
1. Introduction
Our knowledge of the thermal state, composition, and structure of the Martian mantle is derived from a diverse and 
continuously expanding array of geophysical and geochemical constraints. Early measurements of the moment of 
inertia factor, soil compositions at the Viking landing sites, and the definitive recognition that shergottites, nakh-
lites, and chassignites are from Mars (Baird et al., 1976; Bogard & Johnson, 1983; Johnston & Toksöz, 1977), 
unequivocally pointed to a FeO-rich mantle (Mg/(Fe + Mg) × 100 in moles or Mg# = 75–81) compared to Earth 
(90). Model compositions of the “primitive mantle” were rapidly put forth (e.g., Dreibus & Wänke, 1985) and 
allowed to create simple models of the Martian interior structure (Bertka & Fei, 1997; Elkins-Tanton et al., 2003; 
Longhi et al., 1992). Additional analyses of crustal rocks by subsequent orbiting probes and rovers, the discovery 
of new Martian meteorites (Agee et al., 2013; Humayun et al., 2013), geodetic and seismic data from the recent 
InSight mission (e.g., Huang et al., 2022; Khan et al., 2021), and geodynamic modeling (e.g., Plesa et al., 2022), 
are now allowing to draw ever improving representations of the interior structure of Mars and its evolution 
through time.

Currently available compositions of the Martian mantle (e.g., Dreibus & Wänke,  1985; Khan et  al.,  2022; 
Lodders & Fegley, 1997; Yoshizaki & McDonough, 2020, abbreviated as DW85, K22, LF97, and YM20 here-
inafter) represent average and idealized primitive compositions that are useful to derive average characteristics 
(density, solidus temperature, seismic wave velocity, etc.). However, the study of Martian meteorites has shown 
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Martian meteorites and in-situ rover analyses. We use the melting model MAGMARS to reproduce these 
primary melts and estimate the bulk composition and temperature of the mantle regions from which they 
originated. We find that most mantle sources are depleted in CaO and Al2O3 relative to models of the bulk 
silicate Mars and likely represent melting residues or magma ocean cumulates. The concentrations of Na2O, 
K2O, P2O5, and TiO2 are variable and often less depleted, pointing to the re-fertilization of the sources by fluids 
and low-degree melts, or the incorporation of residual trapped melts during the crystallization of the magma 
ocean. The mantle potential temperatures of the sources are 1400–1500°C, regardless of the time at which they 
melted and within the range of the most recent predictions from thermochemical evolution models.

Plain Language Summary Martian meteorites and rocks analyzed by rovers are witnesses of 
magmatic processes on Mars. Some of the basaltic specimens among them have been classified as “primitive” 
as they are closely related to the melts that form in the mantle and feature high MgO/FeO. They record 
important properties of the mantle of Mars. We use the mantle melting model MAGMARS to constrain the 
temperature and composition of the mantle source regions from which primitive basalts originated. We find 
that the mantle compositions were low in CaO and Al2O3, either because they melted on several occasions, 
or because these components were locked in deeper layers of the mantle when it solidified from the bottom 
up (early magma ocean). Several mantle sources are comparatively rich in Na2O, K2O, P2O5, and TiO2. These 
components were either subsequently added to the mantle sources by fluids and low-degree melts or can be 
explained by the trapping of melts during the progressive crystallization of the magma ocean. The temperature 
of the mantle sources projected to surface conditions for easier comparison (potential temperature) was 
1400–1500°C, regardless of the time at which they melted, and is within the range of recent predictions from 
planetary-scale models of interior dynamics.
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that the mantle is highly heterogeneous—both in terms of isotopic composition and Mg#—as a consequence of 
the crystallization of the Martian Magma Ocean (MMO) (e.g., Borg et al., 1997; Bouvier et al., 2018; Debaille 
et al., 2008; Humayun et al., 2013; Kruijer et al., 2017; Nyquist et al., 2016; Udry et al., 2020). The major-element 
composition of the mantle reservoirs formed during this early differentiation event remains poorly constrained 
and model-dependent (e.g., Borg & Draper, 2003; Elkins-Tanton et al., 2005).

