
Vol.:(0123456789)1 3

International Journal of Earth Sciences (2022) 111:767–788 
https://doi.org/10.1007/s00531-021-02146-1

ORIGINAL PAPER

Implications for sedimentary transport processes in southwestern 
Africa: a combined zircon morphology and age study 
including extensive geochronology databases

Andreas Gärtner1  · Mandy Hofmann1  · Johannes Zieger1  · Anja Sagawe1  · Rita Krause1 · 
Marika Stutzriemer2 · Subani Gesang2 · Axel Gerdes3,4  · Linda Marko3,4 · Cristiano Lana5,6  · Ulf Linnemann1 

Received: 15 July 2021 / Accepted: 30 November 2021 / Published online: 17 December 2021 
© The Author(s) 2021

Abstract
Extensive morphological and age studies on more than 4600 detrital zircon grains recovered from modern sands of Namibia 
reveal complex mechanisms of sediment transport. These data are further supplemented by a zircon age database containing 
more than 100,000 single grain analyses from the entire southern Africa and allow for hypothesising of a large Southern 
Namibian Sediment Vortex located between the Damara Orogen and the Orange River in southern Namibia. The results of 
this study also allow assuming a modified model of the Orange River sand highway, whose origin is likely located further 
south than previously expected. Moreover, studied samples from other parts of Namibia give first insights into sediment 
movements towards the interior of the continent and highlight the potential impact of very little spatial variations of erosion 
rates. Finally, this study points out the huge potential of detrital zircon morphology and large geo-databases as an easy-to-
use additional tool for provenance analysis.

Keywords Namibia · Zircon · Mineral morphology · Sediment transport · Geochronology · Database

 * Andreas Gärtner 
 andreas.gaertner@senckenberg.de

 Mandy Hofmann 
 mandy.hofmann@senckenberg.de

 Johannes Zieger 
 johannes.zieger@senckenberg.de

 Anja Sagawe 
 anja.sagawe@senckenberg.de

 Rita Krause 
 rita.krause@senckenberg.de

 Marika Stutzriemer 
 marika.stutzriemer@tu-dresden.de

 Subani Gesang 
 subani_rebecca.gesang@mailbox.tu-dresden.de

 Axel Gerdes 
 gerdes@em.uni-frankfurt.de

 Linda Marko 
 marko@em.uni-frankfurt.de

 Cristiano Lana 
 cristiano.lana@ufop.edu.br

 Ulf Linnemann 
 ulf.linnemann@senckenberg.de

1 GeoPlasmaLab, Museum Für Mineralogie Und Geologie, 
Sektion Geochronologie, Senckenberg Naturhistorische 
Sammlungen Dresden, Königsbrücker Landstraße 159, 
01109 Dresden, Germany

2 TU Dresden, Fakultät Umweltwissenschaften, Institut Für 
Geographie, Helmholtzstr. 10, 01069 Dresden, Germany

3 Institut Für Geowissenschaften, Goethe University Frankfurt, 
Altenhöferallee 1, 60438 Frankfurt am Main, Germany

4 Frankfurt Isotope and Element Research Center (FIERCE), 
Goethe-University Frankfurt, Frankfurt am Main, Germany

5 Programa de Pós-Graduação Em Evolução Crustal E 
Recursos Naturais, Departamento de Geologia, Escola de 
Minas, Universidade Federal de Ouro Preto, Morro Do 
Cruzeiro, Ouro Prêto, MG 35400-000, Brazil

6 Departamento de Geologia, Escola de Minas, Universidade 
Federal de Ouro Preto, Morro Do Cruzeiro, Ouro Prêto, 
MG 35400-000, Brazil

http://orcid.org/0000-0002-1670-7305
http://orcid.org/0000-0003-0027-5349
http://orcid.org/0000-0001-8655-0182
http://orcid.org/0000-0002-9329-6511
http://orcid.org/0000-0003-3823-2125
http://orcid.org/0000-0001-6302-9706
http://orcid.org/0000-0003-0970-0233
http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-021-02146-1&domain=pdf


768 International Journal of Earth Sciences (2022) 111:767–788

1 3

Introduction

The modern sediments of Namibia are an excellent archive 
to gain knowledge about the mechanisms of sediment 
transport. This is essential for reconstructing potential 
routes of sediment movement and provenance, which 
are frequently used to describe various aspects of pal-
aeogeography and palaeoenvironmental conditions (e.g. 
Aleinikoff et al. 2008; Gärtner et al. 2017, 2018; Gong 
et  al. 2013; Hofmann et  al. 2015; Montes et  al. 2015; 
Moura et al. 2008; Niemi 2013). Aside the geoscientific 
studies, there is also large interest of studying sediment 
or dust movement to lower negative effects on aviation 
(Middleton 2017; Nickovich et al. 2021). Large parts of 
Namibia are characterised by a hyper-arid to arid climate 
(Kaseke et al. 2016) that weakens chemical weathering, 
and thus, results in mainly physical sediment transport 
processes (Garzanti et al. 2017a). Such extreme conditions 
typically lead to a very thin and patchy cover of vegetation 
(Atlas of Namibia Project 2002). Meanwhile, enormous 
amounts of loose sand form dunes in aeolian transport 
corridors, which allow distinguishing mean directions of 
wind (Miller 2008). Additionally, few perennial and many 
episodic rivers as well as a monodirectional coastal cur-
rent regime (Garzanti et al. 2017a) largely determine the 
course of modern sediment transport. These environmental 
parameters provide outstanding possibilities for studying 
the entire process that moves sediments from source to 
temporary sinks, which are subsequently recycled again. 
They further facilitate detection and observation of poten-
tial areas where sediments are mixed and to reveal pos-
sible sediment traps that eventually stall material for a 
long time.

Although remarkable advances in sediment tracking and 
provenance analysis were accomplished, e.g. by discover-
ing the Orange sand highway (Garzanti et al. 2017a), resi-
dence times of sand in the Namib desert (Vermeesch et al. 
2010), or the provenance of the northern Kalahari Basin’s 

sediments (Gärtner et al. 2014), still little is known about 
the complicated network of sediment fluxes. The study, 
therefore, aims to contribute to the understanding of sedi-
ment transport mechanisms in Namibia using a combina-
tion of U-Th-Pb-Hf detrital zircon age determination from 
modern sands all over Namibia, the corresponding zircon 
grain morphology, and extensive zircon age databases.

Geomorphological and geological setting

Large parts of Namibia and southern Angola are covered by 
unconsolidated Quaternary sands of mostly unknown origin. 
Reconstructing their provenance is often done analysing the 
age spectra of detrital zircon grains. Recently, the number 
of such studies increased significantly in Namibia and adja-
cent areas (Gärtner et al. 2014; Garzanti et al. 2014a, b, 
2017a, b; Iizuka et al. 2013; Klama 2008; Rino et al. 2008; 
van der Westhuizen 2012; Vermeesch and Garzanti 2015; 
Vermeesch et al. 2010). However, most of the studies are 
restricted to the Orange River system and coastal depos-
its, while only a minor number of samples were taken from 
other rivers or dunes (Gärtner et al. 2014; Garzanti et al. 
2017b; Vermeesch et al. 2010). Prior to modelling sediment 
transport as precise as possible, detailed information about 
the oceanic currents, winds, topography, and river systems, 
as well as the known zircon age spectra of potential source 
areas are required.

