study yielded power-law exponents of 2.03 and 2.19, in agreement with most estimates reported in the liter-
ature. Although the use of linear regression in log-log coordinates yielded comparable values, it should be noted 
that these latter were associated with uncertainties at least twice as large as those obtained with our algorithm. 
Cloud size distributions extracted near the base of the cloud layer using thresholds in condensed water content 
and vertical velocity were not found to exhibit clear power-law behaviors: although the algorithm was able to 
find power-law fits in these situations, their quality was generally too poor to affirm the existence of power-law 
scalings. It must be stressed that errors related to, in particular, the small cloud size samples available are also 
thought to hamper the reliable identification of power-law fits in this case.

Considering updraft clouds identified in the lower troposphere, exponential distributions were found to yield fits 
at least as good as power-laws. Because doubts remain concerning the validity of the power-law scalings identi-
fied in these situations by the algorithm, the exponential distribution can here be considered as the better model. 

Figure 14. Same as Figure 2 but showing empirical CCDFs and corresponding best fits obtained for cloud core sizes (see text for details regarding the core 
identification procedure). Results are shown for the LBA case, and best fits were obtained considering power-law and exponential distributions applied to the entire core 
size ranges.
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In addition, although better fits could be obtained with two-parameter alternative distributions like lognormal or 
Weibull distributions, the improvements made over power-law and exponential fits were not substantial enough 
to justify the increased complexity associated with these models. Considering CWP clouds for which power-law 
scalings are more evident, if one is interested in parameterizing the total cloud cover characterizing the cloud 
ensemble, correctly representing the fast decay often seen in the tail of the empirical size distributions was found 
to be crucial. In this context, power-laws with an exponential cutoff were found to yield superior fits.

Whereas the results summarized above apply generally to most cloud scenes extracted from the two simula-
tions, the shape of the cloud size distributions computed in the continental convection case was shown to evolve 
with time despite the absence of a clear diurnal cycle. While cloud sizes were indeed found to be exponentially 
distributed at earlier times, a transition to power-law scalings (with an exponential decay) was observed as deeper 
clouds started to develop. It was argued that this transition is likely driven by (or happens simultaneously with) 
changes in the organization of the cloud and subcloud layers. Indeed, as deeper clouds grow, cold pools also 
become broader thus constraining the future generation of convective clouds to develop in more restricted areas. 
The result is that clouds are generally brought closer to each other, they are also more likely to merge and power-
law scalings emerge as a consequence of the increased fraction of merging clouds (in analogy with percolating 
systems in a continuum). Exponential tails then generally persist as a manifestation of finite-size effects. This 
hypothesis could be verified by demonstrating that the size distributions of individual cloud cores (obtained by 
splitting cloud objects) generally follow exponentials, even when cloud sizes are clearly power-law distributed.

Finally, we would like to again emphasize that not enough is known about the processes (organization of the 
cloud population, environmental conditions) controlling the shape and characteristic exponents of observed or 
simulated cloud size distributions. Whereas more studies are encouraged in this direction, such a knowledge 
can only be gained by minimizing the errors made otherwise through improper fitting. To correctly interpret 
changes in power-law cloud size distributions it is indeed absolutely necessary to be able to unambiguously iden-
tify power-law behaviors (or reject the power-law hypothesis when it’s not appropriate), and reduce as much as 
possible errors and inaccuracies made when estimating best fit power-law exponents. In this context, we strongly 
recommend the use of reliable fitting algorithms like the one introduced in this study.

Data Availability Statement
The fitting algorithm introduced in this work has been implemented as a python module (pyCloudFit) and was 
made available, upon request, at the following address: https://bitbucket.org/julien_savre/pycloudfit/src/master/. 
All data (cloud size distributions) produced and analyzed during this work is openly available at https://doi.
org/10.5281/zenodo.7005140 (Sacre, 2022). Any updates will also be posted on Zenodo.
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