To derive more detailed models of the interior structure of Mars, independent constraints on the composition 
and temperature of discrete regions of the Martian mantle are desirable. A subset of Martian basalts, character-
ized by varied crystallization ages and high Mg# (Table 1) have been suggested to represent primitive basalts in 
near-equilibrium with their mantle sources and have been used to determine the P–T conditions of their mantle 
source through experiments (Filiberto, Dasgupta, et  al.,  2010; Filiberto et  al.,  2008; Filiberto, Musselwhite, 
et al., 2010; Monders et al., 2007; Musselwhite et al., 2006) or modeling (Balta & McSween, 2013a; Baratoux 
et al., 2011; Filiberto, 2017; Filiberto & Dasgupta, 2011, 2015; Lee et al., 2009). The major element composition 
of these basalts cannot be produced by melting the primitive mantle and are instead expected to derive from 
mantle sources of diverse compositions (e.g., Schmidt & McCoy, 2010; Collinet et al., 2015; Figure 1).

Here, we use MAGMARS, a new model developed to simulate melting in the Martian mantle (Collinet 
et al., 2021), to re-evaluate the melting conditions and the thermal state of the mantle sources of primitive Martian 
basalts, which crystallized at different times and therefore represent snapshots of Mars' thermochemical evolu-
tion. In addition, MAGMARS allows us to estimate for the first time the major-element composition of these 
local mantle sources. We find that the P–T melting conditions appear to have remained relatively stable through 
time and that mantle sources display variable CaO/Al2O3, low overall abundances of incompatible elements but 
enrichment of alkalis, P and Ti relative to Ca and Al. We discuss the implications of these findings for the early 
differentiation of Mars and its long-lived magmatism.

2. Selected Compositions of Primitive Martian Basalts
While the majority of mantle melts were modified by igneous differentiation as they ascended through the crust 
(Farley et al., 2022; Ostwald et al., 2022; Payré et al., 2020; Udry et al., 2018; Wiens et al., 2022), a limited number 
of Martian basalts bear witness to the composition and temperature of the mantle at the time of their formation 
(i.e., primitive basalts). To identify primitive basalts, we first make the assumption that the average Martian 
mantle contains olivine Mg# ≥ 77 (Table 1, Table S1, and Figure 1), and would produce primary melts with a 
Mg# ≥ 54 (𝐴𝐴 𝐴𝐴

oliv-liq

𝐷𝐷𝐷Fe−Mg
 of 0.35; Filiberto & Dasgupta, 2011; Matzen et al., 2022). A mantle of Mg# 77 is interme-

diate between the most commonly accepted primitive mantle compositions (Dreibus & Wänke, 1985; Yoshizaki 
& McDonough, 2020). Here, we only consider Martian basaltic compositions with a Mg# ≥ 48 (Table 1), which 
could derive from primary mantle melts of Mg# ≥ 54 following a maximum of 10 wt.% of olivine fractionation.

The Spirit rover analyzed numerous basalts with Mg# 48–55 at Gusev crater (McSween, Wyatt, et al., 2006; Ming 
et al., 2008; Squyres et al., 2007) that could represent primitive basalts (Filiberto, Dasgupta, et al., 2010; Monders 
et al., 2007; Schmidt & McCoy, 2010). Among these, the Adirondack-class basalts are poor in K2O and could 
derive from a residual mantle depleted in incompatible elements by prior melting events (Collinet et al., 2021; 
Schmidt & McCoy, 2010) while most of the basalts analyzed in the vicinity of the Columbia Hills are more 
enriched in alkali elements and poorer in CaO (Figure 1). The ancient regolith breccia Northwest Africa (NWA) 
7034/7475/7533 (Bouvier et al., 2018; Cassata et al., 2018; Humayun et al., 2013; Nyquist et al., 2016) is also 
characterized by a high Mg# (54; Wittmann et al., 2015) and, despite its complex history, could approach the 
composition of a mantle melt based on trace (Humayun et al., 2013) and major element compositions (Collinet 
et al., 2015). We also test whether two individual clasts, representative of the main families of basaltic clasts 
(Santos et al., 2015; Wittmann et al., 2015), could be primitive basalts later remelted by impacts: a vitrophyre 
(Udry et al., 2014) and an alkali-rich microbasalt known as “Clast VI” (Humayun et al., 2013).