Known patterns of sedimentary fluxes in southern 
Africa

The cold Benguela Current is the eastern border of the South 
Atlantic Gyre (Peterson and Stramma 1991; Wedepohl et al. 
2000) and follows the Namibian coast in a north-northwest 
direction (Fig. 1). This constant current leads to a coast-
parallel northward movement of sediments as exemplarily 
shown by Garzanti et al. (2017b), Ribas et al. (2013), and 
Ward (1989). The warm, southward flowing Angola Current 

Fig. 1  Prevailing winds and 
ocean currents of Namibia (left, 
compiled from Corbett 2018; 
Gyory et al. 2004; Hipondoka 
et al. 2014; Shi et al. 2001) as 
well as relief characteristics 
(right). A colour version of this 
figure is available in the online 
edition of this article
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occurs only very close to the coast and converges at approxi-
mately 15° S with the Benguela Current (Gyory et al. 2004). 
It seems that the northward, coast-parallel sediment trans-
port from the Orange River region is suddenly stopped close 
to this convergence point near the city of Namibe in southern 
Angola (Garzanti et al. 2017a).

Winds move large amounts of sand in Namibia and are 
an important driving force for sediment transport. The pat-
terns of predominant wind directions differ throughout the 
country (Corbett 2018; Lancaster 1982; Mwiya 2015; Shi 
et al. 2001; Ward 1984), but are mostly stable throughout 
the year (e.g. Barnes 1999; Mwiya 2015). Winds in the 
coastal regions are mainly coming from the south to south-
southwest, while they blow steadily from north-northeast, 
east-northeast, or east in the central and eastern parts of 
Namibia (Crouvi et al. 2010). In the region west of the Great 
Escarpment, the winds are mostly coming from the west, 
i.e. from the coast. Prevailing winds from north-northeast 
are characteristic for the northeastern areas of the country. 
The Congo Air Boundary to the northwest of the Etosha 
Pan separates the latter from mainly northwestern winds 
(Hippondoka et al. 2014). However, exceptions from these 
patterns occur sporadically, as shown, e.g. by Dansie et al. 
(2017), where winds from the east transport dust to the off-
shore regions of Namibia (Fig. 1).

Namibia’s drainage is characterised by numerous ephem-
eral rivers. The only exceptions are the Orange, Kunene, 
Okavango, Cubango and Zambezi rivers that are perennial 
and mark the northern and southern borders of the country. 
The river network of Namibia can be subdivided into the 
following five main groups: (1) A small number of rivers 
in Namibia are part of the Kunene River catchment (Nicoll 
2010; Strohbach 2008 and references therein). Draining 
to the northeast, they reach the westward heading Kunene 
River that discharges into the Atlantic Ocean. (2) The entire 
central northern regions of Namibia belong to the endorheic 
Etosha Pan catchment area (Hipondoka et al. 2014; Stroh-
bach 2008). (3) Most rivers northeast of Windhoek flow 
to the northeast, while those coming from Angola run to 
the southeast, all terminating in the endorheic Okavango 
Delta (Gärtner et al. 2014; Strohbach 2008). Exceptions 
are the Cuando and Zambezi rivers, which reach the Indian 
Ocean. (4) All rivers west of the Great Escarpment as well 
as the Ugab and Swakop systems, which have their sources 
further east, flow to the west or west-southwest until they 
(sporadically) reach the Atlantic Ocean (Strohbach 2008). 
(5) The rivers east of the Great Escarpment and south of 
Windhoek run to the south or southeast until they reach the 
Orange River that flows west to terminate in the Atlantic 
Ocean (Strohbach 2008). Palaeoclimate proxies for the past 
2000 years seem to indicate relatively humid conditions for 
the last two centuries (Burrough and Thomas 2013; Nash 
et al. 2016), which is in line with an increased number of 

floods in the same time (Greenbaum et al. 2014) and may 
result in a comparatively high amount of stochastically 
occurring modern fluvial sediment transport (Gärtner et al. 
2020).

General geological setting and zircon age provinces 
of the Congo and Kalahari cratons

Dated detrital zircon populations found in modern sands are 
thought to represent the zircon age patterns of their host 
rocks and, therefore, bear information about their prov-
enance. As detrital zircon data of Namibia’s modern sands 
suggest possible (polycyclic) ultra-long transport from dif-
ferent directions and multiple, partly homogenised sources 
(Gärtner et al. 2014; Garzanti et al. 2014a; 2017a; Zieger 
et al. 2020a), a brief summary of the main geologic struc-
tures in and around the study area as well as beyond the cur-
rent catchment boundaries of the Namibian drainage system 
is required (Fig. 2). Detailed information about timing of 
orogenic processes, tectonic settings, lithologies, stratigra-
phy, etc. can be found in the literature, given in the online 
resources (Table S4), and references therein. Such a trans-
cratonal view is necessary, as past studies showed severe 
and large-scaled changes in drainage directions and source 
areas (Gärtner et al. 2014; Houben et al. 2020; Moore et al. 
2007) or suggest switching river courses over time (Bluck 
et al. 2007), leading to sediment sources of unexpected 
provenance that could now be reworked by the Namibian 
rivers. Equally rapid reorganisations of drainage systems in 
a continental scale were also reported from several places 
throughout Earth’s history (Blum and Pecha 2014; Caputo 
and Soares 2016; Zhang et al. 2019).

The composite Kalahari and Congo cratons represent the 
two main entities in the study area. Both of them expose 
a complex geologic history including numerous orogenic 
belts and terranes along their margins (Begg et al. 2009; 
De Waele et al. 2009; Jacobs et al. 2008; McCourt et al. 
2013; Zeh et al. 2009). Archaean nuclei of both cratons 
are the Tanzania (Kabete et al. 2012), Zimbabwe (Jelsma 
et al. 1996) and Kaapvaal (Wilson and Zeh 2018) cratons, 
of which the latter covers large areas of the upper Orange 
River catchment. The West Nile (Thiéblemont et al. 2018), 
Northeast Congo (Siegesmund et  al. 2018) and North 
Uganda blocks (Saalmann et al. 2016), but also the Dodoma 
System (Thomas et al. 2016) and the Limpopo Belt (Kröner 
et al. 2018) are located in the eastern parts of the Congo 
and Kalahari cratons. Further Archaean components are the 
Kasai Block (Walraven and Rumvegeri 1993) in the south-
central Congo Craton, the Ntem Chaillu Block (Tchameni 
et al. 2010) and the oldest parts of the Angola Shield (De 
Carvalho et al. 2000; Gärtner et al. 2016) in its northwestern 
and western realm (e.g. Begg et al. 2009; Thiéblemont et al. 
2018; Fig. 2). Particularly, the Angola Shield is thought to 
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contribute a significant amount of siliciclastic detritus to the 
northern Namibian rivers (Gärtner et al. 2014).

Palaeoproterozoic igneous units and orogenic belts are 
abundant in southern Africa and can be found all around and 
within the Kalahari and Congo cratons (Fig. 2). With respect 
to the modern Namibian drainage system, the most impor-
tant features of Palaeoproterozoic age are the Angola Shield 
(Jelsma et al. 2018), the Epupa Complex (Kröner et al. 2015) 
and the Kamanjab Inlier (Kleinhanns et al. 2015) that are 
drained by the northern and central Namibian rivers, as well 
as the Kheis Belt (van Niekerk 2006), which is part of the 
Orange River catchment. Palaeoproterozoic structures like 
the Bangweulu Block (De Waele and Fitzsimmons 2007) 
or the Ubendian Belt (Ganbat et al. 2021) are currently not 
drained by any of the Namibian Rivers.

The occurrence of Mesoproterozoic orogens is limited 
to the northern and northwestern parts of the Kalahari Cra-
ton–Namaqua-Natal Belt (Eglington and Armstrong 2003), 
Rehoboth-Sinclair Complex (van Schijndel et al. 2014), 
both of them within the Namibian drainage system—as 

well as the entire eastern margin of both cratons (Karagwe-
Ankole Belt, Kibara Belt, Irumide Belt, Southern Irumide 
Belt, Choma-Kalomo Block; De Waele et al. 2009; Fernan-
dez-Alonso et al. 2012; Glynn et al. 2017; Hauzenberger 
et al. 2014; Kokonyangi et al. 2007; Villeneuve et al. 2019; 
Fig. 2). An exception is the Kunene Anorthosite Complex in 
northern Namibia and southern Angola (e.g. Drüppel et al. 
2007), drained by the Kunene River and its tributaries.

