
1.  Motivation
Fitting of the lunar laser ranging (LLR) data to the quality-factor power scaling law Q ∼ χ p rendered a small nega-
tive value of the exponential: p = −0.19 (Williams et al., 2001). Further attempts by the JPL team to reprocess the 
data led to p = −0.07. According to Williams and Boggs (2009),

“Q for rock is expected to have a weak dependence on tidal period, but it is expected to decrease with 
period rather than increase.”

The most recent estimates of the tidal contribution to the lunar physical librations (Williams & Boggs, 2015) 
still predict a mild increase of Q with period: from Q = 38 ± 4 at one month to Q = 41 ± 9 at one year, yielding 
p = −0.03 ± 0.09. Efroimsky (2012a, 2012b) suggested that since the frequency-dependence of k2/Q always has a 
kink shape, like in Figure 1, the negative slope found by the LLR measurements could be consistent with the peak 
of the kink residing between the monthly and annual frequencies. This interpretation entails, for a homogeneous 
Maxwell or Andrade lunar model, very low values of the mean viscosity, indicating the presence of partial melt.

Our goal now is to devise an interpretation based on the Sundberg-Cooper model. Within that model, the kink 
contains not one but two peaks, and we are considering the possibility that the negative slope of our interest is due 
to the monthly and annual frequencies bracketing either this peak or the local inter-peak minimum.
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basal layer are said to be unable to fit the frequency dependence of tidal Q. The purpose of our paper is to 
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show that the two models cannot be distinguished from each other by the available selenodetic measurements. 
Additional insight into the nature of lunar tidal dissipation can be gained either by measurements of 
higher-degree Love numbers and quality factors or by farside lunar seismology.

Plain Language Summary  As the Moon raises ocean tides on the Earth, the Earth itself gives 
rise to periodic deformation of the Moon. Precise measurements of lunar shape and motion can reveal those 
deformations and even relate them to our natural satellite's interior structure. In this work, we discuss two 
interpretations of those measurements. According to the first one, the lunar interior is hot and a small part of 
it might have melted, forming a thick layer of weak material buried more than 1,000 km deep under the lunar 
surface. According to the second one, there is no such layer, and the measured deformation can be explained 
by the behavior of solid rocks at relatively low temperatures. We show that the two possibilities cannot be 
distinguished from each other by the existing data.
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2.  Introduction
2.1.  Overview of Previous Works

The knowledge of the interior structure of the Moon is essential for under-
standing its thermal, geochemical, and orbital evolution as well as the coupled 
evolution of the Earth-Moon system. The proximity of our natural satellite 
to the Earth has also made it a frequent target of geophysical exploration. A 
large amount of data was collected by lunar seismic stations, deployed by 
the Apollo missions, which were functional for several years between 1972 
and 1977 (for a review, see, e.g., Garcia et al., 2019; Khan et al., 2013; Nunn 
et al., 2020). Other constraints are being placed by selenodetic measurements 
or by geochemical and petrological considerations. However, the deepest 
interior of the Moon still remains somewhat mysterious. Although different 
models based on the inversion of seismic travel times generally agree on the 
lunar mantle structure down to ∼1,200 km, below these depths they start to 
diverge greatly (Garcia et al., 2019).

After the acquisition of the first data by the lunar seismic network, it was 
pointed out by Nakamura et al. (1973, 1974) that direct shear waves from the 

farside of the Moon are not being detected by some of the near-side seismometers. Moreover, deep moonquakes, 
a class of tidally triggered seismic events originating at around 1,000 km depth, were almost absent on the farside. 
This puzzling phenomenon was interpreted by Nakamura et al. (1973) as an indication of a shear-wave shadow 
zone caused by a highly attenuating region around the core. Nakamura (2005) further reported efforts to find 
farside moonquakes among the deep moonquake nests that had not been located previously. Having identified 
about 30 likely farside nests, his updated analysis still demonstrated that either the region of the Moon's deep 
interior within about 40° from the antipodes (the center of the farside) is nearly aseismic or a portion of the lunar 
lower mantle severely attenuates or deflects seismic waves. Lunar seismic data were also reprocessed by Weber 
et al. (2011) and Garcia et al. (2011). However, while Weber et al. (2011) also found evidence for deep mantle 
layering and a strongly attenuating zone at the mantle base, Garcia et al. (2011) did not find evidence for such 
a feature in their analysis. The discussion about the seismic evidence for a strongly attenuating zone is thus still 
ongoing (Garcia et al., 2019).

Several authors argued for the existence of a low-velocity zone (LVZ) at the base of the mantle also on other than 
seismological grounds. They linked it to partial melting in the deep lunar interior, which might be triggered either 
by tidal dissipation (Harada et al., 2014), or by the presence of incompatible, radiogenic elements buried after an 
ancient mantle overturn (Khan et al., 2014). The idea of an overturn has been suggested by numerical modeling 
of magma ocean solidification with the emplacement of ilmenite-bearing cumulates above core-mantle boundary. 
Moreover, it is potentially supported by observations of near-surface gravity anomalies that point at an early lunar 
expansion triggered by radiogenic heating of the deep interior (Zhang et al., 2013).

Evidence for a low-rigidity/low-viscosity zone has also been sought in the lunar libration signal obtained by 
LLR (e.g., Williams & Boggs, 2015; Williams et al., 2001), and in selenodetic measurements (including orbiter 
tracking) that are sensitive to the lunar gravity field and tidal deformation (e.g., Konopliv et al., 2013; Lemoine 
et al., 2013). One of the most surprising findings resulting from fitting the LLR data was the low value and 
unexpected frequency dependence of the tidal quality factor Q, as mentioned in Section 1 above. The inferred 
frequency dependence can be explained by a low effective viscosity of the Moon (Efroimsky, 2012a, 2012b), 
or by the presence of a secondary peak in the dissipation spectrum (e.g., Williams & Boggs, 2015), possibly 
caused by the putative basal layer (Harada et  al.,  2014). The thickness, rheological properties, composition, 
and thermal state of that layer have been explored in a large number of studies (Briaud, Fienga, et al., 2023; 
Briaud, Ganino, et  al.,  2023; Harada et  al.,  2014, 2016; Khan et  al.,  2014; Kronrod et  al.,  2022; Matsumoto 
et al., 2015; Matsuyama et al., 2016; Raevskiy et al., 2015; Y. Tan & Harada, 2021; Williams & Boggs, 2015; 
Xiao et al., 2022) and are reviewed in greater detail in Supporting Information S1 to this text. A summary is also 
provided in Table 1. The typical value of the basal layer's viscosity is ∼10 16Pa s, the outer radius is mostly below 
600 km, and the predictions for the rigidity range from about 16 GPa (Khan et al., 2014; Xiao et al., 2022) to 
solid-like values (Kronrod et al., 2022; Matsuyama et al., 2016; Raevskiy et al., 2015). Earlier results from LLR 
indicated that the lunar core-mantle boundary (CMB) might still be out of equilibrium, which would imply long 

Figure 1.  A typical shape of the quality function Kl(ω) = kl(ω) sinϵl(ω), where 
ω is a shortened notation for the tidal Fourier mode ωlmpq (from Noyelles 
et al., 2014).
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relaxation times and high lower-mantle viscosities, in contradiction to the presence of partial melt. However, this 
hypothesis is not supported by more recent evaluations of LLR data (Viswanathan et al., 2019), that indicate that 
the CMB is in hydrostatic equilibrium.

Despite the relative consistency of the evidence for and the theoretical expectation of a highly dissipative basal 
layer, alternative models of a “melt-free” Moon have also been proposed (Karato, 2013; Nimmo et al., 2012). 
In particular, Nimmo et  al.  (2012) showed that the employment of a realistic, microphysically substantiated 
model of the tidal response can explain the low tidal Q and the observed k2 of the Moon without requiring the 
existence of a weak basal layer. Nevertheless, the lunar models considered by those authors were not able to fit 
the frequency dependence of the tidal Q. Another argument for high values of lower-mantle viscosities comes 
from the observations of deep moonquakes. Kawamura et al.  (2017) reevaluated an ensemble of moonquakes 
occurring at depths between 750 and 1,200 km and found a brittle-ductile transition temperature of approximately 
1240–1275 K, implying a cold lunar interior with temperatures below the solidus of dry peridotite.

As indicated in the previous paragraph, a feature of the selenodetic measurements that is difficult to explain 
without the existence of a highly dissipative basal layer is the aforementioned frequency dependence of the lunar 
Q, repeatedly derived from LLR measurements in the series of works by Williams et al. (2001); Williams and 
Boggs (2009); Williams et al. (2014), and Williams and Boggs (2015). Even an independent implementation of 
the LLR software by Pavlov et al. (2016) predicts the same value of Q for the monthly period as for the annual 
period, which is still not consistent with the expected frequency dependence of tidal dissipation in melt-free 
silicates.

In the absence of other than LLR-based data on the lunar Q, the most plausible explanation for the unexpected 
frequency dependence might still be an observational uncertainty, rather than an effect contained in a tidal model. 
Nevertheless, in this work, we shall explore two possible implications of the frequency dependence under the 
explicit assumption that the fitted values are a result of a natural phenomenon and not of a model's limitations or 
an observation error.

2.2.  Lunar k2 and Q

We will use the potential tidal Love number derived from the GRAIL mission tracking data. Two inde-
pendent analyses performed by the JPL group (Konopliv et  al.,  2013, the GL0660B solution) and the GSFC 

Reference Viscosity [Pa s] Rigidity [GPa] Radius [km] Thickness [km] Rheology

Harada et al. (2014) 2 × 10 16 35 500 170 Maxwell

Khan et al. (2014) — ∼16 340–490 150–200 Power law a

Raevskiy et al. (2015) — 30–55 530–550 ∼180 Elastic

Williams and Boggs (2015) ∼5 × 10 16 35 ≥535 ≥205 Andrade/Burgers + Debye peak b

Matsumoto et al. (2015) 𝐴𝐴
(

2.5
+1.5

−0.9

)

× 1016  ∼30 ∼570 >170 Maxwell

Matsuyama et al. (2016) — 𝐴𝐴 43
+26

−9
  300–700 𝐴𝐴 197

+66

−186
  Power law a

Harada et al. (2016) 3 × 10 16 35 540–560 210–230 Maxwell

Y. Tan and Harada (2021) 3 × 10 16 35 560–580 230–250 Maxwell

Kronrod et al. (2022) ∼10 16 (?) 30–60 ∼590 100–350 Maxwell

Xiao et al. (2022) 5 × 10 16 ∼16 ∼600 282 ± 5.4 Andrade b

Briaud, Fienga et al. (2023) 𝐴𝐴 (4.5 ± 0.8) × 1016  25 500 ± 1 80–170 Maxwell + viscous core

Briaud, Ganino et al. (2023) 10 16.99±1.22 25 545 ± 35 230 ± 65 Maxwell + viscous core

10 17.98±1.06 25 560 ± 34 198 ± 49 Maxwell + viscous outer 
core + inner core

 aBy “power law,” we mean the anelastic correction of k2 suggested by Zharkov and Gudkova (2005).  bMultiple rheological models were considered. We only list the 
preferred ones.

Table 1 
An Overview of the Recent Predictions for the Basal Layer's Properties
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group (Lemoine et  al.,  2013, the GRGM660PRIM solution) yielded two possible values of the parameter: 
k2 = 0.02405 ± 0.000176 and k2 = 0.02427 ± 0.00026, respectively. The unweighted mean of the two alterna-
tive values is k2 = 0.02416 ± 0.000222 for a reference radius of 1,738 km, and k2 = 0.02422 ± 0.000222 for the 
actual mean radius of 1737.151 km (Williams et al., 2014). For comparison, the recent analysis of the data from 
the Chang'e 5T1 mission gives k2 = 0.02430 ± 0.0001 (Yan et al., 2020). We note that the value obtained from 
satellite tracking data corresponds, in particular, to the real part of the complex Love number introduced later in 
Subsection 4.1. The GRAIL data are dominated by 1-month tidal effects, and the resulting k2 is thus interpreted 
as indicative of the deformation at the monthly frequency (A. Konopliv, private communication).

The tidal quality factor Q was obtained by fitting tidal contribution to lunar physical libration measured by LLR 
(Williams & Boggs,  2015; Williams et  al.,  2001,  2014). Interpreting the measurements of physical libration 
presents a highly complex problem, depending on cross interactions of tides raised by the Earth and the Sun, precise 
modeling of the lunar orbit and of the instantaneous positions of the Earth-based stations and the Moon-based 
retroreflectors, and on adequate incorporation of the lunar core-mantle friction (Williams et al., 2001). In prac-
tice, the tidal time delay at a monthly period and the dissipation-related corrections to the periodic latitudinal 
and longitudinal variations in the Moon's orientation are output and related analytically to linear combinations 
of k2/Q at a number of loading frequencies. Since many of the loading frequencies are close to each other, the 
periodic corrections enable approximate estimation of the leading dissipation terms. Specifically, the strongest 
correction (compared to its uncertainty) is related to the annual longitudinal libration. Assuming a fixed k2 at the 
monthly frequency, equal to the above-mentioned unweighted average, and using a complex rheological model 
best fitting the dissipation-related corrections to libration angles, Williams and Boggs (2015) derived the follow-
ing frequency-dependent values of tidal quality factor: Q = 38 ± 4 at the period of 1 month, Q = 41 ± 9 at 1 year, 
and lower bounds of Q ≥ 74 at 3 years and Q ≥ 58 at 6 years.

Williams and Boggs (2015) also attempted to find the frequency-dependence of k2; however, the effect could 
not be detected by existing measurements. We note that in contrast to the unexpected frequency dependence 
of Q found with the JPL-based software (Williams & Boggs, 2015; Williams et al., 2001, 2014), an independ-
ent implementation of the fitting tool with different preset solutions for part of the geophysical phenomena 
(Pavlov et  al.,  2016) predicted Q  =  45 at both the monthly and the annual frequencies. Moreover, Williams 
et al. (2015) reported k2/Q derived from the GRAIL data (sensitive to the monthly tidal variations) that indicate 
Qmonthly = 41 ± 4.