Recent geophysical constraints suggest that large portions of the mantle could be more Mg-rich (Mg# = 81; 
Khan et al., 2022) than previously assumed (e.g., Dreibus & Wänke, 1985; Yoshizaki & McDonough, 2020), as 
also evidenced by the study of Martian meteorites. The most primitive depleted shergottite (Yamato (Y) 980459, 
nearly identical to NWA 5789; Greshake et al., 2004; Gross et al., 2011) and the most primitive enriched shergot-
tite (Larkman Nunatak (LAR) 06319, nearly identical to NWA 1068; Barrat et al., 2002; Peslier et al., 2010) have 
Mg# of 66 and 58, respectively. Y 980459 contains olivine Mg# 85–86 and is thought to represent a primary melt 
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composition (e.g., Matzen et al., 2022; Musselwhite et al., 2006). The olivine 
megacrysts in LAR 06319 and NWA 1068 have Mg# ≤ 77 (Basu Sarbadhikari 
et al., 2009) but were initially more magnesian (Mg# 80) and were modified 
by Fe–Mg diffusion (Balta et  al.,  2013; Collinet et  al.,  2017). NWA 2737 
is a chassignite (Mg# 79) with olivine-hosted melt inclusions. Its primary 
melt is taken as the reconstructed composition of the parental trapped liquid 
(He et al., 2013). Given the multitude of evidence of Mg-rich mantle reser-
voirs, we also calculated alternative primary melt compositions for the Gusev 
basalts and NWA 7034/7475/7533 bulk rock and basaltic clasts that would 
be in equilibrium with a mantle of Mg# 81. The basaltic compositions in 
equilibrium with a mantle of Mg# 77–86, following addition of 0%–29% of 
olivine (Table 1 and Table S1) are collectively referred to as “target compo-
sitions” thereinafter.

3. Methods
To constrain the major element composition and temperature of the mantle 
sources of the target compositions (Table 1 and Table S1), we start by simu-
lating the melting of one of the primitive mantle compositions (DW85, K22, 
andYM20) using MAGMARS in isobaric mode (e.g., Figure 1). Second, we 
adjust the mantle composition incrementally until the melt produced is iden-
tical to the target composition (i.e., when the concentrations of all major and 
incompatible elements are within 1 wt.% relative). The first mantle compo-
sition identified that fulfill these criteria, for any given input Tp and pressure 
of melting, is called “source 1” (Table S2) and can deviate substantially from 
the primitive mantle. In a third step, we mathematically remove a fraction 

(33–50 wt.%) of the melt produced from source 1 and repeat the same procedure to identify increasingly refractory 
mantle compositions (sources 2 and 3) that can still produce melts identical to the target compositions. Finally, we 
attempt to reproduce the sources constrained in isobaric mode by switching to polybaric mode and varying the 
minimum and maximum pressure of melting, while keeping the same average pressure (Table S2). This manual 
search, in the absence of independent constraints on the melt fraction, thus leads to the identification of several 
possible mantle sources for each target composition. The non-uniqueness and model uncertainty are discussed 
in more detail for the Fastball sample (see Supporting Information S1). We performed ∼500,000 MAGMARS 
calculations by randomly varying the parameters around their average values. This automated search identified 
slightly larger compositional trends compared to the manual search. However, the mantle sources identified 
manually were found sufficient to discuss the mantle source origin and melting temperature. It is this data set 
(Table S2) that is described in the following sections.