The collision of the Kalahari and Congo Cratons with 
several other terranes and cratons during the Neoprotero-
zoic–Early Cambrian assembly of Gondwana led to the 
formation of several orogenic belts, which are simplisti-
cally summarised as pan-African orogens (e.g. Goscombe 
et al. 2018; Oriolo and Becker 2018). Accordingly, rocks of 
this age occur around the entire Congo Craton and can be 
found on the southern, western and northern margins of the 
Kalahari Craton as well (Fig. 2). Among this large group of 
orogenic belts there are the Gariep (Hofmann et al. 2013), 
Kaoko (Konopásek et al. 2017) and Damara belts (Niemin-
ski et al. 2019), which are currently drained by the Namibian 
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Fig. 2  Simplified geological map of southern Africa showing the 
approximate location and extent of the main tectonic units (compiled 
from Begg et  al. 2009; Frimmel et  al. 2006; McCourt et  al. 2013; 

Siegesmund et al. 2018; Tack et al. 2001; Westerhof et al. 2014; and 
references therein). A colour version of this figure is available in the 
online edition of this article
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river network. Remarkably, the Orange River as one of the 
largest streams in Africa does not drain significant areas of 
pan-African age until its mouth to the Atlantic (Iizuka et al. 
2013; Fig. 2), which is due to the long-lived stability of the 
Kaapvaal Craton (Pearson et al. 2021).

Vast areas of southern Africa are covered by Carbonifer-
ous–Permian to Triassic Karoo-type sediments (Catuneanu 
et al. 2005; Linol et al. 2015; Zieger et al. 2019, 2020a, b) or 
younger strata (Haddon and McCarthy 2005; Ringrose et al. 
2008; Vermeesch et al. 2010). Numerous dykes, as well as 
plutonic and volcanic rocks of Jurassic to Cretaceous age, 
occur along the western coast of southern Africa (Comin-
Chiaramonti et al. 2011; Hastie et al. 2014). They are inter-
preted as result of the Atlantic Ocean opening (Comin-Chi-
aramonti et al. 2011). The youngest igneous activities within 
the study area are the ca. 37 Ma old mafic intrusions along 
the Atlantic coast of the Namibian Sperrgebiet area, e.g. 
Klinghardt phonolite (Kröner 1973), or the ca. 32 to 35 Ma 
Aris phonolite south of Windhoek (Burger and Walraven 
1976; Fitch and Miller 1984). Due to their paucity in zircon, 
these youngest igneous rocks likely do not contribute any 
detectable signal to the detrital zircon record.

Methods

Sample preparation

Heavy mineral separation was achieved from the < 400 µm 
fraction of the sands using lithium heteropolytungstate in 
water prior to magnetic separation in the Frantz isomagnetic 
separator. Final selection of representative zircon for U–Pb 
dating (Fedo et al. 2003; Link et al. 2005) was carried out 
by randomly hand-picking about 150 grains of all sizes, 
colours and shapes under a binocular microscope (ZEISS 
Stemi 2000-C). Subsequently, morphotypes (Pupin 1980), 
length and width, roundness and surface structure (Gärt-
ner et al. 2013) were determined using a scanning electron 
microscope (SEM, ZEISS EVO 50). These morphological 
characteristics supplement the isotopic data and may help to 
improve the precision of provenance studies. Finally, zircon 
grains were mounted in resin blocks and polished to half 
their thickness to expose their internal structure. Cathodo-
luminescence (CL)-imaging was performed using the SEM 
coupled to a HONOLD CL-detector operating at 550 nm 
spot size and 20 kV.

U‑Th‑Pb age determination via LA‑ICP‑MS

Zircon areas showing monophase growth patterns were 
preferentially selected for isotope analyses in order to avoid 
mixed U–Pb ages resulting from different late- to post-mag-
matic or metamorphic influences. Measurements for U, Th 

and Pb were conducted at the GeoPlasma Lab, Senckenberg 
Naturhistorische Sammlungen Dresden using Laser Ablation 
with Inductively Coupled Plasma Mass Spectrometry (LA-
ICP-MS) techniques. A Thermo-Scientific Element 2 XR 
instrument coupled to an ASI RESOlution SE S155 193 nm 
Excimer Laser system was utilised. Ablation happened in a 
Laurin Technic S155 ablation cell, which enables sequential 
sampling of heterogeneous grains (e.g. growth zones) dur-
ing time-resolved data acquisition. Single spot measurement 
contained 15 s background acquisition followed by 30 s data 
acquisition and 15 s washout. The spot sizes ranged between 
25 and 35 µm. Detailed specifications on the instrument set-
tings are available in online resource (Table S1). Common-
Pb correction, based on the interference- and background-
corrected 204Pb signal and a model Pb composition (Stacey 
and Kramers 1975), was carried out if necessary. Judgement 
of necessity for correction depended on whether the cor-
rected 207Pb/206Pb lay outside the internal errors of the meas-
ured ratios. A U–Pb analysis is concordant when it overlaps 
with the Concordia within uncertainty. So, it seems to be 
appropriate to exclude results with a low level of concord-
ance (206Pb/238U age/207Pb/206Pb age × 100), but very large 
errors that overlap with the Concordia from interpretation. 
An interpretation with respect to the obtained ages was done 
for all grains within the commonly used concordance inter-
val of 90–110% (206Pb/238U age/207Pb/206Pb age × 100, e.g. 
Spencer et al. 2016). Discordant analyses were generally 
interpreted with caution, i. e. they were discarded in this 
study. Raw data were corrected for background signal, com-
mon-Pb, laser-induced elemental fractionation, instrumental 
mass discrimination, depth- and time-dependant elemental 
fractionation of Pb/Th and Pb/U by use of an Excel® spread-
sheet program developed by Axel Gerdes (Institute of Geo-
sciences, Johann Wolfgang Goethe-University Frankfurt, 
Frankfurt/Main, Germany). Measurement of Th-U ratios 
was carried out parallel to U-Th-Pb determination with the 
same combination of instruments. Reported uncertainties 
were propagated by quadratic addition of the external repro-
ducibility obtained from reference zircon GJ-1 (~ 0.6% and 
0.5–1.0% for the 207Pb/206Pb and 206Pb/238U, respectively, 
Jackson et al. 2004) during individual analytical sessions 
and the within-run precision of each analysis. Plesovice ref-
erence zircon was used as secondary standard and yielded 
results in the published range (Sláma et al. 2008). For zir-
con grains older than 1 Ga, 207Pb/206Pb ages were taken for 
interpretation, while 206Pb/238U ages were used for younger 
grains. For further details on analytical protocol and data 
processing see Gerdes and Zeh (2006). Kernel density esti-
mate (KDE) plots were produced using the detzrcr package 
(Andersen et al. 2018a). Non-metric multi-dimensional scal-
ing (MDS) plots are based on the Kolmogorov–Smirnov sta-
tistical analysis (Vermeesch 2013) and were made with the 
provenance package of Vermeesch et al. (2016). Both of the 



772 International Journal of Earth Sciences (2022) 111:767–788

1 3

latter packages were designed for the open source statistical 
program R, of which version 4.0.5 was applied.