As an additional, though a relatively weak constraint on the lunar interior structure, we consider the degree-3 
potential tidal Love number k3 and the degree-2 deformational Love number h2 corresponding to radial defor-
mation. The k3 number has been derived from GRAIL mission tracking data and, as with k2 above, we adopt 
the unweighted average of the two existing independent solutions (Konopliv et al., 2013; Lemoine et al., 2013): 
k3 = 0.0081 ± 0.0018. The h2 number has been measured by LLR and by laser altimetry (Mazarico et al., 2014; 
Pavlov et  al.,  2016; Thor et  al.,  2021; Viswanathan et  al.,  2018), the most recent value, presented by Thor 
et al. (2021), being h2 = 0.0387 ± 0.0025.

We finally note the reason why the constraints on the lunar deep interior from the measurements of k3 are weak. A 
degree-l component of the internal tidal potential is proportional to r l, where r is the distance between the centers 
of mass of the tidally perturbed body and the perturber. For this reason, with increasing degree l, the shallower 
depths contribute more and more to the Love numbers kl. The sensitivity of the higher-degree Love numbers to 
the deep interior is, therefore, limited as compared to degree 2.

2.3.  Outline of This Work

After an overview of the models and interpretations proposed in recent literature (with a focus on the last 10 
years of the discussion), we are ready to continue with the central part of this project. Our plan is to provide 
an interpretation of the unexpected frequency dependence of tidal Q which does not require partial melting (in 
a way similar to Nimmo et al., 2012) and compare it with a model containing a highly dissipative basal layer 
(Harada et al., 2014; Matsumoto et al., 2015). Section 3 introduces and gives a justification for the rheological 
model employed. Namely, it discusses the Sundberg-Cooper extension of the Andrade model and the dissipation 
related to elastically accommodated grain-boundary sliding (GBS). The following Section 4 links the non-elastic 
rheology to Love numbers and tidal quality factors. In Section 5, we first illustrate the expected position of a 
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secondary peak in the dissipation spectrum of a homogeneous Moon, and then attempt to find the parameters 
of multi-layered lunar models that would produce the values of the monthly tidal Q and annual k2/Q reported by 
Williams and Boggs (2015). At the same time, we fit the empirical values of lunar k2, k3, and h2 given in Subsec-
tion 2.2 and the total mass and moment of inertia of the Moon. Section 6 discusses implications of our models, 
and the results are briefly summarised in Section 7.

3.  General Facts on Rheologies
3.1.  Constitutive Equation

Rheological properties of a material are encoded in a constitutive equation interconnecting the present-time 
deviatoric strain tensor uγν(t) with the values that have been assumed by the deviatoric stress σγν(t′) over the time 
period t′ ≤ t. Under linear deformation, the equation has the form of convolution, in the time domain:

2 ���(�) = �̂ (�) ��� = ∫

�

−∞

⋅
�
(

� − �′
)

���
(

�′
)

��′,� (1)

and the form of product, in the frequency domain:

2 𝑢̄𝑢𝛾𝛾𝛾𝛾(𝜒𝜒) = 𝐽𝐽 (𝜒𝜒) 𝜎̄𝜎𝛾𝛾𝛾𝛾(𝜒𝜒).� (2)

Here, overdot stands for time derivative, 𝐴𝐴 𝐴𝐴𝐴𝛾𝛾𝛾𝛾(𝜒𝜒) and 𝐴𝐴 𝐴𝐴𝐴𝛾𝛾𝛾𝛾(𝜒𝜒) are the Fourier images of strain and stress, while the 
complex compliance 𝐴𝐴 𝐽𝐽 (𝜒𝜒) is a Fourier image of the kernel 𝐴𝐴 𝐉̇𝐉(𝑡𝑡 − 𝑡𝑡

′) of the integral operator in Equation 1, see, for 
example, Efroimsky (2012a, 2012b) for details.

3.2.  The Maxwell and Andrade Models

At low frequencies, the deformation of most minerals is viscoelastic and obeys the Maxwell model:
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𝐴𝐴 𝕌𝕌 and 𝐴𝐴 𝕊𝕊 being the deviatoric strain and stress; η and μ denoting the viscosity and rigidity. (Below, we shall address 
the question as to whether μ is the unrelaxed or relaxed rigidity.) The Maxwell time is introduced as

𝜏𝜏M ≡

𝜂𝜂

𝜇𝜇
.� (4)

For this rheological model, the kernel of the convolution operator in Equation 1 is a time derivative of the compli-
ance function
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where Θ(t − t′) is the Heaviside step function, while the elastic compliance Je is the inverse of the shear rigidity μ:

𝐽𝐽e ≡
1

𝜇𝜇
.� (6)

In the frequency domain, Equations 3a and 3b can be cast into the form of Equation 2, with the complex compli-
ance given by
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and the terms Je and −i/(ηχ) being the elastic and viscous parts of deformation, correspondingly. So a Maxwell 
material is elastic at high frequencies, viscous at low.

More general is the combined Maxwell-Andrade rheology, often referred to simply as the Andrade rheology. It 
comprises inputs from elasticity, viscosity, and anelastic processes:

(𝐴𝐴)
𝐽𝐽
(

𝑡𝑡 − 𝑡𝑡
′
)

=

[

𝐽𝐽e + 𝛽𝛽
(

𝑡𝑡 − 𝑡𝑡
′
)𝛼𝛼

+
𝑡𝑡 − 𝑡𝑡

′

𝜂𝜂

]

Θ
(

𝑡𝑡 − 𝑡𝑡
′
)

,� (8)

the corresponding complex compliance being.

(𝐴𝐴)
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= 𝐽𝐽e + 𝛽𝛽 (𝑖𝑖𝑖𝑖)
−𝛼𝛼
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−1
,� (9b)

where Γ is the Gamma function, while α and β denote the dimensionless and dimensional Andrade parameters.

Equations 9a and 9b suffer an inconvenient feature, the fractional dimensions of the parameter β. It was therefore 
suggested in Efroimsky (2012a, 2012b) to shape the compliance into a more suitable form
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with the parameter τA christened as the Andrade time and linked to β through

𝛽𝛽 = 𝐽𝐽e 𝜏𝜏
−𝛼𝛼

A
.� (12)

The compliance given by Equation 11 is identical to Equations 9a and 9b, but is spared of the parameter β of 
fractional dimensions.

3.3.  Why the Maxwell and Andrade Models Require Refinement

In the literature, it is common to postulate that both the rigidity and compliance assume their unrelaxed values 
denoted with μU and JU.

This convention is reasonable for sufficiently high frequencies:

𝜒𝜒 is high ⇒ 𝜇𝜇 = 𝜇𝜇U and 𝐽𝐽e = 𝐽𝐽U.� (13)

The convention, however, becomes unjustified for low frequencies. In that situation, the material has, at each 
loading cycle, enough time to relax, wherefore both the rigidity modulus and its inverse assume values different 
from the unrelaxed ones. In the zero-frequency limit, they must acquire the relaxed values:

𝜒𝜒 → 0 ⇒ 𝜇𝜇 → 𝜇𝜇R and 𝐽𝐽e → 𝐽𝐽R.� (14)

This fact must be taken care of, both within the Maxwell and Andrade models.

3.4.  Generalization of the Maxwell and Andrade Models, According to Sundberg and Cooper (2010)

The simplest expression for the time relaxation of the elastic part of the compliance is

𝐽𝐽e(𝑡𝑡) = 𝐽𝐽U + (𝐽𝐽R − 𝐽𝐽U)
[

1 − 𝑒𝑒
−𝑡𝑡∕𝜏𝜏

]

� (15a)

= 𝐽𝐽U

[

1 + Δ
(

1 − 𝑒𝑒
− 𝑡𝑡∕𝜏𝜏

)]

,� (15b)

where the so-called relaxation strength is introduced as
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Δ ≡
𝐽𝐽R

𝐽𝐽U

− 1,� (16)

while τ is the characteristic relaxation time. When relaxation of Je is due to elastically accommodated 
grain-boundary sliding, this time can be calculated as

𝜏𝜏 = 𝜏𝜏gbs =
𝜂𝜂gb 𝑑𝑑

𝜇𝜇U 𝛿𝛿
,� (17)

where ηgb is the grain-boundary viscosity, d is the grain size, while δ is the structural width of the grain boundary. 
Details of energy-dissipation regimes associated with grain-boundary sliding are given, for example, in Jackson 
et al. (2002, 2010, 2014).

In the frequency domain, this compliance is written as

𝐽𝐽e(𝜒𝜒) = 𝐽𝐽U

[

1 +
Δ

1 + 𝜒𝜒2 𝜏𝜏2
+ 𝑖𝑖

𝜒𝜒 𝜒𝜒 Δ

1 + 𝜒𝜒2 𝜏𝜏2

]

,� (18)

its imaginary part demonstrating a Debye peak. Our goal is to trace how this Debye peak translates into the 
frequency-dependence of the inverse tidal quality factor 1/Q and of k2/Q of a near-spherical celestial body.

Substitution of Equation 18 into the overall expression for the Andrade complex compliance (Equation 11) will 
produce the Sundberg and Cooper (2010) rheology:

𝐽𝐽 (𝜒𝜒) = 𝐽𝐽U

[

1 +
Δ

1 + 𝜒𝜒2𝜏𝜏2
− 𝑖𝑖

𝜒𝜒 𝜒𝜒 Δ

1 + 𝜒𝜒2𝜏𝜏2
+ (𝑖𝑖𝑖𝑖𝑖𝑖A)

−𝛼𝛼
Γ(1 + 𝛼𝛼) − 𝑖𝑖(𝜒𝜒𝜒𝜒M)

−1

]

� (19a)

= 𝐽𝐽U

[

1 +
Δ

1 + 𝜒𝜒2 𝜏𝜏2
+ Γ(1 + 𝛼𝛼) 𝜁𝜁−𝛼𝛼 (𝜒𝜒𝜒𝜒M)

−𝛼𝛼
cos

(

𝛼𝛼𝛼𝛼

2

)

]

� (19b)

− 𝑖𝑖 𝑖𝑖U

[

𝜒𝜒 𝜒𝜒 Δ

1 + 𝜒𝜒2 𝜏𝜏2
+ Γ(1 + 𝛼𝛼) 𝜁𝜁

−𝛼𝛼
(𝜒𝜒𝜒𝜒M)

−𝛼𝛼
sin

(

𝛼𝛼𝛼𝛼

2

)

+ (𝜒𝜒𝜒𝜒M)
−1

]

,�

where we introduced the dimensionless Andrade time

𝜁𝜁 =
𝜏𝜏A

𝜏𝜏M
.� (20)

Be mindful that in Equation 10 it is only the first term, Je, that is changed to the function given by Equation 15b. 
Accordingly, in Equation 11, it is only the first term, Je, that is substituted with the function expressed by Equa-
tion 18. In the other terms, both the Maxwell and Andrade times are still introduced through the unrelaxed value 
Je = JU:

𝜏𝜏M ≡ 𝜂𝜂 𝜂𝜂U, 𝜏𝜏A ≡

(

𝐽𝐽U

𝛽𝛽

)1∕𝛼𝛼

.� (21)

Had we combined the elastic relaxation rule (Equation 18) with the Maxwell model (Equation 7) instead of 
Andrade, we would have arrived at the Burgers model—which would be Equation 19 with the Andrade terms 
omitted, that is, with τA → ∞. Simply speaking, in the absence of transient processes, Andrade becomes Maxwell, 
while Sundberg-Cooper becomes Burgers.

The presently standard term “Sundberg-Cooper rheology” was coined by Renaud and Henning (2018) who stud-
ied tidal heating in mantles obeying this rheological law. This rheological law was later employed for Mars 
(Bagheri et al., 2019) and for Pluto and Charon (Bagheri, Efroimsky, et al., 2022; Bagheri, Khan, et al., 2022).

Along with the dimensionless Andrade time ζ, below we shall employ the relative relaxation time

𝑡𝑡rel =
𝜏𝜏

𝜏𝜏M
� (22)

relating the relaxation timescale for the compliance Je to the Maxwell time.
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3.5.  Further Options

The characteristic relaxation time τ can be replaced with a distribution D(τ) of times spanning an interval from a 
lower bound τL to an upper bound τH. So the relaxation of the elastic part of the compliance will be not

𝐽𝐽e(𝑡𝑡) = 𝐽𝐽U

[

1 + Δ
(

1 − 𝑒𝑒
− 𝑡𝑡∕𝜏𝜏

)]

;� (23)

but

𝐽𝐽𝑒𝑒(𝑡𝑡) = 𝐽𝐽𝑈𝑈

[

1 + Δ
∫

𝜏𝜏𝐻𝐻

𝜏𝜏𝐿𝐿

𝐷𝐷(𝜏𝜏)

[

1 − exp

(

−
𝑡𝑡

𝜏𝜏

)]

𝑑𝑑𝑑𝑑

]

.� (24)

If the relaxation is due to elastically accommodated GBS, this distribution would be a consequence of variable 
grain-boundary viscosity, grain sizes and shapes, and non-uniform orientation of grain boundaries with respect 
to the applied stress (see also Lee & Morris, 2010).

Insertion of Equation 24 in the Maxwell model (Equation 5) or in the Andrade model (Equation 10) produces 
the extended Burgers model or the extended Sundberg-Cooper model, correspondingly. For details, see Bagheri, 
Efroimsky, et al. (2022); Bagheri, Khan, et al. (2022) and references therein.