4. Results
The compositions of the mantle sources that can produce melts identical to the target compositions (Table 1 and 
Figure 1) are shown in Figure 2 and reported in Table S2. Each target composition can be matched by melting a 
series of mantle sources characterized by various concentrations of incompatible elements (Al, Ti, Ca, Na, K, and 
P), both isobarically and polybarically. Despite the non-uniqueness of solutions, first-order chemical differences 
between the sources of the different basaltic compositions can be identified. For example, the possible sources 
of shergottites are all notably poorer in Al2O3 and Na2O than the sources of Gusev basalts (Figure 2a). Among 
the latter, the sources of Columbia Hills basalts are characterized by high Na2O, K2O, and P2O5 concentrations 
(Figures 2b–2d) compared to the source of Adirondack basalts. The source of the NWA 2737 chassignite shows 
the highest K2O/Na2O ratio. Finally, source 1 of Clast VI (NWA 7533) is nearly identical to the DW85 primitive 
mantle.

The melt fractions required to produce the target compositions are comprised between 5 and 30 wt.%. The associ-
ated mantle potential temperatures (Tp) are between 1320 and 1520°C (Figure 3a and Table S2). The average pres-
sure of melting is relatively low for all samples (1.1–2.0 GPa), and is largely constrained by the SiO2 and MgO 
concentrations of the target primary melts (Figure 1a). If a Mg# of 81 (K22) is assumed instead of 77 for NWA 

Age (Ga) Oliv (wt.%) Mg#

NWA 7034 Vitrophyre [1] 4.49 [2] +10/+26 77/81

NWA 7533 Clast VI [3] 4.49 [2] +9/+24 77/81

NWA 7475 Bulk [4] 4.49 [2] 0 77

Adirondack-class basalts [5] 3.7 [6] +3/+17 77/81

Columbia Hills Humboldt Peak [7] 3.7 [6] +7/+20 77/81

Fastball [8] 3.7 [6] 0/+13 77/81

Stars, etc. [8] 3.7 [6] +5/+17 77/81

Ace [8] 3.7 [6] +9/+29 77/81

Irvine [7] 3.7 [6] +8/+25 77/81

Chassignite NWA 2737 [9] 1.3 [10] +9 79

Depleted shergottite Y 980459 [11] 0.47 [12] 0/+7 85/86

Enriched shergottite LAR 06319 [13] 0.19 [14] 0/+5 80/81

Note. [1] Udry et  al.  (2014), [2] Costa et  al.  (2020), [3] Humayun et  al. 
(2013), [4] Wittmann et al.  (2015), [5] McSween, Wyatt, et al.  (2006), [6] 
Greeley et al.  (2005), [7] Ming et al.  (2008), [8] Squyres et al.  (2007), [9] 
He et al. (2013), [10] Udry and Day (2018), [11] average of Misawa (2004), 
Shirai and Ebihara (2004), and Greshake et al. (2004), [12] Shih et al. (2005), 
[13] Basu Sarbadhikari et al. (2009), and [14] Shafer et al. (2010).

Table 1 
Martian Primitive Basalts, Fraction of Olivine Addition Required to Reach 
Mantle-Melt Equilibrium, and Associated Inferred Mantle Mg#
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7034/7475/7533 and Gusev basalts, then the primary melts would have fractionated more olivine and the mantle 
Tp (1390–1570°C) and average pressure of melting (1.9–3.0 GPa) would both be higher (Figures 3a and 3b).

5. Discussion
5.1. Thermal State of the Martian Mantle

Compared to the Tp estimates of Filiberto (2017), and using the same starting assumptions (mantle of Mg# 77 and 
batch melting), we find that Gusev crater basalts are derived from slightly cooler mantle sources on average, with 
Tp of ∼1400°C (vs. ∼1450°C), but that the ranges of possible Tp largely overlap (1360–1460 vs. 1390–1550°C, 
respectively; see also Table S4). Allowing for a higher Mg# of the mantle sources (77–81), we find that Gusev 
basalts and all (pre-)Noachian to Hesperian samples point to a Tp of 1340–1520°C (Figure 3a).