Hf‑isotopes

Hafnium isotope analyses were preferentially done on areas 
overlapping with concordant U–Pb spots. The procedure 
followed the method described in Gerdes and Zeh (2006; 
2009). Measurements were realised via Thermo-Finnigan 
NEPTUNE multi collector ICP-MS at Universidade Federal 
de Ouro Preto coupled to a RESOlution M50 193 nm ArF 
Excimer (Resonetics) laser system. Spot sizes ranged from 
26 to 40 μm in diameter, while ablation was carried out 
with a repetition rate of 4.5–5.5 Hz and an energy density 
of 6 J/cm2 during 50 s of data acquisition. Correction of the 
instrumental mass bias for Hf isotopes was done using an 
exponential law and a 179Hf/177Hf value of 0.7325. The mass 
bias for Yb isotopes was corrected using the Hf mass bias of 
the individual integration step multiplied by a daily βHf/βYb 
offset factor (Gerdes and Zeh 2009). All data were calibrated 
relative to the JMC475 of 176Hf/177Hf ratio = 0.282160, 
while quoted uncertainties are quadratic additions of the 
within run precision of each analysis and the reproduc-
ibility of the JMC475 (2 SD = 0.0028%, n = 8). Accuracy 
and external reproducibility of the method was verified by 
repeated analyses of GJ-1, 91,500 and Temora reference zir-
cons, which yielded a 176Hf/177Hf of 0.282018 ± 0.000076 
(2 SD, n = 47), 0.282297 ± 0.000038 (2 SD, n = 21) and 
0.282610 ± 0.000416 (2 SD, n = 20), respectively. This is 
in agreement with previously published results (e.g. Gerdes 
and Zeh 2006; Sláma et al. 2008) and with the LA-MC-
ICPMS long-term average of GJ-1 (0.282010 ± 0.000025; 
n > 800) reference zircon at Frankfurt Isotope and Element 
Research Centre (FIERCE), Johann-Wolfgang-Goethe Uni-
versity Frankfurt (Frankfurt/Main). Initial 176Hf/177Hf values 
are expressed as εHf(t) calculated using a decay constant 
value of 1.867  10–11  year−1 (Scherer et al. 2001), CHUR val-
ues according to Bouvier et al. (2008; 176Hf/177HfCHUR,today = 
0.282785 and 176Lu/177HfCHUR,today = 0.0336) and the appar-
ent zircon ages were obtained for the respective domains. 
The calculation of Hf two-stage model ages  (TDM, expressed 
in Ga) was performed using the measured 176Lu/177Lu of 
each spot, a value of 0.0113 for the average continental crust 
and ratios for juvenile crust of 176Lu/177LuNC = 0.0384 and 
176Hf/177HfNC = 0.283165 (average MORB; Chauvel et al. 
2008).

Results

In total, 4771 zircon grains were extracted from 30 samples. 
Each grain was analysed for its length, width, morphology 
(Gärtner et al. 2013) and morphotype (Pupin 1980). To 

obtain a more complete picture of detrital zircon morphol-
ogy of modern Namibian sands, data from northern Namib-
ian rivers (Gärtner et al. 2014) were included in the morpho-
logical analyses. U–Pb ages and Th–U isotope compositions 
were analysed at 4679 zircon grains (4698 spots) of the same 
30 samples. In total, 2910 of 4698 U–Pb analyses yielded 
ages within the concordance interval between 90 and 110%. 
Only the latter data were used for interpretative purposes. 
Additionally, samples NAM-O-8, NAM-O-18, NAMA014 
and NAMA023, as well as samples NAM-O-23 and NAM-
O-30 published by Gärtner et al. (2014) were analysed for 
their Hf-isotope composition. Due to the large amount of 
samples and data, the results are presented in a summarised 
manner, whereas the complete data for each individual grain 
is given in the online resources (Tables S2 and S3).

Concerning their morphology, zircon grains from aeolian 
sediments show a much narrower range in grain size distribu-
tion (Fig. 3a) and a larger mean grain size—length 163 µm, 
width 79 µm—than those from fluvial deposits—length 
134 µm, width 66 µm. Particularly the depletion of aeolian 
zircon populations in sediments finer than about 80 µm has 
a striking difference to fluvial transported zircon (Fig. 3b). 
Furthermore, almost all mean size values of aeolian zircon 
grain samples overlap with each other within standard devia-
tion (Fig. 3c), which is not the case for zircon grain popula-
tions deposited in fluvial systems (Fig. 3d). There is almost 
no difference in width–length ratios between aeolian (0.51) 
and fluvial (0.52) zircon populations. Although the mean 
roundness in both zircon groups is very similar at 6.69 and 
6.47 (Fig. 4), differences in the distribution of roundness are 
expressed by the presence of secondary maxima between 7 
and 8 in most of the aeolian zircon populations. Such distri-
bution patterns are subordinate in fluvial sediments. Mean 
surficial pitting of the detrital zircon grains ranges from 1.46 
to 2.42. There is almost no difference between zircon from 
dune (mean 1.94) and river sands (1.89), while beach sample 
NAMA051 shows a slightly higher number (2.12). Finally, 
the morphotype distributions show more or less similar pat-
terns throughout southern Namibia, while morphotype vari-
ety is highest towards the north (Fig. S1). Particularly the 
detrital zircon populations in southern and central Namibia 
are characterised by high amounts of morphotypes assigned 
to high temperatures (mostly S23, S24, S25). Remarkably, 
the proportions of zircon morphotypes indicating lower tem-
peratures during formation increase towards the north.

Hereafter, zircon ages of the analysed samples are sum-
marised for regions with similar age-distribution patterns.

SW Namibia

Starting in the SW parts of Namibia, which are dominated 
by the Orange River, its tributaries and the southern Namib 
Sand Sea, the general zircon age distribution pattern is 
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largely characterised by mid to late Mesoproterozoic, mid 
to late Neoproterozoic and early Cambrian main popu-
lations. Minor peaks are formed by Palaeoproterozoic, 
mostly Orosirian ages, but are scarce in dune sands. Few 
zircon grains yielded Permian and late Carboniferous ages, 
while Triassic or even Jurassic detritus is limited to few 
single grains (Fig. 5). Sample NAM-O-8 from the middle 
reaches of the Fish River is different from most other sam-
ples in SW Namibia as it contains many Palaeoproterozoic 
but only few Ediacaran-Cambrian zircon grains. A slightly 
elevated Palaeoproterozoic age peak is also present in sam-
ples NAM-O-12 and NAM-O-18, of which the last sample 
was taken only some km downstream the mouth of the 
Fish River.

SW‑central Namibia

Going to the SW-central Namibian realm, which is approxi-
mately the region between the Swakop River, the Great 
Escarpment and the Kaukausib River south of Lüderitz, the 
detrital zircon age patterns of samples from the Namib Sand 
Sea and the coastal regions apparently mirror those from the 
Orange River. Nevertheless, the detritus of smaller catch-
ments sometimes has completely different main peaks, as 
exemplarily shown for sample NAMA038 (no. 7 in Fig. 5), 
where the sediments of the Gaub River are mostly composed 
of Palaeoproterozoic and Mesoproterozoic grains, while 
any younger ages are scarce. Furthermore, it has to be high-
lighted that samples taken in close vicinity to the coast are 

Fig. 3  Summary of some 
morphological characteristics of 
the studied samples and those of 
Gärtner et al. (2014); a length 
and width of zircon from river 
and dune samples; b length 
distribution of zircon from river 
and dune samples; c average 
length and width of detrital 
zircon from dune and beach 
samples; d average length and 
width of detrital zircon from 
river samples; crosses in c and d 
indicate the standard deviation. 
A colour version of this figure is 
available in the online edition of 
this article
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significantly depleted in Palaeoproterozoic zircon compared 
to those samples near the Great Escarpment.