4.  Complex Love Numbers and Quality Functions
The perturbing potential wherewith the Earth is acting on the Moon can be decomposed in series over Fourier 
modes ωlmpq parameterised with four integers lmpq. If the tidal response of the Moon is linear, both the produced 
deformation and the resulting additional tidal potential of the Moon are expandable over the same Fourier modes, 
as proved in Efroimsky and Makarov (2014, Appendix C). The proof is based on the fact that a linear integral 
operator (convolution) in the time domain corresponds to a product of Fourier images in the frequency domain.

While the Fourier modes can be of either sign, the physical forcing frequencies in the body are

𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = |𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|.� (25)

An extended discussion of this fact can be found in Section 4.3 of Efroimsky and Makarov (2013).

Wherever this causes no confusion, we omit the subscript to simplify the notation:

𝜔𝜔 ≡ 𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝜒𝜒 ≡ 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.� (26)

4.1.  The Complex Love Number

Writing the degree-l complex Love number as

𝑘̄𝑘𝑙𝑙(𝜔𝜔) = ℜ
[

𝑘̄𝑘𝑙𝑙(𝜔𝜔)
]

+ 𝑖𝑖ℑ
[

𝑘̄𝑘𝑙𝑙(𝜔𝜔)
]

= |𝑘̄𝑘𝑙𝑙(𝜔𝜔)| 𝑒𝑒
−𝑖𝑖𝑖𝑖𝑙𝑙 (𝜔𝜔),� (27)

we conventionally denote the phase as −ϵl, with a “minus” sign. This convention imparts ϵl with the meaning of 
phase lag. We also introduce the so-called dynamical Love number

𝑘𝑘𝑙𝑙(𝜔𝜔) = |𝑘̄𝑘𝑙𝑙(𝜔𝜔)|.� (28)

A key role in the tidal theory is played by the quality functions

𝐾𝐾𝑙𝑙(𝜔𝜔) ≡ −ℑ
[

𝑘̄𝑘l(𝜔𝜔)
]

= 𝑘̄𝑘l(𝜔𝜔) sin 𝜖𝜖𝑙𝑙(𝜔𝜔)� (29a)

entering the series expansions for tidal forces, torques, dissipation rate (Efroimsky & Makarov, 2014), and orbital 
evolution (Boué & Efroimsky, 2019).

Since Sign ϵl(ω) = Sign ω (Efroimsky & Makarov, 2013), they can be written as

𝐾𝐾𝑙𝑙(𝜔𝜔) ≡ −ℑ
[

𝑘̄𝑘l(𝜔𝜔)
]

=
𝑘𝑘𝑙𝑙(𝜔𝜔)

𝑄𝑄𝑙𝑙(𝜔𝜔)
Sign𝜔𝜔𝜔� (29b)
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where the tidal quality factor is introduced via

𝑄𝑄
−1

𝑙𝑙
(𝜔𝜔) = |sin 𝜖𝜖𝑙𝑙(𝜔𝜔)|.� (30)

The dependency sin ϵl(ω) being odd, the function Ql(ω) is even. Also, even is the function kl(ω). Therefore, for any 
sign of ω and ϵl, it is always possible to treat both Ql(ω) and kl(ω) as functions of the forcing frequency χ ≡ |ω|:

𝑄𝑄𝑙𝑙(𝜔𝜔) = 𝑄𝑄𝑙𝑙(𝜒𝜒), 𝑘𝑘𝑙𝑙(𝜔𝜔) = 𝑘𝑘𝑙𝑙(𝜒𝜒).� (31)

Often attributed to Biot (1954), though known yet to Sir George Darwin (1879), the so-called correspondence 
principle, or the elastic-viscoelastic analogy, is a valuable key to numerous problems of viscoelasticity. It enables 
one to derive solutions to these problems from the known solutions to analogous static problems. In application 
to bodily tides, this principle says that the complex Love number of a uniform spherical viscoelastic body, 𝐴𝐴 𝑘̄𝑘𝑙𝑙(𝜒𝜒) , 
is linked to the complex compliance 𝐴𝐴 𝐽𝐽 (𝜒𝜒) by the same algebraic expression through which the static Love number 
kl of that body is linked to the relaxed compliance JR:

𝑘̄𝑘𝑙𝑙(𝜒𝜒) =
3

2 (𝑙𝑙 − 1)

1

1 + 𝑙𝑙∕𝐽𝐽 (𝜒𝜒)
,� (32)

where

𝑙𝑙 ≡

(

2 𝑙𝑙
2
+ 4 𝑙𝑙 + 3

)

𝑙𝑙 g 𝜌𝜌𝜌𝜌
=

3
(

2 𝑙𝑙
2
+ 4 𝑙𝑙 + 3

)

4 𝑙𝑙 𝑙𝑙 𝑙𝑙 𝑙𝑙2 𝑅𝑅2
,� (33)

ρ, R, and g being the density, radius, and surface gravity of the body, and G being Newton's gravitational constant.

As an aside, we would mention that while 𝐴𝐴 −ℑ[𝑘𝑘𝑙𝑙(𝜔𝜔)] emerges in the tidal torque, the real part of the complex Love 
number, 𝐴𝐴 ℜ[𝑘𝑘𝑙𝑙(𝜔𝜔)] = 𝑘𝑘𝑙𝑙(𝜔𝜔) cos 𝜖𝜖𝑙𝑙(𝜔𝜔) , shows up in the expansion for the tidal potential. Not considered further in 
the present study, the general expression for this product and its version for the Maxwell and other rheologies can 
be found in Efroimsky (2015, Appendix A6).

4.2.  kl(χ)/Ql(χ) and 1/Ql(χ) for an Arbitrary Rheology

Equation 32 entails:

𝐾𝐾𝑙𝑙(𝜒𝜒) = 𝑘𝑘𝑙𝑙(𝜒𝜒) sin 𝜖𝜖𝑙𝑙(𝜒𝜒) = −
3

2(𝑙𝑙 − 1)

𝑙𝑙 ℑ
[

𝐽𝐽 (𝜒𝜒)
]

(

ℜ
[

𝐽𝐽 (𝜒𝜒)
]

+ 𝑙𝑙

)2

+
(

ℑ
[

𝐽𝐽 (𝜒𝜒)
])2

,� (34)

the coefficients 𝐴𝐴 𝑙𝑙 rendered by Equation 33. We see that for a homogeneous incompressible sphere, the infor-
mation needed to calculate the quality function comprises the radius, the density, and the rheological law 𝐴𝐴 𝐽𝐽 (𝜒𝜒) .

The inverse tidal quality factor of degree l is given by (Efroimsky, 2015)

𝑄𝑄𝑙𝑙(𝜒𝜒)
−1

≡ |sin 𝜖𝜖𝑙𝑙(𝜒𝜒)|,� (35)

sin 𝜖𝜖𝑙𝑙(𝜒𝜒) = −
𝑙𝑙 ℑ

[

𝐽𝐽 (𝜒𝜒)
]

√

(

ℜ
[

𝐽𝐽 (𝜒𝜒)
] )2

+
(

ℑ
[

𝐽𝐽 (𝜒𝜒)
] )2

√

(

ℜ
[

𝐽𝐽 (𝜒𝜒)
]

+ 𝑙𝑙

)2

+
(

ℑ
[

𝐽𝐽 (𝜒𝜒)
])2

.� (36)

All new is well-forgotten old. As we were writing this paper, it became known to us that for the Maxwell rheol-
ogy, the frequency-dependence of sin ϵ2 was studied yet by Gerstenkorn  (1967) in a work that went virtually 
unnoticed. Because of different notation and Gerstenkorn's terse style, it is not apparent if his values for the peak's 
magnitude and location are the same as ours. However, the overall shape of the dependence sin ϵ2(χ) obtained by 
Gerstenkorn (1967, Figure 2) seems right.
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4.3.  Notational Point: Q and Q2

In publications where both seismic and tidal dissipation are considered, it is necessary to distinguish between 
the seismic and tidal quality factors. In that situation, the letter Q without a subscript is preserved for the seismic 
factor.

In the literature on tides, it is common to employ Q as a shorter notation for the quadrupole tidal factor Q2. We 
shall follow the latter convention:

𝑄𝑄 ≡ 𝑄𝑄2,� (37)

and shall use the two notations intermittently.

4.4.  The Frequency-Dependencies of kl/Ql and 1/Ql for the Maxwell and Andrade Models

For a homogeneous sphere composed of a Maxwell or Andrade material, the quality function Kl(ω) has a kink 
form, as in Figure 1. The function sin ϵl(ω) is shaped similarly.

Insertion of Equation 7 into Equation 34 shows that for a spherical Maxwell body the extrema of the kink Kl(ω) 
are located at

𝜔𝜔peak 𝑙𝑙
= ±

𝜏𝜏
−1

M

1 + 𝑙𝑙 𝜇𝜇
� (38)

the corresponding extrema assuming the values

𝐾𝐾
(peak)

𝑙𝑙
= ±

3

4(𝑙𝑙 − 1)

𝑙𝑙 𝜇𝜇

1 + 𝑙𝑙 𝜇𝜇
,� (39)

wherefrom 𝐴𝐴 |𝐾𝐾𝑙𝑙| <
3

4(𝑙𝑙−1)
 .

Inside the interval between peaks, the quality functions are near-linear in ω:

|𝜔𝜔| < |𝜔𝜔peak 𝑙𝑙
| ⇒ 𝐾𝐾𝑙𝑙(𝜔𝜔) ≃

3

2(𝑙𝑙 − 1)

𝑙𝑙 𝜇𝜇

1 + 𝑙𝑙 𝜇𝜇

𝜔𝜔

|𝜔𝜔peak 𝑙𝑙
|

.� (40)

Outside the inter-peak interval, they fall off as about ω −1:

|𝜔𝜔| > |𝜔𝜔peak 𝑙𝑙
| ⇒ 𝐾𝐾𝑙𝑙(𝜔𝜔) ≃

3

2(𝑙𝑙 − 1)

𝑙𝑙 𝜇𝜇

1 + 𝑙𝑙 𝜇𝜇

|𝜔𝜔peak 𝑙𝑙
|

𝜔𝜔
.� (41)

While the peak magnitudes (Equation 39) are ignorant of the viscosity η, the spread between the peaks scales as 
the inverse η, as evident from Equation 38. The lower the mean viscosity, the higher the peak frequency 𝐴𝐴 |𝜔𝜔peak 𝑙𝑙

| .

It can be demonstrated using Equation 36 that for a homogeneous Maxwell body the extrema of sin ϵl(ω) are 
located at

𝜔𝜔peak of sin 𝜖𝜖𝑙𝑙
= ±

𝜏𝜏
−1

M

√

1 + 𝑙𝑙𝜇𝜇

.� (42)

For the Moon, this peak is located within a decade from its counterpart for Kl given by Equation 38.

In many practical situations, only the quadrupole (l = 2) terms matter. The corresponding peaks are located at

𝜔𝜔peak2
= ±

𝜏𝜏
−1

M

1 + 2 𝜇𝜇
≈ ±

1

2 𝜂𝜂
= ±

8𝜋𝜋 𝜋𝜋 𝜋𝜋
2
𝑅𝑅

2

57 𝜂𝜂
.� (43)
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The approximation in this expression relies on the inequality 𝐴𝐴 𝑙𝑙𝜇𝜇 𝜇 1 , fulfillment whereof depends on the size 
of the body. For a Maxwell Moon with μ = 6.4 × 10 10 Pa and G(ρR) 2 ≈ 2.24 × 10 9 Pa, we have 𝐴𝐴 2𝜇𝜇 ≈ 64.5 , so 
the approximation works.

While for the Maxwell and Andrade models each of the functions Kl(ω) and sin ϵl(ω) possesses only one peak 
for a positive argument, the situation changes for bodies of a more complex rheology. For example, the existence 
of an additional peak is ensured by the insertion of the Sundberg-Cooper compliance, Equation 19b, into Equa-
tions 34 or 36.

5.  Application to the Moon
5.1.  The “Wrong” Slope Interpreted With the Maxwell Model

As we explained in Section 1, fitting of the LLR-obtained quadrupole tidal quality factor Q = Q2 to the power 
law Q ∼ χ p resulted in a small negative value of the exponential p (Williams & Boggs, 2015). An earlier attempt 
to explain this phenomenon implied an identification of this slightly negative slope with the incline located 
to the left of the maximum of the quality function (k2/Q2)(χ), see Figure 1. Within this interpretation, χpeak ≡ 
|ωpeak| should be residing somewhere between the monthly and annual frequencies explored in Williams and 
Boggs (2015). As was explained in Efroimsky (2012a), this sets the mean viscosity of the Moon as low as

𝜂𝜂 ≈ 3 × 10
15

Pa s,� (44)

The extrema of (1/Q2)(χ) are close to those of (k2/Q2)(χ), as can be observed from equations 19 and 45 of 
Efroimsky (2015). Therefore, had we used, instead of the maximum of k2/Q2 given by Equation 43, the maximum 
of 1/Q2 given by Equation 42, the ensuing value would have been only an order higher:

𝜂𝜂 ≈ 4 × 10
16

Pa s.� (45)

Such values imply a high concentration of the partial melt in the mantle—quite in accordance with the seismo-
logical models by Nakamura et al. (1974) and Weber et al. (2011).

However, employment of a rheology more realistic than Maxwell may entail not so low a viscosity—in which 
case the existence of a semi-molten layer may be questioned.

5.2.  Frequency Dependence of Tidal Dissipation in the Sundberg-Cooper Model

The Debye peak emerging in the imaginary part of 𝐴𝐴 𝐽𝐽e (Equation 18) will, obviously, show itself also in the shape 
of the imaginary part of the overall 𝐴𝐴 𝐽𝐽  , the bottom line of Equation 19b. Consequently, substitution of Equa-
tions 19a or 19b in Equations 34 and 36 will entail the emergence of a Debye warp on the kinks for kl/Ql and 1/
Ql. Where will the additional peak be located for realistic values of the relaxation timescale τ? What values for 
the mean viscosity will it entail?