We calculate a Tp of 1420–1430°C for the primary melt composition reconstructed from NWA 2737 melt inclu-
sions (He et al., 2013), assumed to be parental to the middle-Amazonian nakhlites and chassignites (1.34 Ga; 
Udry & Day, 2018). However, the mantle source could have been metasomatized (Day et  al.,  2018, also see 
Section 5.2) and could have contained up to 250 ppm of water (McCubbin et al., 2016), which would translate 
into a lower Tp of 1380°C (Katz et al., 2003).

The more recent olivine-phyric shergottites (160–500 Ma; Moser et al., 2013; Wu et al., 2021; McFarlane & 
Spray, 2022) are picritic basalts that have been linked to plumes with a Tp of at least 1480–1550°C (e.g., Filiberto 
& Dasgupta, 2015; Musselwhite et al., 2006). The Tp of MAGMARS simulations (1470–1520°C) are within error 
of these previous constraints if batch melting is assumed, and slightly lower in the polybaric case (1440–1450°C).

Figure 1. Comparison between the composition of Martian primitive basalts (left extremity of colored lines), their recalculated primary melts (symbols) and the 
melts produced by melting of the primitive mantle of Dreibus and Wänke (1985) at 1.5 (gray line) and 3.0 GPa (black line), as calculated by MAGMARS (Collinet 
et al., 2021). The high SiO2 content of primary melts (a) is consistent with shallow melting conditions (≪3.0 GPa). But compared to shallow DW85 melts (1.5 GPa), 
many primary basalts have either lower or higher CaO contents (b) and higher Na2O and K2O contents (c–d), and must therefore derive from mantle sources of 
contrasting compositions.
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Finally, using MAGMARS, we re-calculate the Tp and pressures of melting of the bulk volcanic provinces of 
Baratoux et al. (2011), as constrained by the Gamma Ray Spectrometer (GRS) on board NASA's Mars Odyssey 
spacecraft. Baratoux et al. (2011) used pMELTS in their analysis, which has since been shown to overestimate 
FeO and underestimate SiO2 concentrations by up to 8 wt.% (Collinet et al., 2021), significantly more than antic-
ipated by El Maarry et al. (2009). For Hesperian provinces, while the ranges of Tp are similar (1390–1460 vs. 
1370–1420°C previously), MAGMARS predicts a slightly higher pressure of melting (1.6–2.3 vs. 1.3–1.6 GPa). 

Figure 2. Incompatible element concentrations of the mantle sources of primary basalts (symbols) compared to residual model Martian mantles (lines). Each line 
represents the trajectory of residues produced by progressive melting of a primitive mantle composition (apex) at 1.5 (gray) and 3.0 GPa (black). For the DW85 model 
(solid lines), tick marks indicate the composition of residues after specific degrees of melting (in wt.%). All mantle source compositions are relatively poor in CaO and 
Al2O3 compared to the primitive mantle and are characterized by variable CaO/Al2O3 (a). The source of NWA 7533 clast VI is similar to a primitive mantle (DW85) 
and the source of the Adirondack basalts resemble a residual mantle following prior partial melting in all compositional spaces (a–d). All other sources are too rich in 
alkali elements—Na2O (b) and especially K2O (c)—and other incompatible elements, such as P2O5 (d), to derive from model Martian mantles by partial melting alone 
and other processes must be considered (see Section 5.2).
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However, we find that only Ascraeus and Elysium Mons (out of the 6 Amazonian volcanic provinces) can be 
matched with a DW85 mantle composition using MAGMARS (Table S3). The composition of the other 4 prov-
inces can either not be reproduced at all (Arsia and Pavonis Mons) or only with an extremely small melt fraction 
of <2  wt.% (Olympus Mons and Alba Patera). With a YM20 composition (Mg# of 79, 81 after 15  wt.% of 
melting), a higher Tp of 1520–1660°C and higher pressures of melting (2.3–3.5 GPa) are necessary to match the 
Hesperian volcanic provinces (Figure S4 in Supporting Information S1). A higher Mg# mantle also allows to 
reproduce the composition of a greater number of Amazonian volcanic provinces (5, all but Arsia Mons) with Tp 
of 1380–1460°C and pressures of 2.8–3.1 GPa.