NW‑central Namibia

Detrital zircon age patterns of sands in NW-central 
Namibia—which is roughly the area between the 
Swakop River, the Great Escarpment including the 
catchment areas of larger ephemeral rivers such as 
Swakop and Ugab and the Hoanib River—are funda-
mentally different to those from the south. Here, a late 

Neoproterozoic–Cambrian peak often represents more 
than 50 and sometimes up to ~ 80% of the detrital zir-
con ages within one sample (Fig. 5). Furthermore, sedi-
ments from the Swakop catchment often lack any post-
Cambrian zircon, while smaller populations of various 
Permo-Carboniferous to Early Cretaceous age occur fur-
ther north. A special case is represented by modern Ugab 
sample NAMA057, which has a main peak formed by 
Palaeoproterozoic zircon, comparatively small amounts of 
Meso- and Neoproterozoic ages, but remarkable portions 
of Mesozoic grains (Fig. 5).
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NW Namibia

Northwestern Namibia is almost entirely drained by the 
Kunene River, whose sands are characterised by Palaeo-
proterozoic to late early Mesoproterozoic detrital zircon, 
which seems to be a unique marker population throughout 
Namibia. Consequently, any younger or older zircon grains 
are limited to single grains. Remarkably, sample NAMA062 
from the Etaka River in the Oshana system of the Cuvelai-
Etosha Basin is characterised by almost entirely Orosirian 
zircon grains.

NE Namibia

Finally, the northeastern Namibian sediments between the 
Cubango Megafan in the west and the Zambezi River in the 
east contain large amounts of mid Palaeoproterozoic and 
late Mesoproterozic detrital zircon, while the frequency of 
late Neoproterozoic to early Palaeozoic zircon decreases 
from west to east. Sediments sampled in this region host 
less frequent but regularly occurring zircon populations of 
late Neoarchaean age. Remarkably persistent occurrences 
of Permo-Carboniferous zircon are even less abundant. All 
post-Palaeozoic ages are scarce but can be as young as the 
Neogene–Palaeogene transition at ca. 23 Ma.

The Hf isotope record obtained from sands of modern 
Namibian rivers is quite similar throughout the country 
(Fig. 6). Most of the zircon grains have εHf(t) values between 
ca. -15 and 10, with more than half of them showing positive 
values. Large spreads in εHf(t) values were found in all major 
zircon age populations with largest variations in mid to late 
Neoproterozoic-Cambrian times (pan-African orogeny s. l.). 
There is only one characteristic that allows distinguishing 
the two groups from each other: the amount of detrital zircon 
indicating formation from mostly Neo- and Mesoarchaean 
crust. Such grains seem to occur more frequently in peren-
nial rivers (Kunene, Zambezi, Orange) that drain Archaean 
basement, while they are very rare in ephemeral rivers that 
originate in the central Namibian highlands.

Discussion

Remarks on zircon morphology

Detrital zircon grain morphology still is an underrated 
tool when analysing sediment provenance and thus, such 
parameters often remain unlogged. However, the number 
of combined isotopic and morphological studies currently 
seems to increase (e. g. Augustson et al. 2018; Bónová et al. 
2020; Osorio-Granada et al. 2020). These data from different 

environments allow drawing first assumptions on the trans-
port processes including transport media and the amount of 
multiply-recycled vs. first (or low number) cycle material.

The data from this study show—at least for the Namibian 
case—that average grain sizes vary a lot in fluvial deposits, 
while the range is quite narrow in aeolian sediments (Fig. 3). 
Not only are the average grain sizes of fluvial and aeolian 
samples very different, but also the overall range of grain 
sizes in both groups differs significantly. Thus, the small-
est grains detected in fluvial samples have lengths of about 
30 µm, while the smallest grains of dune sands are rarely 
shorter than 60 µm. Similar phenomena were reported from 
other arid regions like the Taklimakan Desert (Jiang and 
Yang, 2019). Given the different settling velocities for zir-
con grains of variable sizes, shapes and roundness in fluvial 
and aeolian transport regimes (Cantine et al. 2020; Garzanti 
et al. 2008; and references therein) it is possible to estimate 
the lower and upper boundaries of the energy that is needed 
to keep the grains in motion/suspension or to deposit them. 
With respect to the aeolian sediments it can be assumed 
that (in average) the steady winds have enough energy to 
transport almost all zircon grains < 60 µm out of the sam-
pled areas, to move most of the grains between 60 and ca. 
200 µm, but do normally not transport larger grains over 
longer distances (Fig. 3). Accordingly, the energy to keep 
the sub-60 µm grains moving must at least equal the set-
tling velocity of a 60-µm zircon in air (Cantine et al. 2020; 
Garzanti et al. 2008). A special, selective effect for such 
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small particles may be related to the quasi-periodic structure 
of dunes and their alignment to the main wind direction. 
Dune formation is dominated by the transport properties of 
quartz and this influences the average transport velocity of 
zircon particles differently from that of quartz, due to the 
density difference of the two materials (Cantine et al. 2020; 
Garzanti et al. 2008). Particles have a vertical downward 
force proportional to the 3rd power of the diameter, while 
friction is proportional to surface (2nd power) of the diam-
eter and total speed, which may be dominated by the wind 
speed for small particles. This means a big difference for 
the free flight of large and small particles starting at the top 
with an upward direction defined by the dune’s angle close 
to and before its top. Given that particles with a diameter 
below a critical value are able to reach the area close to the 
next dune top, than larger particles fall down earlier due 
to their higher mass. Accordingly, the latter then have to 
move larger distances in low wind speed corridors along the 
bottom part of the dune slope. This difference in transport 
speed is amplified by the quasi-periodic dune structure of 
the dunes when repeating this process. Thus, the probability 
to find a particle of a given diameter is proportional to its 
travel time and secondary effects of dune movement. Hence, 
the presence of fast moving (small) particles in a dune is 
a dramatically decreased by increasing transport distance. 
For different materials the density and friction-influencing 
shape parameters may be the most discriminating factors in 
the diameter distribution. Currently, this purely hypothetical 
statement is based on the obtained data. However, this grain 
size-dependant bias is seemingly not studied in detail for 
zircon and the assumed effect on transport is purely qualita-
tive. Further bias may be introduced by sample altitudes, as 
aeolian sediments are characterised by decreasing grain sizes 
with increasing altitude (Goosmann et al. 2018). Finally, 
sediments in fluvial and coastal environments are prone to 
hindered settling of sand–mud suspensions due to the prox-
imity of other sediment particles in high-density clouds 
(Shakeel et al. 2020; Spearman and Manning 2017). Such 
effects are not yet described for aeolian sediments (excluding 
ash-falls). These kinds of grain size sorting induce a natural 
bias between fluvial and aeolian samples, which might have 
to be taken into account when reconstructing provenances.

Furthermore, fluvial transport itself introduces bias to 
the detrital zircon record, as, e.g. metamict grains disap-
pear early in the transport process (Markwitz et al. 2017). 
Although it seems plausible that older zircon is much more 
likely to be transported for longer distances in multiple 
cycles of erosion and sedimentation than younger zircon 
and, therefore, tends to be smaller in average (Augustson 
et al. 2018; Lawrence et al. 2011; Markwitz et al. 2017), 
there are some regions that do not show this trend at all (e.g. 
Gärtner et al. 2014; Muhlbauer et al. 2017) or even reveal a 
reverse correlation (Gärtner 2017). The latter observations 

illustrate the necessity for intensified studies on zircon grain 
morphology and its correlation to other parameters like age, 
basement exposure, etc.