In the end of Section 3.4, we introduced the relative relaxation time as trel ≡ τ/τM. Figure 2 illustrates specifically 
the effect of trel in the Sundberg-Cooper model on the position of the additional Debye peak for a homogeneous 
lunar interior with an arbitrarily chosen high mean viscosity ηMoon = 10 22 Pa s. The emergence of another local 
maximum in the k2/Q2 and 1/Q2 functions may naturally explain the increase in dissipation (or decrease in the 
quality factor Q) with frequency, even within a homogeneous and highly viscous model.

Furthermore, as was recently shown by Gevorgyan (2021), the tidal response of a homogeneous Sundberg-Cooper 
planet mimics the response of a body consisting of two Andrade layers with different relaxation times. This kind 
of aliasing may, in principle, be also demonstrated by the Moon. Figure 3 depicts the tidal quality function k2/
Q2 and the inverse quality factor 1/Q2 as functions of frequency, for a homogeneous Sundberg-Cooper moon and 
for a differentiated lunar interior with a rheologically weak layer at the base of the mantle. In the second case, 
the basal layer is described by the Maxwell model and the overlying mantle by the Andrade model. Both cases 
follow the same frequency dependence, implying that the existence of a weak basal layer cannot be confirmed 
unequivocally by the tidal data. In a layered model containing a core, a Sundberg-Cooper mantle, and a Maxwell 
basal semi-molten layer, the tidal response would be characterised by three peaks (Figure 4).
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5.3.  Constructing a Multi-Layered Model

Section 4 introduced the complex Love number 𝐴𝐴 𝑘̄𝑘𝑙𝑙(𝜒𝜒) for an arbitrary linear anelastic or viscoelastic rheology 
assuming a homogeneous incompressible sphere. While such a model can reasonably approximate the response 
of the Moon with a homogeneous mantle and a small core, its application to a body with a highly dissipative basal 
layer would not be accurate (Bolmont et al., 2020). A planetary interior with a highly dissipative layer can still 
be approximated by a homogeneous model with an additional absorption peak or band in the underlying rheolog-
ical law. However, we would need to know the mapping between the parameters of the dissipative layer and the 
parameters of the additional peak (Gevorgyan, 2021; Gevorgyan et al., 2023).

Therefore, in the following sections, we will replace the homogeneous model with three models consisting of 
three or four layers and we will calculate the corresponding complex Love numbers numerically, using a matrix 
method based on the normal mode theory (e.g., Sabadini & Vermeersen, 2004; Takeuchi & Saito, 1972; Wu & 
Peltier, 1982). For the sake of simplicity, we consider all layers in the numerical model (linearly) viscoelastic 
and we mimic the response of liquid layers by the Maxwell model with Je in Equation 7 approaching 0. This 
method has also been tested against another implementation of the same model, in which the liquid layers were 

Figure 2.  The tidal quality function (left) and the inverse quality factor (right) for different ratios between the timescale τ and the Maxwell time τM (indicated by the 
shades of blue). The yellow and red vertical lines show the Q2 values given by Williams and Boggs (2015) for the annual and the monthly component, respectively. In 
this case, we consider a homogeneous lunar interior model governed by the Sundberg-Cooper rheology. The mantle viscosity was set to 10 22 Pa s and the mantle rigidity 
to 80 GPa.

Figure 3.  The tidal quality function (left) and inverse quality factor (right) for three model cases: a homogeneous Andrade model (dashed red line), a homogeneous 
Sundberg-Cooper model (blue line), and a three-layered model (solid red line) comprising a core, an Andrade mantle and a Maxwell semi-molten layer at the base of 
the mantle.
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inputted through different boundary conditions; the results obtained within the two approaches are virtually the 
same. Using the output complex Love numbers for various rheological parameters, we then proceed by fitting 
the empirical values.

If not stated differently for illustrative purposes, the three alternative models will always comprise an elastic crust 
of constant density (ρcr = 2550 kg m −3) and thickness (Dcr = 40 km), consistent with the gravity and topography 
data (Wieczorek et al., 2013), and a liquid core with a low viscosity (ηc = 1 Pa s). Although the existence of 
an inner core is possible and even indicated by the stacked seismograms presented by Weber et al. (2011), its 
response to tidal loading would be decoupled from the rest of the mantle, and it would contribute to the resulting 
tidal deformation only negligibly. Therefore, the inner core is not included in our modeling. We note that the 
recent study of Briaud, Ganino, et al. (2023) shows that an inner core might be required even by tidal and mineral-
ogical data. However, their model uses a different rheological model of the mantle and also predicts much higher 
outer core viscosity than considered in our work.

Subsection 5.5 makes use of a three-layered model (Model 1) consisting of the liquid core, a homogeneous mantle 
described by the Andrade rheology, and the elastic crust. The density and radius of the liquid core, as well as the 
density, rigidity, viscosity, and the Andrade parameters of the mantle, are treated as free parameters and fitted to 
the data.

The second model (Model 2), considered in Subsection 5.6, is essentially similar to the previous one except that 
its mantle is governed by the Sundberg-Cooper rheological model. In addition to the previous set of parameters, 
we now also seek the values of the relaxation strength Δ and the relative relaxation time trel.

Finally, the model with a basal dissipative layer (Model 3), which is discussed in Subsection 5.7, contains a core, 
an elastic crust, and a two-layered mantle. Each layer of the mantle is assumed to be homogeneous. The basal 
layer is described by the Maxwell model with fitted rigidity μLVZ, viscosity ηLVZ, and density ρLVZ; additionally, 
we fit its outer radius RLVZ. For the overlying bulk mantle, we consider the Andrade model with fitted viscosity 
ηm, rigidity μm, density ρm, and the Andrade parameters α, ζ. The reason for using the simple Maxwell model 
instead of the Andrade model in the basal layer is the following: in order to fit the measured tidal quality factor 
Q at the monthly and the annual frequency, the peak dissipation from the basal layer should be located either 
between these frequencies or above the monthly frequency. At the same time, in the vicinity of the peak dissi-
pation, the Andrade and Maxwell rheologies are almost indistinguishable from each other. (Comparing the last 
two terms on the final line of Equation 19, we observe that the viscous term exceeds the Andrade term when 

𝐴𝐴 𝐴𝐴M𝜒𝜒 𝜒 (𝜏𝜏A∕𝜏𝜏M)
𝛼𝛼∕(1−𝛼𝛼) . In realistic situations, τM χpeak satisfies this condition safely. So, near the peak the Andrade 

term is virtually irrelevant, and the regime is almost Maxwell.) Hence, we chose the simpler of the two rheologi-
cal models. This decision will also facilitate the comparison of our results for the basal layer's characteristics with 

Figure 4.  The tidal quality function (left) and inverse quality factor (right) of a three-layered lunar model comprising a core, a Sundberg-Cooper mantle, and a 
Maxwell semi-molten basal layer. Different shades of blue correspond to different ratios between the timescale τ and the Maxwell time τM. For illustrative purposes, the 
semi-molten basal layer is made unrealistically thick (500 km).
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the predictions by Harada et al. (2014, 2016), and Matsumoto et al. (2015), who likewise modeled the basal layer 
with the Maxwell rheology. In contrast to our study, they applied the same model to the mantle as well.

5.4.  Explored Parameter Ranges

The three alternative models considered consist of a small number of homogeneous interior layers. In this work, 
we are not predicting the mineralogy of the mantle—and the composition of the basal layer, if present, is only 
briefly discussed in Subsection 6.2. Our use of a homogeneous mantle layer (or two homogeneous mantle layers) 
reflects our lack of information on the exact chemical and mineralogical composition, the grain size, the thermal 
structure, and the presence of water. Instead, we characterise the mantle with a single, “effective,” rigidity and 
viscosity, which can be later mapped to a detailed interior structure (see also Bolmont et al., 2020; Dumoulin 
et al., 2017, who discussed the effect of approximating a radially stratified mantle with a homogeneous one for 
Venus and terrestrial exoplanets). Furthermore, we neglect any lateral heterogeneities in the lunar interior. We 
also assume that the lunar mantle is incompressible and can be reasonably described by a linear viscoelastic 
model—which is valid at low stresses. Given the magnitude of tidal stresses in the Moon, this assumption might 
have to be lifted in future works, though (Karato, 2013).

For the effective mantle viscosity, we consider values ranging from 10 15 Pa  s up to 10 30 Pa  s. The effective 
viscosity of the basal layer in Model 3 is varied between 1 Pa s and 10 30 Pa s. Lunar mantle rigidity is linked 
to the speed of S-waves in the medium, which has been constrained by lunar seismic experiments. Assuming 
that the effective tidal rigidity is not too different from the seismologically determined values, we only vary the 
effective mantle rigidity in a tight range from 60 to 90 GPa, consistent with the seismic wave velocities reported 
in the  VPREMOON model of Garcia et al. (2011). For the basal layer in Model 3, we require that μLVZ be always 
smaller than μm and greater than 0 GPa. While the viscosities are varied on the logarithmic scale, the rigidities 
are only varied on the linear scale.

The core size and core density in our study are mainly constrained by the mean lunar density and the moment of 
inertia. We adopt a range of values consistent with previous works, following Table 1 of Garcia et al. (2019). For 
the core size, we assume Rc ∈ [0, 450] km and for the core density ρc ∈ [4,000, 7,000] kg m −3. The mantle density 
is varied in the range from 3,000 to 4,000 kg m −3.

An essential ingredient of the complex rheological models used in this study are the parameters α, ζ, Δ, and τ (or 
trel). These parameters are only weakly constrained by laboratory measurements or geodetic and seismological 
observations. Therefore, we explore a wide range of their values. The Andrade parameter α, which character-
ises the time dependence of transient creep in a medium (Andrade, 1910), typically lies in the interval 0.2–0.4, 
although values outside this range have also been observed (Castillo-Rogez et  al.,  2011; Efroimsky,  2012a; 
Jackson et al., 2010; Kennedy, 1953). Geodetic measurements performed on the Earth favor a narrower interval 
of 0.14–0.2, and the currently accepted model of tides in the solid Earth, presented in the IERS Conventions on 
Earth Rotation, employs the value of α = 0.15 (Petit & Luzum, 2010, eqn 6.12 and a paragraph thereafter). Here, 
we consider an interval of 0–0.5 for the simplest model with a homogeneous Andrade mantle (Model 1) and a 
more realistic interval of 0.1−0.5 for the other two models.

The mean value of the dimensionless Andrade time ζ was found to be close to unity in polycrystalline olivine 
under laboratory conditions (Castillo-Rogez et al., 2011). However, the individual fits to laboratory data obtained 
with olivine, periclase, and olivine-pyroxene mixtures also allow values few orders of magnitude smaller or 
greater (e.g., Barnhoorn et al., 2016; Jackson et al., 2002; Qu et al., 2021; B. H. Tan et al., 2001). To account 
for our lack of knowledge, we consider log  ζ ∈ [−5, 5]. The relaxation time of elastically accommodated GBS, 
required by Model 2 and given by Equation 17, is linked to the relative thickness of grain boundaries with respect 
to the grain size, the material's rigidity, and the grain-boundary viscosity. Both the relative grain-boundary thick-
ness and the grain-boundary viscosity are largely unknown. The relative relaxation time, trel, can be expressed as

𝑡𝑡rel =
𝜂𝜂gb

𝜂𝜂m

𝑑𝑑

𝛿𝛿
,� (46)

where ηgb is expected to be much smaller than ηm. Jackson et al. (2014) derives grain-boundary viscosities between 
10 5 and 10 8 Pa s for pure olivine at different temperatures and mentions values around 1–100 Pa s for a grain 
boundary filled with basaltic melt (Murase & McBirney, 1973). Grain boundary thicknesses typically correspond 
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to a few atomic layers and studies of polycrystalline olivine report values 
around 1 nm (Marquardt & Faul, 2018). Grain sizes can span from ∼1μm to 
∼1 cm. Having these ranges in mind, we see that the relative relaxation time 
can only be constrained as trel ≪ 1, as is also mentioned in both experimental 
and theoretical studies (e.g., Jackson et al., 2014; Lee et al., 2011; Morris & 
Jackson, 2009). Here, we adopt a similar range as was used by Morris and 
Jackson (2009) and set trel ∈ [10 −10, 1].

Finally, the relaxation strength of the elastically accommodated GBS is 
reported by Sundberg and Cooper (2010) to be in the range between ≈0.2 
and 1.91, following different assumptions on the grain shapes and different 
modeling approaches. To allow for a slightly wider range of values, we let the 
parameter Δ vary on a logarithmic scale between 10 −2 and 10.

In the inversions presented below, we are fitting the three alternative models 
of the lunar interior to the total mass of the Moon, the moment of inertia 
factor (MoIF), and the tidal parameters, namely k2 and tidal Q at the monthly 
frequency, k2/Q at the annual frequency, and k3, h2 at the monthly frequency. 
For the samples consistent with the geodetic constraints, we also estimate the 
seismic Q of the mantle and compare it with seismological literature (Garcia 
et al., 2019; Gillet et al., 2017; Nakamura & Koyama, 1982), although this 
additional constraint is not used to reject models. A list of the model param-
eters of the three models discussed in the following sections is presented in 
Table 2. The empirical values considered are then given in Table 3.

5.5.  Applicability of the Andrade Model

Before discussing the two complex interior models able to fit the anomalous 
frequency dependence of lunar tidal dissipation, we first attempt to use the 
set of parameters given in Table 3 to constrain a simpler model, which only 
contains a liquid core and a viscoelastic mantle governed by the Andrade 
rheology (Equation 11). Such a model, accounting neither for a basal dissi-
pative layer nor for elastically accommodated GBS, might still be able to fit 

the data. Thanks to the large uncertainty on the lunar quality factor (more than 10% at the monthly frequency and 
20% at the annual frequency, Williams & Boggs, 2015), we may not need to introduce any additional complexities 
to interpret the tidal response of the Moon. The error bars of the tidal quality factors are so wide that they allow, 
at least in principle, for a situation where Q2,annual is smaller than Q2,monthly.