The lack of temperature and pressure trends over time displayed by this set of constraints renders it impossible 
to calculate rates of secular cooling or lithosphere thickening (Figures  3a and  3b). This could be due to the 
limited number of primitive basalts available that might not be representative of the average mantle. To test this 
possibility, we compare the mantle temperature estimates derived from MAGMARS to the results of a global 
thermochemical evolution model incorporating the most recent interior structure constraints from InSight (Plesa 
et  al.,  2022). This model predicts that the average mantle temperature—and maximum temperature at which 
basaltic melts can be produced (Figure 3a)—should first increase due to the decay of radioactive elements and 

Figure 3. Temporal evolution of Tp (a) and the average pressure and depth of melting or conditions of mantle–melt re-equilibration (b). The rectangles represent the 
sources of the basaltic compositions listed in Table 1. The rounded fields are the sources of the Gamma Ray Spectrometer volcanic provinces of Baratoux et al. (2011), 
re-calculated with MAGMARS. The black lines represent the evolution of the potential temperatures and pressures of the part of the mantle that is affected by partial 
melting in the thick-crust geodynamical model of Plesa et al. (2022). The minimum pressure of melting (dashed line in B) can be interpreted as the thinnest thermal 
lithosphere observed anywhere on the planet. Panels (c) and (d) represent regional variations in Tp for this geodynamical model at the time of Gusev basalt (c) and 
depleted shergottites (d) crystallization. At their possible source locations (white stars, see text for references), the Tp are nearly identical: 1562 vs. 1525°C (see also 
Figure S3 in Supporting Information S1).
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peak at 4.0–3.5 Ga before slowly decreasing. By inspection of the spatial variability of the mantle temperature, 
we observe that melt is produced in regions of the mantle with highly variable Tp at any given time (Figures 3a, 
3c, and 3d). The Gusev basalts could thus simply derive from a relatively cold region of the mantle, while NWA 
7034 and the depleted shergottites could derive from regions of the mantle that were close to the maximum Tp, at 
the time at which they crystallized (assuming that the Karratha and 09-000015 craters are the respective ejection 
sites; Lagain et al., 2021; Lagain et al., 2022). On the other hand, our re-interpretation of the Tp of Hesperian 
volcanic provinces (1520–1660°C, for a mantle Mg# of 79; Baratoux et al., 2011) is in line with the prediction 
that the mantle of Mars was, on average, substantially warmer during the Hesperian than during the Amazonian.

Perhaps the main discrepancy between the thermochemical evolution model and the MAGMARS constraints 
is the shallow depth of melting that we estimate for the source of shergottites, which is predicted to be well 
within the lithospheric mantle (Figure 3b). Filiberto (2017) noted that if a larger amount of olivine fractionation 
had taken place, the primary melts of shergottites could have been in equilibrium with the convecting mantle 
at 3–5 GPa. While this pressure of melting is more consistent with the thick lithosphere of the late Amazonian 
(Figure S3 in Supporting Information S1), such melt compositions would require a high Tp of 1710 ± 73°C, which 
exceeds significantly the maximum Tp achievable by thermal evolution models at that time (Figure 3d). There-
fore, we consider it more likely that the Tp of the sources was low (1470–1520°C) and that the pressure derived 
from MAGMARS simulations (1.6 ± 0.5 GPa) does not represent the average pressure of melting but simply 
the final pressure of equilibration with the mantle. If shergottites formed in the Tharsis region (e.g., Lagain 
et al., 2021), deeply-sourced primary melts could have re-equilibrated with a warm lithospheric mantle, locally 
heated by magmas, at the base of the crust (110–130 km; Wieczorek et al., 2022). Alternatively, the presence 
of water could lower the required Tp and help account for the relatively high SiO2 concentrations of shergottites 
(Balta & McSween, 2013b). However, the small initial water concentration that has been suggested for their 
source (14–73 ppm; McCubbin et al., 2016) does not favor the formation of shergottites from hydrous melts.