Roundness (Fig. 4), but also the width/length ratio (Fig. 3) 
of detrital zircon can be used as a parameter of already 
achieved transport distance (Gärtner et al. 2013; Markwitz 
et al. 2017; and references therein). Thus, euhedral, less 
rounded and/or very elongate zircon indicates first cycle 
sedimentation, while well-rounded and shortened grains are 
multiply recycled and were transported over longer distances 
(Gärtner et al. 2017; Leary et al. 2020; Zoleikhaei et al. 
2016). This becomes obvious when analysing all concord-
ant zircon grains from modern sands of Namibia with logged 
roundness (Gärtner et al. 2014; this study, Fig. 7). There, 
older grains trend to have a higher roundness than younger 
grains indicating their longer involvement in sediment recy-
cling processes. However, local effects, like samples taken 
adjacent to outcrops of unaltered igneous rocks, may lead 
to other roundness distribution patterns for specific samples 
or even whole areas. Furthermore, the obtained roundness 
data show that the average roundness is very similar between 
detrital zircon from river and dune sands (Fig. 4), indicat-
ing that at least the last mode of transport does not have a 
significant impact concerning this feature. A number of six 
samples (NAMA022; NAMA038, NAMA050, NAMA051, 
NAMA100, NAM-23) show a roundness distribution pattern 
with two peaks. Such patterns were previously interpreted 
to represent input of material from (originally) two different 
sources, of which one was less often recycled than the other 
(Gärtner et al. 2018). Remarkably, all of these samples are 
either in close vicinity to the Great Escarpment of southern 
and central Namibia, or are downstream the mouth of the 
Gaub into the Kuiseb River to the coast (Fig. 4). A possible 
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explanation could be the combination of (meta-) igneous 
rocks cropping out immediately west of sedimentary suc-
cessions that are exposed along the Great Escarpment of 
southern Namibia (e.g. Geological Survey of Namibia 1977; 
2000) on the one hand as well as the multitude of different 
rocks that are present in the Gaub valley on the other (e.g. 
Geological Survey of Namibia 1994). At least an origin of 
central Namibian beach and dune sands (e.g. NAMA051, 
NAMA052) from pure Orange River sediment can be ruled 
out, as neither the Orange River samples nor the very close 
dune sample NAMA089 show comparable double-peaked 
patterns of roundness distribution (Fig. 4).

The surficial pitting of zircon due to transport processes 
is well known, but rarely cited in the literature (e.g. Rainbird 
et al. 2001; Stevens et al. 2010), often neither detail about 
the quantity nor about the morphology of these features are 
given. Similar to quartz grains (Krinsley and Doornkamp 
2011), detrital zircon grains show a broad variance of surfi-
cial collision marks and pitting. Due to the different struc-
ture of zircon and quartz, it is highly likely that impacts on 
the one mineral cause other patterns of collision marks than 
on the other. Furthermore, they may be characteristic for 
certain transport media and transport energies (Cross and 
Crispe 2007; Gärtner et al. 2013). Zircon often shows oscil-
latory zoning, i.e. a lamination of U-rich and U-depleted 
zones (Nasdala et al. 2003), which likely results in different 
bonding forces between these zones due to microfractures 
and leaching (Wayne and Sinha 1988). Thus, zircon grains 
can show apparently fresh surfaces after collisions or other 
physical treatment that caused delamination and are often 
indicated by surficial cracks (Gärtner et al. 2013; Kempe 
et al. 2004). As the entire process is not fully understood yet, 
this study is limited to log the quantities of such features, 
while the individual morphologies will be reported else-
where. In general, there are no differences concerning the 
average amount of surficial collision marks when comparing 
all aeolian and fluvial samples (1.94 vs. 1.89). However, the 
amount of heavily pitted grains per sample (class 4 accord-
ing to Gärtner et al. 2013) shows a clear geographic distribu-
tion in southern and central Namibia, whereas such grains 
are less abundant in northern Namibia. Grains with intensely 
pitted and scratched surfaces were interpreted to possibly 
originate from (peri-)glacial deposits (Gärtner 2011; Gärtner 
et al. 2017; Linnemann et al. 2017). Initial studies suggest 
that even in glacial diamictite or eroded moraine material 
the amount of such grains rarely exceeds 5% (Gärtner 2011; 
Zieger et al. 2019). Indeed, most of the samples having an 
increased amount of heavily pitted zircon grains were sam-
pled in comparatively short distances downstream of glacial 
deposits or in the prevailing direction of wind from these 
rocks in southern and central Namibia (Fig. S2). Particu-
larly the lower reaches of the Orange River host multiple 
outcrops of glacigenic diamictites (Fig. S2), whose detrital 

zircon grains can widely be distributed. Although glacigenic 
deposits are also abundant in the northern parts of the coun-
try, they mostly consist of calcareous or dolomitic material 
(Hoffman 2011) and thus, are less fertile in detrital zircon 
grains. This could be an explanation for the low numbers 
of corresponding zircon grains in samples from northern 
Namibia.

The zircon morphotype (Pupin 1980) distribution of 
detrital zircon grains is a further characteristic that may 
help to distinguish between samples with similar age pat-
terns. Although increasing length of transport lowers the 
numbers of distinguishable grains, this process likely does 
not have an effect on the general morphotype distribution 
patterns. There have only been few studies that used this 
features for detrital settings (e.g. Dunkl and Demény 1997; 
Naing et al. 2014; Osorio-Granada et al. 2017). In the case 
of Namibian modern sands there is a narrow array of zircon 
morphotypes in the south with highest amounts for the S24 
(Fig. S1) and surrounding morphotypes. This pattern seems 
to characterise most of the detrital zircon in the Orange 
and Fish River catchments at least to the area of Mariental 
in the north (Fig. S1). The spectrum gets wider and more 
diverse for almost all samples north of the Tsondab River, 
where zircon grains with S1 to S15 morphotypes (Fig. S1) 
are more abundant than in the south. This changed pattern 
has its strongest expression in samples from those rivers 
that drain the Damara Orogen, but has also been observed 
for a sample from the Gariep Belt (Fig. S1), as well as for 
the Kunene, Okavango and Zambezi catchments (Gärtner 
et al. 2014). Furthermore, this pattern was also observed 
in dune and beach sands adjacent to the aforementioned 
regions. Although delamination due to physical treatment 
can cause fresh surfaces in detrital zircon (Gärtner et al. 
2013; Kempe et al. 2004), there are only few cases of dif-
fering morphotypes between the outer and the inner parts 
of one zircon grain (Köksal et al. 2008). Thus, it has to be 
assumed that zircon morphotype does not change during 
sedimentary transport. Therefore, it seems appropriate to 
assume a certain input of detrital zircon from the Damara 
Orogen and likely also from the Gariep and Kaoko belts 
for large parts of those areas termed northwest-central and 
northern southwest-central Namibia (Fig. 5). Additional 
sources further north may contribute to the sediments of 
northwest and northeast Namibia (Gärtner et al. 2014). 
Nevertheless, there are some samples that suggest regional 
exceptions from this trend, e.g. NAMA038 from the Gaub 
River, NAMA061 from an unnamed tributary of the Oiva 
River in the East Kaoko Zone, or NAMA062 from the Etaka 
River of the Oshana System. The morphotype distribution 
of these samples resembles those of the Orange-Fish River 
drainage system further south. Proving a possible correlation 
of zircon morphotype distribution and less recycled orogenic 
material as possibly indicated by the data requires more 
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research. Nonetheless, input of non-Orange River detrital 
zircon to the coastal regions of central Namibia cannot be 
neglected.