To find the parameters of this preliminary model, we performed a Bayesian inversion using the MCMC approach 
and assuming Gaussian distributions of observational uncertainties (e.g., Mosegaard & Tarantola,  1995). In 
particular, we employed the emcee library for Python (Foreman-Mackey et  al., 2013), which is based on the 

Parameter Type Value Unit

Common parameters

  Crustal thickness Dcr Const. 40 km

  Crustal density ρcr Const. 2,550 kg m −3

  Core size Rc Fitted 0–450 km

  Core viscosity ηc Const. 1 Pa s

  Core density ρc Fitted 4,000−7,000 kg m −3

  Mantle viscosity ηm Fitted 10 15–10 30 Pa s

  Mantle rigidity μm Fitted 60–90 GPa

  Mantle density ρm Fitted 3,000−4,000 kg m −3

  Andrade parameter ζ Fitted 10 −5−10 5 —

Model 1 (Andrade mantle)

  Andrade parameter α Fitted 0−0.5 —

Model 2 (Sundberg-Cooper mantle)

  Andrade parameter α Fitted 0.1−0.5 —

  Relaxation strength Δ Fitted 10 −2−10 1 —

  Relative relaxation time trel Fitted 10 −10−10 0 —

Model 3 (Andrade mantle + basal layer)

  Andrade parameter α Fitted 0.1 − 0.5 —

  Upper radius of the basal layer RLVZ Fitted Rc − 700 km

  Viscosity of the basal layer ηLVZ Fitted 10 0 − 10 30 Pa s

  Rigidity of the basal layer μLVZ Fitted 0 − μm GPa

  Density of the basal layer ρLVZ Fitted ρm − ρc kg m −3

Table 2 
Parameters of the Three Models Considered in This Work

Parameter Value Reference

MoIF 0.392728 ± 0.000012 Williams et al. (2014)

M (7.34630 ± 0.00088) × 10 22 kg Williams et al. (2014)

k2, monthly 0.02422 ± 0.00022 Williams et al. (2014)

Q, monthly 38 ± 4 Williams and Boggs (2015)

k2/Q, annual (6.2 ± 1.4) × 10 −4 Williams and Boggs (2015)

k3, monthly a 0.0081 ± 0.0018 Konopliv et al. (2013); Lemoine et al. (2013)

h2, monthly 0.0387 ± 0.0025 Thor et al. (2021)

 aListed is the unweighted mean of the values given in references.

Table 3 
Observational Constraints Used in This Work
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sampling methods proposed by Goodman and Weare (2010). The algorithm was instructed to look for the mantle 
viscosity ηm, the mantle rigidity μm, the core and mantle densities, and the Andrade parameters fitting the empir-
ical values of k2,monthly, k3,monthly, h2,monthly, Q2,monthly, and 𝐴𝐴 (𝑘𝑘2∕𝑄𝑄2)annual , MoIF, and total mass M. We generated 
232,000 random samples until the model converged. Specifically, the convergence was tested against the autocor-
relation time of each variable in the ensemble, the total length of all chains being required to exceed 100 times the 
longest autocorrelation time. In order to filter out the influence of initial conditions, we neglected the first 4,640 
samples (our burn-in period was, therefore, twice the autocorrelation time).

The interior structure of the lunar model, that is, the core radius and the densities of the core and the mantle 
(Figure 5), are primarily determined by the mean density and the MoIF of the Moon, with a small contribution 
from the tidal parameters. Since the mean density and MoIF are known with high precision, we can readily obtain 
a precise estimate of the mean mantle density. The combination of the simplified interior model and the model 
constraints used in this study results in a mean mantle density of 𝐴𝐴 3, 373.97

+0.53

−0.54
kgm−3 . The estimation of the prop-

erties of the core is obscured by the trade-off between the core radius and core density: smaller cores are required 
to be denser and bigger cores need to be less dense to match the total mass. Figure 5 shows that the predicted 
core radii range from 325 km up to the maximum considered value of 450 km and that the smaller core sizes are 
slightly preferred. Core densities fall into the range from 5,000 to 7,000 kg m −3.

The full black square on Figure 5 (as well as on other similar figures in this Section) indicates the parameters of 
the best-fitting sample. For Model 1, this sample has χ 2 = 2.09 and corresponds to an interior model with a rela-
tively large core (Rc = 423 km) and a relatively low core density (ρc = 5, 270 kg m −3). The empty black squares 
in Figure 5 symbolise the ten best-fitting combinations of parameters. An overview of the best-fitting samples is 
also provided in Table S1 of Supporting Information S1. All of them demonstrate core sizes close to or greater 
than 400 km and correspondingly reduced core densities.

The posterior probabilities of the fitted rheological parameters are depicted in Figure 6, using the Python library 
corner (Foreman-Mackey, 2016). As we may see, the mean tidal viscosity of the mantle is strongly anti-correlated 
with the parameter ζ: a tendency that will also be echoed by the more complex model. A small value of ζ reveals 
mantle deformation dominated by transient creep, which is, within the Andrade rheological model, also expected 
from a highly viscous continuum (with viscosities up to 10 29 Pa s). A large value of ζ indicates mantle deforming 
preferentially by viscous creep, expected from lower values of ηm (down to 10 20 Pa s). The posterior distribution 
of mantle viscosities and parameters ζ exhibit two regions of locally increased probability density: one at ζ ≈ 1 
and ηm ≈ 10 22.5 Pa s, the other at ζ < 0.1 and ηm > 10 24 Pa s. Values of ζ greater than 100 are less likely than 
values smaller than 100.

If we compare the resulting Andrade parameter 𝐴𝐴 𝐴𝐴 = 0.08
+0.03

−0.02
 with the typical values reported in the literature 

(0.1 < α < 0.5; see, e.g., the overview by Castillo-Rogez et al., 2011; Efroimsky, 2012a, 2012b), we may notice 
that it is unusually small. This discrepancy between our prediction and the laboratory data already indicates 
that although it is, in principle, possible to fit the lunar tidal response with a simple model assuming Andrade 
rheology in the mantle, the required parameters of this model might not be realistic. A similar point has been 
made by Khan et al. (2014) and used as an argument in favor of their interior model containing basal partial melt. 
Moreover, all samples of our Model 1 predict very low values of seismic Q of the lunar mantle at the frequency 
of 1 Hz (Qseis < 100), which is inconsistent with seismic measurements (Garcia et al., 2019). Therefore, we will 
now focus our study on the more complex Sundberg-Cooper model.

5.6.  Lunar Mantle Governed by the Sundberg-Cooper Model

In the present Subsection, as well as in Subsection 5.7, we will explore lunar interior models that exhibit a second 
dissipation peak in the spectra of k2/Q2 and 𝐴𝐴 𝐴𝐴

−1

2
 . As in the previous inversion with Andrade mantle, we again 

employ the MCMC approach and seek the parameters of the Sundberg-Cooper model (Model 2 from Table 2) 
fitting the empirical selenodetic parameters. Due to the greater dimension of the explored parameter space, the 
model only succeeded to converge after generating 1,440,000 random samples, and we used a burn-in period 
of 28,800 samples. The posterior distributions of the tidal quality factors demonstrate two peaks: a higher one 
with Q2,monthly > Q2,annual and a lower one with Q2,monthly < Q2,annual. The latter generally presents a better fit to the 
observables considered.
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Figure 7 illustrates the frequency dependence of the real and the imaginary part of the complex potential Love 
number 𝐴𝐴 𝑘̄𝑘2(𝜒𝜒) for 100 samples chosen randomly from the posterior distribution. The blue lines indicate samples 
that are also consistent with the mantle seismic Q of 10 3−10 5 (Garcia et al., 2019; Gillet et al., 2017; Nakamura 
& Koyama, 1982), the turquoise lines are samples that only fit the geodetic constraints from Table 3. Additionally, 
the thicker blue or turquoise lines show ten best-fitting samples, the parameters of which are listed in Table S2 
of Supporting Information S1. As we may see, for the best-fitting solutions, the tidal quality functions reported 

Figure 5.  The posterior probabilities of the mantle density ρm, the core density ρc, and the outer core radius Rc of Model 1, satisfying the full set of observational 
constraints (Table 3). The full black square and the dotted black lines indicate the parameters of the best-fitting sample; the empty squares with a black edge are the ten 
best-fitting samples. The vertical dashed lines plotted over the marginal posterior distributions stand for the 16th, 50th, and 84th percentiles, respectively.
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by Williams and Boggs (2015) at the monthly and the annual frequencies plot either on the different slopes of 
the secondary dissipation peak or they lie around the “valley” between the primary and the secondary dissipation 
peak.

For the interior structure of the lunar model, we find the same tendencies as in the previous subsection. Our 
prediction of the core size and the interior layers' densities remains unaffected by the change in the mantle's 
rheology. On the other hand, the range of predicted effective mantle rigidities becomes narrower and shifted to 
lower values 𝐴𝐴

(

𝜇𝜇m = 72.02
+3.97

−4.72
GPa

)

 within the Sundberg-Cooper model (Figure 8). The trade-off between effec-
tive mantle viscosity and the Andrade parameter ζ is present, similar to Model 1, and the samples with the highest 

Figure 6.  Same as Figure 5, but for the effective mantle rigidity μm, the mantle viscosity ηm, and the Andrade parameters α and ζ.
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posterior probability density correspond to ζ < 1 and viscosities beyond 10 23 Pa s. The Andrade parameter α, 
which characterises the slope of the Andrade branch in the dissipation spectrum (i.e., at frequencies lower than 
the frequency of the secondary dissipation peak; the right panel of Figure 7), is preferentially at the lower bound 
of the considered range: around α = 0.1. This is a consequence of the model's tendency to fit the empirical 
quality function (equal to 𝐴𝐴 −ℑ

[

𝑘̄𝑘2(𝜒𝜒)
]

 ) with the Andrade branch alone, making it as flat as possible. Among the 
ten best-fitting samples, listed in Table S2 of Supporting Information S1 and plotted as empty black squares in 
Figure 8, are values from the entire range [0.1, 0.4]. Specifically, the best fit (the full black square in Figure 8, 
with χ 2 = 1.39) has α = 0.26.

The key ingredients of Model 2 are the parameters of the secondary (Debye) peak: the relaxation strength Δ and 
the relative relaxation time trel. Figure 8 shows that these parameters attain different values in the samples that fit 
the tidal dissipation (Q or k2/Q) at the two considered frequencies (monthly and annual) with the secondary peak 
and different values in the samples fitting the tidal dissipation with the Andrade branch alone. The latter group, 
characterised by small α ≈ 0.1 − 0.2, can reach any value of Δ and trel from the considered interval: this kind of 
fit is then equivalent to Model 1 (and inconsistent with the mantle's seismic Q). The former group, with α from 
the entire range of [0.1,0.4], demonstrates a narrower range of Δ between 10 −1.8 and 10 −0.6. Furthermore, Δ in 
this second group is correlated with mantle rigidity. The relative relaxation time trel is anti-correlated with the 
effective mantle viscosity. Since the mantle viscosity determines the magnitude of the Maxwell time and because 
the tidal dissipation in the second group has a Debye peak in close vicinity of the monthly loading frequency (i.e., 
τ ∼const.), trel = τ/τM has to decrease with increasing viscosity.

The relative relaxation time of samples with α > 0.2 is always smaller than 10 −2. This result is consistent with the 
theoretical expectations, saying that trel ≪ 1 (e.g., Jackson et al., 2014; Lee et al., 2011; Morris & Jackson, 2009). 
Since trel is related to the grain size and the grain-boundary viscosity of the mantle material, it might enable us to 
evaluate whether the Sundberg-Cooper model is indeed applicable to the problem considered in this paper. We 
will discuss the implications of our Δ and trel estimates later in Subsection 6.1.

5.7.  Lunar Mantle With a Weak Basal Layer

The occurrence of the anomalous frequency dependence of lunar tidal Q is often identified with the presence 
of a highly dissipative layer at the base of the lunar mantle. To compare the model assuming Sundberg-Cooper 
rheology with the more traditional interpretation of Q's frequency dependence, we finally fitted the empirical 
constraint with Model 3, which consists of a core, a two-layered mantle, and a crust. Due to the higher dimension-
ality of the parameter space in Model 3 (see Table 2), the inverse problem took longer to converge than the previ-
ous two models. We generated 4,258,000 random samples and discarded the first 85,160 samples. A randomly 

Figure 7.  The real (left) and negative imaginary (right) parts of the complex Love number 𝐴𝐴 𝑘̄𝑘2 as functions of frequency for 100 randomly chosen samples from the 
posterior distribution (thin blue and turquoise lines) and for 10 best-fitting samples (thick blue and turquoise lines). Samples plotted in turquoise only fit the geodetic 
constraints from our Table 3, samples plotted in blue are also consistent with mantle seismic Q (Table 3 of Garcia et al., 2019). The red and yellow lines indicate the 
values provided by Williams and Boggs (2015). Model 2 with a mantle governed by the Sundberg-Cooper rheology.
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chosen subgroup of samples from the posterior distribution is plotted in Figure 9, along with the ten best-fitting 
parameter sets (tabulated in the Supporting Information S1, Table S3). Model 3 fits the considered observables 
better than Models 1 and 2, and χ 2 of the best-fitting sample is 0.77. However, nine of the ten best-fitting samples, 
indicated by the thick turquoise lines in Figure 9, do not fall into the interval of expected seismic Q of the mantle.