5.2. Origin of the Mantle Sources and Their Variable Concentrations of Incompatible Elements

The mantle source of Clast VI (NWA 7533) could be nearly identical to the primitive mantle (Figure 2; source 
1 in Table S2), as previously suggested based on rare-earth element modeling (Humayun et al., 2013). All other 
mantle sources are depleted in CaO and Al2O3 relative to the various primitive mantle compositions proposed 
in the literature (DW85, K22, LF97, and YM20). One possibility is that these mantle sources represent melting 
residues of the primitive mantle from which 10–20 wt.% melt were removed prior to the formation of the target 
basaltic compositions used in this study (Figure 2a). However, the concentrations of alkalis and other incom-
patible elements (e.g., TiO2, P2O5) are, in most cases, too high at a given Al2O3 concentration, regardless of the 
style (batch vs. fractional) and pressure of melting (Figures 2b–2d). Only the Adirondack basalts are consistent in 
detail with the simple re-melting of a mantle residue, following ±10 wt.% prior melting of a primitive mantle (see 
also Collinet et al., 2021). Other processes must be invoked to explain the chemical variability of the remaining 
mantle sources.

The Columbia Hills basalts are often assumed to be related to the Adirondack basalts, as both groups were 
analyzed by Spirit at Gusev crater. Compared to the Adirondack basalts, they are rich in alkali elements as well 
as other incompatible elements (TiO2, P2O5) and poor in CaO and Al2O3 (Figure 1). McSween, Ruff, et al. (2006) 
suggested that the Columbia Hills basalts could have derived from melts similar to the Adirondack basalts by 
fractional crystallization. The higher incompatible element concentrations (e.g., K, P, Ti) of the Columbia Hills 
basalts have also been suggested to result from the contamination of Adirondack-like primitive melts by a crustal 
component (Schmidt & McCoy,  2010). However, crustal assimilation and fractional crystallization of basal-
tic melts should lower markedly the MgO concentrations (and Mg#; Ostwald et al., 2022). As the Mg# of the 
Columbia Hills and Adirondack basalts are similar, most workers now regard them as two sets of near-primary 
melts (Collinet et al., 2015; Filiberto & Dasgupta, 2011; Schmidt & McCoy, 2010). Schmidt and McCoy (2010) 
proposed that the high K2O content of the Columbia Hills basalts could be accounted for by melting a fertile 
mantle source with a higher K2O content compared to the Dreibus and Wänke (1985) composition. According 
to their model, the Adirondack basalts would be slightly younger and produced by re-melting the same region of 
the mantle. However, the similarly low CaO and Al2O3 concentrations of their sources (Figure 2a) suggest that 
both the Adirondack and Columbia Hills basalts were derived from depleted mantles, affected by 10–20 wt.% 
prior melting at ∼3.0 GPa. Metasomatism has been invoked to reconcile the high water and incompatible element 
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concentrations of nakhlites-chassignites with their Sr-Nd isotopic compositions indicative of ancient depleted 
sources (Day et al., 2018; Goodrich et al., 2013; McCubbin et al., 2013) and could also help explain the high 
K2O concentrations analyzed in numerous rocks from Gale crater (e.g., Schmidt et al., 2014). Similarly, we posit 
that the relative enrichment of incompatible elements in the Columbia Hills basalts (alkali elements as well as 
elements like P and Ti that are less mobile in fluids) could be explained by the secondary addition of low-degree 
melts to a Adirondack-like mantle source. The highest possible K2O concentrations that we calculate for the 
Columbia Hills mantle sources are in the range 0.13–0.15 wt.%. This is much smaller than the percent level 
K2O concentrations of highly metasomatized and phlogopite-bearing terrestrial peridotites (e.g., Condamine & 
Médard, 2014) but similar to other intraplate peridotites containing no hydrous phases (e.g., Smith et al., 1993). 
The source of the Columbia Hills basalts was likely affected by low degrees of cryptic metasomatism and was 
thus not significantly hydrated.