Detrital zircon age patterns and Hf‑isotopes

The evaluation of the available zircon age data including 
the results of this study begins in the south at the Orange 
River and ends in the north at the Kunene River, thus fol-
lowing the Orange sand highway as proposed by Garzanti 
et al. (2017a). However, this study also aims to analyse pro-
cesses of sediment transport in the less-studied Namibian 
hinterland. All information provided by the obtained detrital 
zircon age distribution patterns is supplemented by a zircon 
age and Hf-isotope data base for the Kalahari and Congo 
cratons exceeding 100,000 single zircon age analyses of 

more than 2370 samples (Fig. 8; Tab.S4). Concerning the 
assumed high degree of sediment recycling and homogeni-
sation through time (e.g. Zieger et al. 2020a; b), such a data 
base is prerequisite when aiming to reconstruct potential 
tracks of sediment transport.

The detrital zircon age patterns of the lowermost parts 
of the Orange River are characterised by a Tonian-Stenian 
(ca. 950–1100 Ma) main peak. Rocks of comparable age are 
abundant in the Namaqua Belt (Bailie et al. 2012; Macey 
et al. 2018) that is drained by the river. An Orosirian sub-
peak (~ 2000 Ma) is also present in all Orange River samples 
of this and of earlier studies (e.g. Iizuka et al. 2013; Klama 
2008; Vermeesch et al. 2010). What remains enigmatic is 
the Cambrian–Ediacaran (~ 520–600 Ma) peak that occurs 
in many samples of the lower Orange River (Iizuka et al. 
2013; Vermeesch et al. 2010; this study; Fig. 5). There are 
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no igneous or other source rocks for zircon of this age in 
the entire Orange catchment, except for the upper reaches 
of the Orange including the Caledon River that can account 
for the large sub-peak at its mouth (Fig. 8). Furthermore, 
Klama (2008) showed that the Cambrian-Ediacaran zir-
con populations are absent in the middle and lower reaches 
of the Orange River, which is compatible with the gener-
ally accepted ages of the geologic units along the rivers’ 
course (Fig. 2). Accordingly, a long-distance transport of 
such zircon from the upper reaches is very unlikely. The 
Hf-isotope composition of zircon from sample NAM-O-18 
shows a wide spread of εHf values, which indicates a mix-
ing (Gerdes and Zeh 2006) of Archaean and almost juvenile 
crustal components (Fig. 6). Although the Hf-data of Klama 
(2008) show a generally similar trend, most grains of the 
samples from the upper Orange River cluster in an array 
between − 5 and + 5 εHf units. This further corroborates the 
hypothesis that the pan-African zircon grains at the Orange 
River’s mouth do not stem from its upper reaches. But which 
alternative sources could be taken into account? A potential 
source is the Fish River, which derives a similar amount of 
pan-African detrital zircon as found in the lower reaches 
of the Orange River (samples NAM-O-4 and NAM-O-8, 
Fig. 5). The Cambrian-Ediacaran zircon grains of the Fish 
River are rounded (mean roundness ca. 6.1), which is not 
completely in line with well-rounded zircons of the same age 
range in the Orange River (mean roundness > 7), but indi-
cates longer transport or intense recycling of these grains. As 
these differences may result from statistical reasons (< 100 
grains for each group), this characteristic should not be over 
interpreted. Although overlapping in large parts, the spread 
of εHf values in detrital zircon is smaller in the one analysed 
sample from the Fish (NAM-O-8) than in the one sample 
from the Orange River (NAM-O-18; Fig. 6). However, Hf-
data reported from the Nama Group (Andersen et al. 2018b) 
covers the same range of εHf values as the modern Orange 
River sand. Therefore, it is possible that a certain amount 
of the Cambrian–Ediacaran zircon of the lower Orange 
derived from the north via the Fish River and its tributar-
ies. Another potential source of Cambrian–Ediacaran zir-
con in the lower Orange River is located to the south: the 
Saldania Belt (e.g. Andersen et al. 2018b; Chemale et al. 
2010; Clemens et al. 2017). Here, particularly those parts 
of the belt that drain to the Atlantic Benguela Current have 
a high potential to deliver detrital material via coast-parallel 
inner shelf-transport (de Decker 1988)—including possible 
short-distance aeolian transport on land—to the north. Pan-
African zircon grains of the Saldania Belt show εHf values 
between ca. -30 and + 5 (Farina et al. 2014; Frimmel et al. 
2013; Villaros et al. 2012), which is approximately the range 
found in sample NAM-O-18 of the lower Orange River. The 
example of the Cambrian–Ediacaran zircon population that 
seems to be added to the Orange River detrital signature just 

at its lowermost reaches—and, therefore, does not reflect 
any signal from the continental hinterland—highlights the 
complexity of sediment transport even in regions that were 
previously considered well known. Thus, some sediments 
that are transported by the Orange sand highway (Garzanti 
et al. 2017a) may have their origin even further south than 
previously expected.

Most detrital zircon grains in the Namib Erg lie within 
the age spread of the detrital zircon grains occurring in the 
lowermost reaches of the Orange River (Fig. 9). As postu-
lated by Bluck et al. (2007), Garzanti et al. (2017b), Ribas 
et al. (2013) and Ward (1989) major parts of the modern 
Namib Erg seem to have been formed from sands similar 
to those derived by the Orange River. The newly obtained 
detrital zircon data corroborate this hypothesis at least for 
the western parts of the Namib Erg. Nevertheless, either 
multi-dimensional scaling of the available data (Fig. 9) or 
simple comparison of the zircon age distribution curves 
(Fig. 5) reveal some differences, particularly in those sam-
ples that are close to the Great Escarpment (e.g. NAMA038, 
NAMA041). This is in line with observations reported by 
Corbett (2018), who showed that alluvial fans of the Great 
Escarpment also provide considerable amounts of silici-
clastic sediments to the eastern parts of the Namib and that 
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sediments of mixed sources predominate the central parts 
of this desert.

Approaching the mouth of the Swakop-Khan catch-
ment, the proposed Orange sand highway of Garzanti et al. 
(2017a) has significant amounts of or is even overprinted 
by Damaran detritus. This can be deduced from the zircon 
morphology, as described above, and is also recorded by the 
detrital zircon age patterns. The latter show high amounts of 
Cambrian-Ediacaran (ca. 490–560 Ma) detrital zircon grains 
with little Tonian–Stenian (ca. 950–1060 Ma) and Orosirian 
(~ 1900–2050 Ma) age populations. Remarkably, the amount 
of pre-Ediacaran detrital zircon increases up-stream of the 
Swakop River, which coincides with the presence of coe-
val basement inliers as described, e.g. by Longridge et al. 
(2018). The almost exclusive input of Damaran detritus 
allows a clear distinction between sands of the Swakop 
system and those of the Namib Erg (Fig. 9). The input of 
Damaran detritus by the Swakop River is so dominant that 
it constitutes the largest parts of beach sands at least up to 
about 100 km N of the Swakop River’s mouth at Henties Bay 
(sample NAMA051, Fig. 5). In coastal dunes at this locality, 
another detrital signal is recognised (sample NAMA052). 
Hence, the aeolian transport of material with Swakop River 
provenance from the west (i.e. the beach) or the south is 
negligible compared to coast-parallel transport processes. 
As the material of the coastal dunes at Henties Bay is very 
similar to that of the lower Ugab River (Fig. 9), it has to be 
assumed that material from the Omaruru or Ugab rivers is 
transported to the shoreline by high velocity winds during 
the winter months (Ward and Bulley 1988). Beside a main 
Cambrian-Ediacaran (ca. 490–560 Ma) peak and some scat-
tered Mesoproterozoic ages, there is a distinct Lower Creta-
ceous peak around ca. 130 Ma in NAMA052. The latter is 
coeval with magmatism in the Erongo (Wigand et al. 2004), 
Brandberg (Armstrong et al. 1997; Schmitt et al. 2000), 
Messum and several smaller complexes (Milner et al. 1995) 
that lie (partly) within or close to the Omaruru catchment in 
the NNE to NE of the dune. Two hypotheses can be deduced 
from these two samples: I) The Orange sand highway (Gar-
zanti et al. 2017a) is at least locally interrupted or masked 
by sediments of the Swakop River, and II) a certain amount 
of material of the coastal dunes near Henties Bay is derived 
from north-northeastern to northeastern source rocks.