Figure 9 shows us that among the best-fitting parameter sets, there are two classes of models able to fit the 
anomalous frequency dependence of the tidal dissipation. Each of the two classes is associated with a different 
basal-layer viscosity. The first one is centered around ηLVZ ∼ 10 15 Pa s and fits the empirical values for the imag-
inary part of the tidal Love number (right panel of Figure 9) with a “valley” lying next to the basal layer's main 
dissipation peak and positioned between the loading frequencies χ = 10 −5 rad/s and χ = 10 −4 rad/s. The second 

Figure 8.  Same as Figure 5, but for the rheological parameters of the model with a Sundberg-Cooper mantle (Model 2).
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one, with ηLVZ ∼ 10 13 Pa s, fits the dissipation data with a plateau lying next to a minor dissipation peak of the 
basal layer. This minor peak, corresponding to the same viscosity of the basal layer, is also present in Figure 2 
of Harada et al.  (2014), although with a smaller magnitude. The difference in magnitude might be caused by 
the differences in the rheological model and parameters used in our study. Although the frequency dependence 
of the best-fitting samples in Model 3 generally follows a trend distinct from Model 2, a number of randomly 
chosen samples from the posterior distribution of Model 3 resemble those illustrated in Figure 7. Moreover, the 
samples with the basal layer's dissipation peak located between the monthly and the annual tidal frequencies 
tend to fit the mantle seismic Q better than the other samples. The presence of a basal layer may thus mimic the 
Sundberg-Cooper mantle rheology—and vice versa—as was indicated earlier in Figure 3.

The rheological parameters of the overlying mantle are similar to those in the previous two models. Mantle 
viscosity is anti-correlated with the Andrade parameter ζ, which is preferentially smaller than 100. The Andrade 
parameter α tends to the lower bound of the considered interval, and nine of the ten best-fitting models have 
α < 0.16. A corner plot illustrating the rheological parameters is included in the Supporting Information S1.

We have already mentioned that the ten best-fitting samples of Model 3 fall into two distinct groups with different 
basal layer's viscosities. More specifically, even outside the small ensemble of best-fitting samples, the parameter 
sets with the lower possible basal layer's viscosity (around 10 13 Pa s) always have α < 0.24 and preferentially 
bigger cores. The samples from the other category are more common and attain α from the entire studied interval. 
If we only consider the samples that also fit the mantle seismic Q, the preferred basal layer viscosity is ∼10 16 Pa s. 
An overview of all parameters of the basal layer is depicted in Figure 10. As we may see, the models with a 
maximum posterior probability density possess a basal layer with an outer radius of ∼620 km and a rigidity of 
∼20 GPa. The best-fitting samples typically have a basal layer extending to even greater radii. If we compare the 
layer's rigidities and viscosities to the rigidities and viscosities of the overlying mantle (Figure 11), we may find 
all possible ratios μLVZ/μm, with a very weak preference for values < 0.5. Therefore, the rigidity contrast obtained 
from tidal data does not give a clear answer to the question of whether the basal layer can be partially molten.

On the other hand, the viscosity contrast between the basal layer and the overlying mantle is most often around 
ten orders of magnitude, and this is specifically true for the best-fitting models. Both the viscosity and the rigidity 
contrast might be indicative of the basal layer's composition and thermal state. We will discuss the implications 
of this result in more detail in Subsection 6.2. In addition to the contrasts, the left-most panel of Figure 11 depicts 
the posterior distribution of mantle rigidities and basal layer's thicknesses. Since the low-viscosity basal layer 
increases the global deformability of the Moon, a thicker layer requires greater rigidity of the overlying mantle.

Finally, Figure 12 shows the structural parameters of Model 3. With the inclusion of the basal layer, the char-
acteristic trade-off between the core density and radius, known from Figure 5, disappears, or is absorbed by the 
variations in the densities of the other two layers. Similarly, the mantle density is less well-defined than in the 
previous two models. Instead, the model puts tight constraints on the density of the basal layer.

Figure 9.  Same as Figure 7, but for Model 3 containing a basal layer. Dashed lines indicate best-fitting samples with ηLVZ ∼ 10 13 Pa s.
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6.  Discussion
In Section 5, we compared three different models of the lunar interior and presented the combinations of param-
eters required to fit the selenodetic constraints. Specifically, the more complex Models 2 and 3 were also able to 
fit the anomalous frequency dependence of lunar tidal Q mentioned earlier. Now, we will discuss the implications 
of the two complex models and their fitted parameters for the lunar interior properties.

Figure 10.  Same as Figure 5, but for the parameters of the basal layer (density ρLVZ, outer radius RLVZ, viscosity ηLVZ, and rigidity μLVZ) in Model 3.
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6.1.  Melt-Free Lunar Interior

A model with a mantle governed by the Sundberg-Cooper rheology (Model 2) is able to fit the anomalous 
frequency dependence of lunar tidal Q without the need to assume the existence of a highly dissipative layer at 
the mantle base. The frequency dependence is then simply explained by the presence of a Debye peak in the dissi-
pation spectrum, associated with the elastically accommodated GBS. Our best-fitting samples typically exhibit a 
relaxation timescale τ of this mechanism lying between 10 4 and 10 6s, or 3 and 300 hr. How can these values be 
linked to the physical properties of the mantle?

Equation 17, reprinted below for convenience,

𝜏𝜏 =
𝜂𝜂gb 𝑑𝑑

𝜇𝜇m 𝛿𝛿
,�

gives us the relationship between τ and microphysical parameters. While μm is obtained from the inversion of 
the seismic or tidal data and the grain boundary width δ is typically around 1 nm (Marquardt & Faul, 2018), the 
other two parameters, namely the grain size d and the grain boundary viscosity ηgb, are largely unknown. For the 
range of τ obtained here, we predict ηgb d ∼ 10 6−10 8. For micrometer to centimeter-sized grains, this implies a 
grain-boundary viscosity lying between 10 8 and 10 14 Pa s. To better illustrate the distributions of the microphysi-
cal parameters, Figure S5 in the SI shows the results of an MCMC inversion with an alternative version of Model 
2. In this version, we did not vary the relative relaxation time trel, but rather the grain size (d = 10 −6−10 −2m) and 
the grain-boundary viscosity (ηgb between 1 Pa s and ηm).

Jackson et al. (2014) presented results of laboratory experiments on fine-grained olivine subjected to torsional 
oscillations at high pressures (P = 200 MPa) and relatively low temperatures (T < 900 °C), that is, around the 
threshold between elastic response and elastically accommodated GBS. They found a GBS relaxation timescale 
of log  τR = 1.15 ± 0.07s, where the subscript “R” now stands for “reference.” Because the grain sizes of the 
samples studied by Jackson et al.  (2014) were known, the estimate of τR also served for the determination of 
ηgb = 10 8 Pa s, which is on the lower bound of the grain-boundary viscosities corresponding to our best-fitting 
samples. However, the viscosity, and consequently the relaxation timescale, depends on the pressure and temper-
ature. Considering the reference temperature TR = 11173 K, reference pressure PR = 200 MPa, reference grain 
size dR = 10μm, activation volume V* = 10 cm 3 mol −1, and activation energy E* = 259 kJ mol −1, as given by 
Jackson et al. (2014), we can extrapolate their τR to the conditions of the lunar mantle with the Arrhenius law 
(Jackson et al., 2010):

𝜏𝜏 = 𝜏𝜏R
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In addition to the parameters introduced earlier, m characterises the grain-size dependence of the relaxation 
process in question. We adopt the value m = 1.31, found by Jackson et al. (2010) for anelastic processes. Figure 13 
illustrates the extrapolation of τR of Jackson et al. (2014) to lunar interior conditions, considering the best-fitting 
parameter set of Model 2 and two depth-independent grain sizes. Over the color-coded maps, we also plot the 

Figure 11.  The marginal posterior distribution of mantle rigidity and basal layer's thickness (left) and histograms of the viscosity contrast (middle) and rigidity contrast 
(right) between the basal layer and the overlying mantle in Model 3.
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steady-state heat conduction profiles of Nimmo et al.  (2012). We note that the conduction profiles were only 
chosen for illustration purposes: the discussion of the thermal regime (conductive vs. convective) in the lunar 
mantle is beyond the scope of this paper.

The laboratory measurements of Jackson et al. (2014) were performed on a single sample of fine-grained poly-
crystalline olivine under constant pressure PR and the Arrhenian extrapolation of τ was only tested for temperature 
dependence. Nevertheless, if we accept the assumption that these results are applicable to the Moon, Figure 13 
and the range of relaxation times able to fit the frequency dependence of tidal Q (log  τ ∈ [4, 6]) can help us to 
identify the minimum depth in which elastically accommodated GBS contributes to the tidal dissipation. For 
the smaller grain size (d = 0.1 mm) and the reference profile of Nimmo et al. (2012) (solid line, mantle heat 
production of 9.5 nW m −3), we predict the minimum depth of 400–500 km. For the larger grain size (d = 1 cm), 
the minimum depth is 600–800 km. A conductive profile corresponding to lower heat production than illustrated 

Figure 12.  Same as Figure 5, but for the structural parameters (core density ρc, mantle density ρm, outer core radius Rc, basal layer's density ρLVZ, and basal layer's outer 
radius RLVZ) of Model 3.
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here would push the minimum depth to even greater values. The occurrence of elastically accommodated GBS 
in shallower depths would give rise to a relaxation peak (or to an onset of a relaxation band) at lower loading 
frequencies, which would not fit the observed annual and monthly tidal dissipation. Although the MCMC inver-
sion from the previous section was performed for a model with a homogeneous mantle, that is, assuming the 
occurrence of elastically accommodated GBS at all depths from the surface down to the core, we also checked 
that a model described by the Andrade rheology above the derived depths and by the Sundberg-Cooper model 
below the derived depths might fit the considered observables with intermediate values of τ between 10 5 and 
10 6. However, fitting of the observables with Sundberg-Cooper rheology only applicable to depths greater than 
500 km (considering Andrade rheology at shallower depths) seems very challenging.

Besides the timescale τ, we have derived the relaxation strength of the hypothetical secondary peak. Considering 
only the group of samples fitting the anomalous frequency dependence of tidal Q, the relaxation strength falls into 
the interval log  Δ ∈ [−1.8, −0.6], or Δ ∈ [0.02, 0.25]. Parameter Δ controls the height of the secondary dissipa-
tion peak in the Sundberg-Cooper model. Figure 14 shows the dependence of the peak seismic Q −1 at low, tidal 
frequencies on the relaxation strength Δ for randomly chosen 4,000 samples of Model 2 that exhibit a Debye peak 

Figure 13.  Relaxation time τ (color-coded) of elastically accommodated GBS, as given by Jackson et al. (2014) and extrapolated to lunar interior conditions using the 
Arrhenian Equation 47. White lines demarcate the relaxation times of 3 and 300 hr, resulting from our inversion. Blue lines indicate analytically calculated conduction 
profiles proposed by Nimmo et al. (2012) for three different mantle heat productions (8, 9.5, and 11 nW m −3), crustal heat production of 160 nW m −3 crustal thickness 
of 40 km, and no heat exchange between core and mantle. Other parameters, such as the core size, core density, and mantle density, are adjusted to the best-fitting 
sample of Model 2. Grain sizes are given in the upper right corner of each plot.

Figure 14.  Peak value of the low-frequency seismic Q −1 as a function of the relaxation strength Δ for 4,000 randomly chosen 
samples of Model 2 exhibiting a Debye peak in the frequency interval (χyear, 10 −4 rad s −1).
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in the frequency range from χyear to 10 −4 rad s −1. Are these values consistent 
with theoretical prediction and laboratory data?

Sundberg and Cooper  (2010) reported relaxation strengths of polycrys-
talline olivine between 0.23 and 1.91, as found in different sources and 
under different assumptions on the grain shapes (Ghahremani,  1980; 
Kê,  1947; Raj & Ashby,  1971). Their own mechanical tests on peridotite 
(olivine-orthopyroxene) at temperatures between 1200 and 1300°C were best 
fitted with Δ = 0.43 and the corresponding dissipation associated with elasti-
cally accommodated GBS in their sample was Q −1 = 0.25−0.3. On the other 
hand, Jackson et al. (2014), who performed torsion oscillation experiments 
on olivine, found a relatively low dissipation peak with Q −1  ≤  0.02. Low 
secondary dissipation peaks with Q −1∼10 −2 were also predicted theoretically 
by Lee and Morris (2010) for a grain boundary slope of 30°, while smaller 
slopes seem to allow Q −1 exceeding 1, especially when the individual grains 
are of comparable sizes and the grain boundary viscosity does not vary too 
much. Accordingly, Lee et  al.  (2011) note that Q −1 in the secondary peak 
depends strongly on the slope of the grain boundaries.

The largest Δ predicted by our inversions and able to fit the frequency 
dependence of Q lies on the lower bound of the range reported by Sundberg 
and Cooper (2010). At the same time, the small height of the Debye peak, 
observed by Jackson et al. (2014) and also found by Lee and Morris (2010), 
is only approximately consistent with log  Δ ≲ −1.25 (Figure 14). Following 

this brief discussion of dissipation arising due to elastically accommodated GBS, we conclude that the relaxation 
strength Δ (or Q −1 in the secondary dissipation peak) is not well constrained and the values found in literature 
permit any of the Δs predicted in our Subsection 5.6.

6.2.  Highly Dissipative Basal Layer

A highly dissipative layer located at any depth could also produce the desired secondary peak needed to explain 
the anomalous Q dependence. (Note, however, that a presence of a highly dissipative layer at a shallow depth 
may lead to changes in the body's response to tides and might be incompatible with the measured values of the 
Love numbers.) Petrological considerations combined with an indication of a basal low-velocity zone place this 
anomalous layer in the deep interior. Therefore, as an alternative to the “melt-free” Model 2, we tested the popular 
hypothesis of a putative highly dissipative layer at the base of the lunar mantle.