The isotopic systematics of Martian meteorites suggest the existence of a magma ocean that crystallized early 
in Mars' history (e.g., Bouvier et al., 2018; Debaille et al., 2008; Elkins-Tanton et al., 2005; Kruijer et al., 2017). 
Some of the resulting heterogeneity was never erased by convection and ancient mantle sources were affected by 
partial melting and formed the shergottites as recently as 170 million years ago (McFarlane & Spray, 2022; Moser 
et al., 2013; Wu et al., 2021). The major and incompatible element concentrations of the sources of shergottites must 
in part reflect the processes of magma ocean crystallization. For example, the superchondritic CaO/Al2O3 ratio of 
shergottites has been suggested to result from the fractionation of majorite in the deep mantle (Borg & Draper, 2003). 
Here, we find that the sources of shergottites had mildly superchondritic CaO/Al2O3 ratios that could have appeared 
at low pressure, following 15–20 wt.% melting of the primitive mantle (Figure 2a). A 20 wt.% depletion from a 
primitive mantle is also sufficient to decrease the incompatible element concentrations to levels identical to those of 
the source of depleted shergottites (Figures 2b–2d). In this case, however, the melting residue only reaches a Mg# 
of 77 (when starting from a DW85 mantle) to 81 (YM20), following 20 wt.% of melting. The much higher Mg# 
of the source of Y 980659 (85–86) remains easier to explain if it formed as a magma ocean cumulate (e.g., Borg 
& Draper, 2003; Elkins-Tanton et al., 2005). The enriched shergottites have higher concentrations of incompatible 
elements. Their composition in radiogenic isotopes indicates that the enriched signature is most likely derived from 
evolved residual melts that were trapped in mantle cumulates during the crystallization of an early MMO, rather 
than from crustal assimilation (e.g., Armytage et al., 2018; Borg & Draper, 2003; Brandon et al., 2012; Debaille 
et al., 2008; Ferdous et al., 2017; Symes et al., 2008). This could also explain the slightly higher concentrations of 
minor incompatible elements that we calculate for the source of enriched shergottites (Figure 2).

6. Conclusions
The mantle temperature of the sources that gave rise to known primitive basalts appears to have remained relatively 
stable through time (Tp of 1400–1500°C) but is likely due to a sampling bias. The higher mantle Tp (∼1600°C) of 
the Hesperian volcanic provinces (Baratoux et al., 2011), recalculated with MAGMARS and assuming a mantle 
of Mg# 79 or higher (Khan et al., 2022; Yoshizaki & McDonough, 2020), hint at a significant secular cooling 
(>100°C), as expected from thermochemical evolution models (Plesa et al., 2022). The shergottite melts were 
likely produced at pressures greater than 3 GPa but re-equilibrated with the lithospheric mantle at 1–2 GPa, for 
example, at the base of the thick Tharsis crust.

With the exception of the source of NWA 7034 and paired rocks, the mantle sources of known Martian basalts were 
poorer in Al2O3 and CaO compared to primitive mantle compositions (e.g., Dreibus & Wänke, 1985; Yoshizaki & 
McDonough, 2020). The compositions of the sources of Gusev crater basalts that we calculate do not explicitly require 
a magma ocean stage and could represent simple depleted mantle reservoirs affected by 10–20 wt.% prior melting 
(Adirondack basalts) or depleted mantle reservoirs re-fertilized by fluids and low-degree silicate melts (Columbia 
Hills basalts). On the other hand, the major element composition of the source of depleted shergottites cannot be 
easily explained by partial melting alone and suggest, along with their Sr-Nd-Hf isotope systematics, that they formed 
as mantle cumulates during the crystallization of the MMO. The concentration of major and minor incompatible 
elements in the source of enriched shergottites is consistent with the trapping a more evolved residual melt.

Data Availability Statement
The data used for the discussion and figures is summarized in Tables S1–S4 and available in full at https://doi.
org/10.5281/zenodo.7949084 (Collinet et al., 2023).
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