Samples collected from the northern Namibian rivers, 
such as Okavango, Cuando and Zambezi, show also a quite 
similar detrital zircon age distribution pattern, which is dis-
tinct from those of the other regions (Gärtner et al. 2014; 
Figs. 5; 9). Characterised by Cambrian–Ediacaran (approx-
imately 500–620 Ma), Stenian (ca. 1020–1150 Ma) and 
Orosirian (~ 1850–2000 Ma) main peaks, these sediments 
are thought to originate from (multiply?) recycled (Gärtner 
et al. 2014) and thus, likely homogenised material of the 
northern Kalahari Basin. The realm of these detrital zircon 

age patterns seems to be sharply limited to the south and the 
west. This is indicated by sample NAMA062 and is inter-
preted to represent mostly local detrital zircon age signals. 
Additionally, sample NAMA099 shows Damara affinities 
(Fig. 9) and, therefore, has at least a certain component of 
southern provenance. “Near steady state” erosion rates of 
about 5 m ∙  Ma−1 have been proposed for the northern flank 
of the Damara Orogen (Matmon et al. 2018). Hence, the 
increase of Damara-type detritus to the south of the northern 
Namibian Rivers shows that the average erosion rate and 
formation of loose sand is currently slightly higher in the 
Damara Orogen than in the northern Kalahari Basin.

Such higher erosion rates result in a bias of derived detri-
tal material and are likely mainly triggered by steeper aver-
age hill slope angles (Bierman and Caffee 2001; Codilean 
et al. 2008), at least in arid environments. A further result of 
locally higher erosion rates are abrupt transitions from a cer-
tain detrital zircon signal to another within the same catch-
ment. This is exemplarily shown in the Ugab River, where a 
rapid change from a Palaeoproterozoic (ca. 1850–1920 Ma) 
basement to a Damara Orogen detrital zircon age signal, 
which is characterised by almost pure Cambrian–Ediacaran 
(ca. 480–560 Ma) zircon age populations, is recorded. There, 
samples NAMA055 and NAMA057 differ significantly 
although being sampled only about 150 km away from each 
other within the main channel of the Ugab River (Fig. 5a). 
Such massive sediment inputs from areas with higher ero-
sion rates mask the detrital signals coming from other parts 
of a certain catchment area, irrespective of their size. This 
is a factor that has to be considered next to preparation-
induced bias (Sláma and Košler 2012), zircon fertility of 
the host rocks (Moecher and Samson 2006) and natural bias 
induced by hydrodynamic fractionation (Augustson et al. 
2018), metamictisation (Markwitz et al. 2017), etc. when 
analysing and interpreting provenance of sediments. The 
examples from modern Ugab and also Orange River sands 
(see above) clearly indicate that the information of river 
sands sampled at their mouths do not necessarily represent 
the entire catchment area.

Last the “least complicated” detrital zircon age distribu-
tion patterns clearly highlight that sediments derived by the 
Kunene River (Gärtner et al. 2014; Garzanti et al. 2017a), or 
found in its vicinity (this study), show a zircon age distribu-
tion with particularly high amounts of Mesoproterozoic, ca. 
1300–1600 Ma old zircon grains that seem to be extremely 
rare in entire southern Africa (Fig. 8). Thus, samples that 
are somehow connected with the Epupa (e.g. Kröner et al. 
2015; Seth et al. 2003; 2005) and Kunene Anorthosite com-
plexes (Baxe 2007; Bybee et al. 2019; Lehmann et al. 2020) 
can easily be distinguished from almost all other samples 
reported from the Congo and Kalahari Cratons (Fig. 5; 
Fig. 9). Such zircon grains are a very useful marker popula-
tion for a potential detrital component of Epupa or Kunene 
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Anorthosite complex origin if occurring abundantly (e.g. 
samples S3938 of Garzanti et al. 2017a and NAMA062 of 
this study).

Summarising the data, the main route of sediment trans-
port along the Namibian coast is from the south to the north 
with an assumed high input from the Orange River. How-
ever, detrital zircon data also allow the possibility that the 
so called Orange sand highway (Garzanti et al. 2017a) origi-
nates further south or potentially derives large amounts of 
sand from the erosion of the Nama Basin and adjacent areas 
via the Fish River. Persistent winds from the south trigger 
aeolian transport from the coast to the western parts of the 
Namib Erg, while its eastern parts are fed from sources 
around the Great Escarpment. These patterns of sediment 
transport turn the Orange sand highway into the Southern 
Namibian Sediment Vortex (SNSV), which is locked to the 
north by the Damara Orogen. The flux of material from the 
south is abruptly diluted by high proportions of Damaran 
detritus at the mouth of the Swakop River, whereas the influ-
ence of aeolian transport from coast-parallel transported 
sediments to the hinterland drops to very low levels further 
north. There, sediments are blown from the river beds of 
perennial rivers like Omaruru and Ugab towards the coast 
by winds from northwest. Any sediment movement from 
the south to the north ends up in southern Angola (Garzanti 
et al. 2017a). Remarkably, the unique detrital zircon signal 
of the Kunene River and its tributaries seems to be lim-
ited to the close vicinity of the Kunene Intrusive and Epupa 

complexes and thus, can be used as excellent provenance 
marker of this area. Inland, the Damara Orogen represents 
the main factor for sediment formation and their distribution 
due to slightly higher erosion rates than in the surround-
ing landscape. Finally, the northern Namibian rivers, like 
the Okavango and Zambezi, form a separate system that 
redistributes the sediments of the northern Kalahari Basin 
towards the east and southeast (Gärtner et al. 2014) to form 
the Okavango Delta and supply sediments to the Zambezi 
flats prior to the Victoria Falls (van der Lubbe et al. 2016).

Conclusions

Owing to its almost ubiquitous occurrence, resistance 
against physical and chemical weathering and datability, zir-
con grains of various sedimentary archives are widely used 
for palaeogeographic and palaeoclimatic reconstructions. 
Although this study only provides initial data, it becomes 
clear that a combination of easy-to-log detrital zircon mor-
phology and state-of-the-art geochronologic techniques 
in combination with comprehensive geo-databases allows 
obtaining more detailed models of sediment transport than 
commonly used monomethod approaches. Particularly in 
regions that host several geotectonic realms characterised 
by very similar, repetitively occurring zircon age spectra 
with assumed high ratios of sediment recycling and homog-
enisation, like Namibia, the need for further proxies allowing 

Fig. 10  Main routes of modern 
sediment transport in Namibia. 
The small inset in the upper 
right shows a simplified visu-
alisation of the main fluxes of 
modern sediment and high-
lights the Southern Namibian 
Sediment Vortex (SNSV). A 
colour version of this figure is 
available in the online edition of 
this article Windhoek
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discrimination becomes obvious. Therefore, the interpreta-
tion of newly obtained data reveals potential sources, traps 
and routes of modern sediment transport even for less-
studied regions of Namibia. Combining all data obtained 
in this and previously published studies, a first sketch of 
the complex modern sediment transport in Namibia can be 
drawn as proposed in Fig. 10. This initial approach proposes 
to expand or complement the concept of the Orange sand 
highway by a Southern Namibian Sediment Vortex (SNSV). 
The still existing uncertainties concerning modern sediment 
transport in a very well-studied region with entirely known 
climatic, geologic and geomorphologic factors highlight the 
necessity of much more research to reconstruct past environ-
ments with even less accuracy.
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