The derived rheological properties of the mantle and of the basal layer as well as the layer's thickness are poorly 
constrained and can be strongly biased. Firstly, the thickness DLVZ of the basal layer is correlated with the value 
of the mantle rigidity μm (Figure 12); the thicker the basal layer, the larger mantle rigidity is required to satisfy the 
model constraints. The prediction of the mantle viscosity ηm is affected by the Andrade rheological parameters 
and is particularly anticorrelated with the parameter ζ. On the other hand, the viscosity of the basal layer remains 
independent of the Andrade parameter α, with the only exception that the solutions corresponding to the lower 
branch of the basal viscosity (ηLVZ = 10 13 Pa s) vanish for α > 0.24. The predicted contrast in viscosity between 
the two layers is therefore weakly dependent on the Andrade parameter ζ due to its anticorrelation with the mantle 
viscosity ηm.

Secondly, the posterior distribution of the basal layer's rigidities (μLVZ ≤ μm) hints at a very weak anti-correlation 
with the outer radius of the basal layer RLVZ (Figure 10). However, the ten best-fitting models prefer a relatively 
large basal layer's outer radius independent of the rigidity. The predicted rigidities of a basal layer, especially 
for the best-fitting models, are consistent with seismic observations (Figure 15), including the rigidity decrease 
in the basal layer. These profiles are, however, obtained for a larger basal layer's outer radius compared to the 
seismic predictions. In general, the rigidity contrast between the basal layer and the overlying mantle is poorly 
constrained. Still, the models with the contrast in the range (0.1–0.5) are very weakly favored (see the right-most 
panel of Figures 11 and 15). Lastly, there is no obvious correlation of the basal viscosity with the other considered 

Figure 15.  Rigidity prediction compared to seismic measurements. One 
hundred randomly chosen samples from the posterior distribution (light gray) 
and 10 best-fitting samples (black). Rigidity derived from seismic velocities 
and densities: green (Weber et al., 2011), red (Khan et al., 2014) and blue 
(Matsumoto et al., 2015), dashed lines: errors. The data from the three studies 
are provided in Garcia et al. (2019).
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parameters for any branch of the solutions (i.e., branches corresponding to viscosity ∼10 13 Pa s and ∼10 15 Pa s). 
Low basal viscosity and large viscosity contrast are, therefore, the most robust results of the present inversion.

Rigidity and viscosity magnitudes, and their contrast between the mantle and the basal layer, can be indicative 
of the variations in the composition, in the presence of melt, and in temperature. A stable partially molten zone 
in the lunar interior would pose strong constraints on the composition (Khan et al., 2014). Given the absence 
of geologically recent volcanic activity, any melt residing in the deep lunar interior would have to be neutrally 
or negatively buoyant. Using an experimental approach on the synthetic equivalent of Moon samples, van Kan 
Parker et al. (2012) concluded that the condition on the buoyancy below 1,000 km is satisfied if high content of 
titanium dioxide is present in the melt. The presence of a partially molten layer is permitted at any depth below 
this neutral buoyancy level.

Moreover, evolutionary models suggest that high-density ilmenite-bearing cumulates enriched with TiO2 and 
FeO are created toward the end of the shallow lunar magma ocean crystallization, resulting in near-surface grav-
itational anomalies. This instability, combined with the low viscosity of those cumulates, might have eventually 
facilitated the mantle overturn, creating an ilmenite-rich layer at the base of the mantle (e.g., Li et al., 2019; 
Zhang et al., 2013; Zhao et al., 2019). Recently, Kraettli et al.  (2022) suggested an alternative compositional 
model: a ∼70 km thick layer of garnetite could have been created at the base of the mantle if two independently 
evolving melt reservoirs were present. The resulting high-density garnet, olivine, and FeTi-oxide assemblage is 
gravitationally stable and can contain a neutrally or negatively buoyant Fe-rich melt. The scenario of Kraettli 
et al. (2022) can also be accompanied by the mantle overturn, as suggested for the ilmenite-rich layer created at 
shallow depths.

Rheologically weak ilmenite combined with appropriate lower-mantle temperature can help to explain the low 
basal viscosity (Figure 16). Considering viscosities lower than ηLVZ ∼ 10 16 Pa s, the basal layer would need to 
experience temperatures ≳1900 K if the lower mantle were only made of dry olivine. In contrast, for wet olivine, 
a temperature higher than 1600 K would be sufficient. Creep experiments (Dygert et al., 2016) conclude that 
the viscosity of ilmenite is more than three orders of magnitude lower than that of dry olivine. Consequently, a 
lower-mantle temperature higher than 1500 K might be acceptable to explain the predicted viscosities for pure 
ilmenite. Interestingly, if we consider viscosity ∼10 13 Pa fitting the dissipation data with a plateau lying next to a 
minor dissipation peak of the basal layer, the temperature would have to be even higher (2400 K for dry olivine, 
2100 K for wet olivine, and 2000 K for ilmenite), that is, it would need to attain values above the respective 
liquid and critical porosities, where the melt presence would control the rheology. Melt content above the critical 
porosity would be inconsistent with only a small to moderate rigidity decrease. We will discuss the effect of the 
melt later in this Subsection.

Figure 16.  Basal viscosity prediction compared to rheological properties. One hundred randomly chosen samples from the posterior distribution (light gray) and 10 
best-fitting samples (black). Over the predicted data is plotted the temperature dependence of viscosity of ilmenite (blue, Dygert et al., 2016), dry olivine (red, Hirth & 
Kohlstedt, 1996), and ilmenite-olivine aggregate (2%–16%), the latter corresponding either to isostress (blue area, harmonic mean, suggested for high strain) or Tullis 
(red area, geometric mean, suggested for low strain) models. Errors of experimentally determined viscosities not included; ilmenite error factor is ∼5. Vertical lines 
delimit solidus temperatures for peridotite (Katz et al., 2003) and ilmenite-bearing material (Wyatt, 1977) at radii 330 and 700 km. Left panel: temperature dependence 
for the differential stress σD = 1 MPa, dry olivine. Right panel: temperature dependence for σD = 1 MPa, wet olivine.
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The properties of ilmenite-olivine aggregates introduce yet another complexity. The viscosity of aggregates is 
suggested to depend on the value of the strain: it follows the Tullis model for low strain, whereas it tends to 
follow the lower bound on Figure 16 (isostress model) for large strain (see, e.g., Dygert et al., 2016, for a deeper 
discussion). The acceptable temperature range for olivine-ilmenite aggregate is close to the values for the pure 
olivine in the case of the Tullis model. The prediction for the isostress model (minimum bound, Reuss model) 
is consistent with temperature values larger than 1600 K considering viscosities <10 16 Pa s. Another obstacle in 
interpretation originates in the stress-sensitivity of the relevant creep. The viscosity can decrease by ∼2.5 orders 
of magnitude while decreasing the differential stress σD by one order of magnitude. In terms of acceptable thermal 
state, the temperature consistent with our prediction would decrease roughly by ∼100 K considering two-fold 
higher differential stress and increase by the same value for two-fold lower stress, respectively.

Consequently, we find acceptable solutions both below and above the solidus. Our Model 3 thus cannot exclude 
or confirm a possible partial melt presence. An alternative explanation for the viscosity reduction can be the pres-
ence of water (see also Karato, 2013, for a deeper discussion), which would also reduce the solidus temperature 
and facilitate partial melting. Both the enrichment in ilmenite and elevated water content can lead to the desired 
value of viscosity at lower temperatures compared to the dry and/or ilmenite-free models (Figure 16).

Focusing now on the elastic properties, we note that the rigidities of olivine (e.g., Mao et al., 2015), ilmenite 
(Jacobs et al., 2022), and garnetite (Kraettli et al., 2022) are comparable. The temperature has only a limited impact 
on their value (−0.01 GPa/K for olivine and ilmenite). Also, dependence on the water content (olivine-brucite) is 
only moderate (−1.3 GPa/wt%; Jacobsen et al., 2008). The magnitude of rigidity is, therefore, rather insensitive 
to possible constituents, temperature, and water content. The 84th percentile on Figure  10, corresponding to 
∼60 GPa, fits the elastic properties of all considered minerals—ilmenite, olivine, and garnet. However, the 16th 
percentile (∼10 GPa) would be difficult to explain by the changes in composition, high temperature, and/or water 
content alone.

The magnitude of rigidity (Figure 17) is, nevertheless, sensitive to the presence of melt around or above the disin-
tegration point (characterised by the critical porosity ϕc), which describes the transition from the solid to liquid 
behavior and its typical values lie between 25% and 40% (e.g., Renner et al., 2000). Similarly, the viscosity value 
is very sensitive to the presence of melt for porosity higher than ϕc. For low porosities, it follows an exponential 
(Arrhenian) dependence. Figure 17 suggests that the predicted rheological contrasts in Model 3 are consistent 
with ϕ ≲ 1.1ϕc for rigidity and with ϕ > 1.1ϕc for the viscosity, considering best fitting samples. This apparent 
incompatibility may be accounted for by the presence of melt accompanied by the changes in the composition 
of the basal layer and by the susceptibility of viscosity to these changes. Consequently, the knowledge of the 
contrasts in both rheological parameters (rigidity and viscosity) could help tackle the trade-offs between porosity 
and composition or temperature.

Figure 17.  Impact of melt on the viscosity and rigidity contrast. The viscosity and rigidity contrast is expressed as a function of the ϕ/ϕc (ϕ denotes the porosity and 
ϕc the critical porosity) and parameterised using Kervazo et al. (2021); ηsolid and μsolid represent values with no melt present at the solidus temperature; no change in 
composition is considered. The light gray and black horizontal lines depict the contrasts for 100 randomly chosen samples and 10 best-fitting samples, respectively.
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The presence of a partially molten material would pose a strong constraint on the temperature and possible mode 
of the heat transfer in the lower mantle of the Moon, allowing only models that reach the temperature between 
the solidus and liquidus (Figure 18). The traditional advective models predict stagnant-lid mantle convection 
with a relatively thick lid at present (e.g., Zhang et al., 2013). Below the stagnant lid, the temperature follows 
the adiabatic or, for large internal heating, sub-adiabatic gradient. We estimate the temperature increase across 
the entire mantle due to the adiabatic gradient to be bounded by 100 K. Within those traditional models, it is 
plausible to reach solidus only in the lowermost thermal-compositional boundary layer. In the case of conductive 
models (e.g., Nimmo et al., 2012), the temperature gradient is steeper than the solidus gradient and the soli-
dus temperature can be reached in the entire basal layer, given appropriate internal heating (as demonstrated in 
Figure 18). Interestingly, the lunar selenotherm determined by the inversions of lunar geophysical data combined 
with phase-equilibrium computations (Khan et al., 2014) lies between the conductive and adiabatic gradients.

In the future, distinct sensitivity of rigidity, viscosity, and other transport properties to temperature, melt frac-
tion, and composition may provide a way to separate the interior thermal and composition structure. At present, 
inversion errors and the uncertainties on material properties cannot confirm or rule out the existence of a partially 
molten basal layer. It therefore remains a valid hypothesis.

6.3.  Other Sources of Information

The two models discussed in this section—one with a highly dissipative basal layer and the other with elasti-
cally accommodated GBS in the mantle—cannot be distinguished from each other by the available selenodetic 
measurements. To answer the question stated in the title of our paper, one would need to resort to other types of 
empirical data. Among all geophysical methods devised for the exploration of planetary interiors, seismology is 
of foremost importance. Therefore, a question that cannot be solved by the interpretation of lunar tidal response 
might be answered by comparing the arrival times and the phases detected at individual seismic stations.

As we mentioned in Introduction, the Moon demonstrates a nearside-farside seismic asymmetry. Judging by the 
currently available seismic data collected on the near side, the deep interior of the far side is virtually aseismic or, 
alternatively, the seismic waves emanating from it are strongly attenuated or deflected. The existence of an aseis-
mic area on the farside might not be entirely inconceivable. First, as pointed out by Nakamura (2005), there are 
large zones with no located nests of deep moonquakes even on the nearside; and, in fact, most of the known deep 
seismic nests are part of an extended belt reaching from the south-west to the north-east of the lunar face. Second, 

Figure 18.  Comparison of temperature profiles for the best-fitting sample of Model 3. Color scale: conductive profile, 
calculated with the matrix propagator method; parameters as in Figure 13. Individual branches correspond to average heating 
8, 9.5 and 11 nW/m 2 in the mantle. The coefficient f denotes the enrichment in the radiogenic elements of the basal layer 
(RLVZ = 679 km) compared to the rest of the mantle. Gray area is the temperature profile adapted from Khan et al. (2014); 
darker blue lines: peridotite solidus (solid), water-saturated solidus (dotted), and liquidus (dashed) according to Katz 
et al. (2003); light blue lines: clinopyroxene + ilmenite solidus (solid) and liquidus (dashed) according to Wyatt (1977).
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there exists a pronounced dichotomy between the near side and far side of the Moon in terms of the crustal thick-
ness, gravity field, and surface composition, which might point to a deeper, internal dichotomy as predicted by 
some evolutionary models (e.g., Jones et al., 2022; Laneuville et al., 2013; Zhu et al., 2019).

An obvious way to illuminate the lack of deep farside moonquakes detected by the Apollo seismic stations would 
be to place seismometers on the far side of the Moon. They would observe the far side activity, and record the 
known repeating nearside moonquakes or events determined from impact flash observations. The Farside Seis-
mic Suite (FSS) mission, recently selected for flight as part of the NASA PRISM program and planned for launch 
in 2025, might provide such a measurement by delivering two seismometers to Schrödinger Crater (Panning 
et al., 2022). While this crater is far from the antipodes (in fact, close to the South pole), a seismometer residing 
in it should still be able to detect events from the far side, thereby addressing the hemispheric asymmetry in the 
Apollo observations. However, resolving polarization of arrivals may be challenging for many moonquakes, 
meaning that many events will only have distance estimated, but not azimuth. (We are grateful to Mark P. Panning 
for an enlightening consultation on this topic).

A better site for this science objective would be the far side Korolev crater residing by the equator, about 23° 
from the antipodes (by which we understand the center of the farside). It is now considered as one of the possi-
ble landing sites for the Lunar Geophysical Network (LGN) mission proposed to arrive on the Moon in 2030 
and to deploy packages at four locations to enable geophysical measurements for 6–10 years (Fuqua Haviland 
et al., 2022).

Still, having a station or even an array of seismic stations at or near the antipodes would be ideal. Observed by 
such a station or stations, all events at distances less than 90° from the antipodes could be confidently assigned 
to the far side. So we would recommend the near-antipodes zone (that close to the center of the farside) as a 
high-priority landing site for some future mission, a perfect area to monitor the seismic activity on the far side 
and, especially, to observe if and how seismic waves proliferate through the base of the mantle.

In addition to seismic measurements, and similarly to what is predicted for Jupiter's volcanic moon Io or for icy 
moons with subsurface oceans, the presence of a highly dissipative or a partially molten layer might be reflected 
in the tidal heating pattern on the lunar surface (e.g., Segatz et al., 1988; Tobie et al., 2005). However, as illus-
trated in the upper row of Figure 19, the positioning of the layer at the base of the mantle results in a very small 
difference between the surface heating patterns corresponding to the two alternative models. For samples with the 
same tidal response, both Models 2 and 3 show maxima of the average surface tidal heat flux Φtide on the lunar 
poles and minima on the “subterranean” point (φ = 0) and its antipodes (φ = π). Moreover, the magnitude of Φtide 
is generally very small, about three orders of magnitude lower than the flux produced by radiogenic heating of 
lunar interior (e.g., Siegler & Smrekar, 2014). The detection of any differences between the surface heat flux of 
the two models would be extremely challenging, if not impossible.

The lower row of Figure 19 illustrates volumetric heat production due to tidal dissipation. As pointed out by 
Harada et al. (2014), the presence of a low-viscosity zone at the base of the mantle results in a considerable local 
increase of tidal heating with respect to the rest of the mantle or to the model without the basal layer. While the 
tidal contribution to heat production in the high-viscosity parts of the mantle is around 10 −11W m −3, the tidal heat 
production in the basal layer reaches ∼10 −8W m −3. For comparison, the global average of mantle heat production 
by all sources (radiogenic and tidal) is estimated to be 6.3 × 10 −9W m −3 (Siegler & Smrekar, 2014). The predicted 
tidal dissipation in the basal layer can help to locally increase the temperature and exceed the solidus, especially 
if conductive heat transfer prevails in the lunar mantle. Combined with high enrichment of the basal layer in 
heat-producing elements, it may then contribute to maintaining the presence of melt.

Although virtually discarded at the beginning of this Subsection, let us nevertheless also discuss possible insights 
provided by future high-precision tidal measurements. At present, the tidal quality factor Q and its frequency 
dependence are almost exclusively obtained from fitting the lunar physical librations, empirically determined 
by LLR. The only exception—to our knowledge—is the monthly k2/Q and Q derived from the GRAIL data by 
Williams et al. (2015). Future improvements in the satellite tracking (Dirkx et al., 2019; Hu et al., 2022; Stark 
et al., 2022) might provide new estimates of the tidal quality factors based on the lunar gravity field and help to 
further constrain their frequency dependence.

Among the quantities that we used in the inversion was degree-3 potential Love number k3. This parameter 
is currently only known with a large error bar but its refinement would only help to discern between the two 
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alternative models considered here if the elastically accommodated GBS was contributing to the dissipation 
throughout the entire mantle (and not only in greater depths, as tentatively derived in Subsection 6.1). This is a 
consequence of a degree-dependent sensitivity of Love numbers to the interior structure. While degree-2 Love 
numbers and quality factors probe the lunar interior down to the core, higher-order quantities are only sensitive 
to shallower depths. The Love number k3—or the quality factor Q3—would thus not “see” the basal low-viscosity 
layer, but it might sense complex tidal response in the upper mantle. As a result, the detection of the unexpected 
frequency dependence of tidal dissipation even in Q3 (accompanied by a relatively high k3 ∼ 0.01) would clearly 
point at a mechanism acting in shallow depths.

Interestingly, the best-fitting samples of the two alternative models can be distinguished from each other rela-
tively well. The main dissipation peaks associated with the basal layer in Model 3 emerge at high frequencies, 
beyond the monthly tidal frequency. Conversely, the Debye peak in Model 2 is, for most best-fitting samples, 
located between the monthly and the annual frequencies. This difference in the position of the secondary peak 
is also reflected in the magnitude of the elastic Love number k2,e, or the limit value of k2 at high frequencies. 
For the best-fitting samples of Model 2, we see k2,e = 0.021−0.024 at the frequency of 1 Hz (Figure 7). For the 
best-fitting samples of Model 3, it is k2,e = 0.0195−0.0205 (Figure 9). However, when considering all generated 
samples, Model 2 can attain much lower values of k2,e than Model 3. For comparison, the value calculated by 
Weber et al. (2011) for their seismic interior model is k2,e = 0.0232. Williams and Boggs (2015) also derived 
lower bounds on the tidal Q at the triennial and sexennial frequencies. When compared with the ensemble of our 
results for Models 2 and 3, only the samples with a dissipation peak between the monthly and the annual frequen-
cies are permitted. For Model 3, this would imply a basal layer's viscosity of the order 10 16 Pa s. Nevertheless, 
these constraints are model-dependent, and we chose not to use them to accept or reject samples.

Finally, we would like to note that any increase in the precision of Q determination will greatly help in answering 
the question of whether any specific source of additional dissipation, be it a weak basal layer or elastic accommo-
dation of strain at grain boundaries, is necessary in the first place. The existing empirical Q or k2/Q at the monthly 
and the annual frequencies present an uncertainty between 10% and 20%. Therefore, as we have also seen in 
Models 1 to 3, the tidal response of the Moon can still be fitted without the need for a secondary dissipation peak, 

Figure 19.  Average surface tidal heat flux (top) and volumetric tidal heating (bottom) for a specific realization of each of the two models discussed in this work: the 
model considering elastically accommodated GBS through the Sundberg-Cooper rheological model (Model 2, left) and the model with a basal low-viscosity zone 
(Model 3, right). In particular, the volumetric tidal heating is plotted as a function of relative radius r/R and colatitude ϑ with longitude φ equal to 0.
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although this often results in unusually small Andrade parameter α and unrealistically high attenuation of seismic 
waves in the lunar mantle.

7.  Conclusions
Tidal effects strongly depend not only on the interior density, viscosity, and rigidity profiles of celestial bodies, 
but also on the implied deformation mechanisms, which are reflected in the rheological models adopted. In this 
work, we attempted to illustrate that the unexpected frequency dependence of the tidal Q measured by LLR 
(Williams & Boggs, 2015) can be explained by lunar interior models both with and without a partially molten 
basal layer, and that each of the considered models leads to a different set of constraints on the interior properties.

As a first guess, we fitted the selenodetic parameters (M, MoIF; k2, k3, h2, Q at the monthly frequency, and 
k2/Q at the annual frequency) with a model consisting of a fluid core and a viscoelastic mantle governed by 
the Andrade rheology (Model 1). Within that model, we found a mantle viscosity of 𝐴𝐴 log 𝜂𝜂m[Pa s] = 24.16

+2.79

−2.82
 , 

mantle rigidity of 𝐴𝐴 𝐴𝐴m = 80.30
+6.37

−6.49
GPa , and the Andrade parameter α as low as 𝐴𝐴 0.08

+0.03

−0.02
 . The Andrade parame-

ter ζ is anti-correlated with ηm and although it might attain a wide range of values, ζ < 100 seems more likely 
than ζ > 100. The predicted α is generally lower than reported in the literature (0.1–0.4; e.g., Castillo-Rogez 
et al., 2011; Efroimsky, 2012a, 2012b; Jackson et al., 2010). This observation, along with seismological consider-
ations, leads us to the conclusion that the tidal response of the Moon probably cannot be explained by the Andrade 
model alone and requires either a basal low-viscosity zone (in line with the conclusion of Khan et al., 2014) or an 
additional dissipation mechanism in the mantle (similar to Nimmo et al., 2012).

Therefore, we fitted the selenodetic data with two more complex models and paid special attention to the 
best-fitting samples that exhibited a dissipation peak close to the monthly frequency. Both models are able to 
produce the same frequency dependence of the tidal parameters. In Model 2, consisting of a liquid core, an elastic 
crust, and a Sundberg-Cooper mantle, the fitting of the lunar tidal dissipation requires the relaxation time τ asso-
ciated with elastically accommodated GBS to be in the range from 3 to 300 hr, corresponding to a grain boundary 
viscosity between 10 8 and 10 14 Pa s (the exact value depends on the grain size, which follows a uniform distribu-
tion). The relaxation strength Δ is then predicted to lie in the interval [0.02, 0.25]. For the Andrade parameter α, 
all values in the considered interval [0.1, 0.4] can be attained, and ζ follows a tendency similar to Model 1. We 
further obtain a mantle viscosity of 𝐴𝐴 log 𝜂𝜂m[Pa s] = 23.87

+2.49

−2.65
 and a mantle rigidity 𝐴𝐴 𝐴𝐴m = 72.02

+3.97

−4.72
GPa .

In Model 3, containing a liquid core, a low-rigidity basal layer, an Andrade mantle, and an elastic crust, the tidal 
parameters permit a wide range of basal layer thicknesses DLVZ ∈ [0, 350] km and rigidities μLVZ ∈ [0, μm]. The 
predicted values of μLVZ are consistent with elastic properties of all considered minerals (olivine, ilmenite, gran-
ite) and with a wide range of lower-mantle temperatures. For the basal layer viscosity ηLVZ, we find two categories 
of samples providing the best fit to the observed frequency dependence of the tidal dissipation, along with the 
other selenodetic parameters: one with ηLVZ ∼ 10 13 Pa s and the other, preferred, with ηLVZ ∼ 10 15 Pa s. We note 
that this result was obtained by fitting Q at the monthly frequency and k2/Q at the annual frequency. Therefore, 
the derived basal layer viscosity in the second category is one order of magnitude smaller than reported by 
Efroimsky  (2012a, 2012b); Harada et  al. (2014, 2016); Matsumoto et  al.  (2015); Y. Tan and Harada  (2021), 
and Kronrod et  al.  (2022), who fitted Q at both frequencies. A solution with ηLVZ  ∼  10 16  Pa  s is, however, 
also possible, and it would be preferred if we also constrained our models by Q at the triennial and sexennial 
frequencies or by the mantle seismic Q at the frequency of 1 Hz. The first category of the best-fitting samples, 
with ηLVZ ∼ 10 13 Pa s, is three orders of magnitude smaller and results from the emergence of multiple peaks 
in a multilayered body. Nevertheless, none of these basal-layer viscosities is able to pose strong constraints on 
the lower-mantle temperature, owing to the large uncertainties on the rheological properties of lunar minerals. 
For the viscosity and rigidity of the overlying mantle, we get 𝐴𝐴 log 𝜂𝜂m[Pa s] = 24.08

+2.73

−2.77
 and 𝐴𝐴 𝐴𝐴m = 78.03

+7.15

−5.85
GPa . 

As in the  other two models, the exact value of viscosity depends on the Andrade parameter ζ, which is likely 
smaller  than 100. Finally, the Andrade parameter α in Model 3 is typically small and almost all best-fitting 
samples have α < 0.16, although more realistic values are also possible.

The existence of a basal weak or possibly semi-molten layer in the mantles of terrestrial bodies has been recently 
also suggested for Mercury (Steinbrügge et al., 2021) and for Mars (Samuel et al., 2021). In the case of Mercury, 
a lower mantle viscosity as low as 10 13 Pa s was proposed to match the latest measurements of the moment of 
inertia and of k2; although this result was later critically reassessed by Goossens et al. (2022), who showed that 
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more realistic values around 10 18 Pa  s might still explain the observations. In the case of Mars, the putative 
basal semi-molten layer was introduced by Samuel et  al.  (2021) to provide an alternative fit to seismic data 
which would not require the existence of a large core with an unexpectedly high concentration of light elements 
(reported in Stähler et al., 2021). Lastly, large provinces of decreased shear seismic velocities also exist at the 
base of the Earth's mantle. These zones form a heterogeneous pattern in the deep terrestrial interior; however, 
according to numerical models, the formation of a continuous layer right above the core-mantle boundary is also 
possible for some values of model parameters (e.g., Dannberg et al., 2021). A new question thus arises: is a weak 
basal layer something common among terrestrial planet's mantles? Is it a natural and widely present outcome of 
magma ocean solidification and subsequent dynamical processes? Or is it merely a popular explanation of the 
data available?

Since the available tidal parameters were deemed insufficient to distinguish a weak basal layer above the lunar 
core from the manifestation of elastically accommodated GBS in the mantle, we conclude that an answer to 
the question stated in the title of our paper awaits future lunar seismic experiments (ideally with a uniform 
distribution of seismometers across the lunar surface) as well as a better understanding of elastic parameters of 
olivine-ilmenite assemblages near their melting point. Additionally, a tighter bound on the hypothetical basal 
layer parameters or on the strength and position of the secondary Debye peak in the alternative, Sundberg-Cooper 
model might be given by updated values of tidal Q at multiple frequencies or by an independent inference of inte-
rior dissipation from the tidal phase lag and frequency-dependent k2, theoretically measurable by laser altimetry 
or orbital tracking data (Dirkx et al., 2019; Hu et al., 2022; Stark et al., 2022). A combination of all those sources 
of information will probably still not provide a bright picture of the deep lunar interior; however, it will help us 
to refute at least some of the many possible interior models.

Data Availability Statement
The software developed for the calculation of selenodetic parameters of multi-layered bodies, the Python inter-
face for running the MCMC inversion, and the plotting tools used for the figures presented in this study are 
available in Walterová et al. (2023).
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