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Abstract
The Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-
parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, 
thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window 
in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease west-
wards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial 
trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, 
respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted 
by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 
35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to 
faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Bren-
ner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an 
N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our 
thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at 
the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and 
conduction is crucial for interpreting cooling ages from extensional fault systems.
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Introduction

Low-temperature thermochronological data record the cool-
ing history of rocks on their way to the Earth’s surface and 
are routinely used to quantify rates of rock exhumation and 
slip rates of normal faults (e.g., Fitzgerald et al. 1993; Foster 
and John 1999; Brady 2002; Brichau et al. 2010; Buscher 

et al. 2013). When determining rates of faulting and exhu-
mation from thermochronological data, it is important to 
consider temporal changes of the temperature field in the 
crust, because faulting and erosion cause advection of hot 
rocks towards the Earth’s surface, which increases the geo-
thermal gradient (Stüwe et al. 1994; Ketcham 1996, 2005; 
Batt and Braun 1997; Mancktelow and Grasemann 1997; 
Braun 2016). For normal faults, the syntectonic conduction 
of heat from the exhuming footwall into the cooler hanging 
wall should lead to enhanced cooling of the footwall block 
near the fault; an effect that may be fortified by the circu-
lation of fluids (Ehlers and Chapmann 1999; Wawrzyniec 
et al. 1999; Tagami 2005; Ault and Selverstone 2008; Lui-
jendijk 2019). As a result, cooling ages in the footwall are 
expected to increase towards the fault, although this effect 
has rarely been investigated with thermochronological data 
(Dunkl et al. 1998; Ehlers et al. 2001; Seward et al. 2009). 
When faulting and heat advection stop, heat conduction 
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during thermal relaxation decreases the geothermal gradi-
ent in the entire footwall block and may cause rapid post-
tectonic cooling (Braun 2016; Wolff et al. 2020). Owing to 
the processes of syntectonic heat advection and posttectonic 
thermal relaxation, it is essential to apply thermokinematic 
modeling to derive fault-slip histories from thermochrono-
logical data (e.g., Ketcham 1996; Campani et al. 2010; Sty-
ron et al. 2013; McCallister et al. 2014; Wolff et al. 2019).

The position of active faults in mountain belts is often 
marked by valleys, as brittle fault rocks such as fault gouge 
and cataclasite have relatively higher erodibility than less 
deformed rocks adjacent to the fault (e.g., Koons et al. 2012). 
This is particularly important for normal faults, where the 
process of footwall uplift causes a relative downward move-
ment of the hanging wall, which causes the flow of water or 
ice to be focused at or near the fault trace. Hence, faults may 
control the pathways along which sedimentary material is 
transported from the mountains towards sedimentary basins 
in the foreland.

In this study, we present new structural, topographic, 
and thermochronological data from the Brenner normal 
fault in the European Alps. These data complement a recent 
study that applied thermokinematic modeling to a thermo-
chronological data set from a vertical transect (including a 
1000-m-long drill core) and showed that posttectonic ther-
mal relaxation affected the rock cooling history in the fault 
footwall (Wolff et al. 2020). Our new data and thermokin-
ematic modeling provide improved constraints on the evolu-
tion of the Brenner normal fault, the cooling history of its 
footwall (the western Tauern Window), and the amount of 
erosion and valley incision after faulting stopped.

Geological setting

The European Alps formed during two orogenic cycles that 
took place in the Cretaceous and Cenozoic (e.g., Trümpy 
1960; Frisch 1978; Froitzheim et al. 1994; Schmid et al. 
1996). The first phase of mountain building was related to 
the closure of the Meliata ocean between the Late Jurassic 
and the Early Cretaceous, whereas the second phase was 
caused by the southeastward subduction of the Penninic 
ocean and the subsequent collision between the European 
and Adriatic plates (e.g., Stampfli 2000; Froitzheim et al. 
1994; Schmid et al. 2004; Handy et al. 2010). The Penninic 
ocean consisted of a southern and a northern branch (i.e., 
the Piedmont–Ligurian ocean adjacent to the Adriatic plate 
and the Valais ocean near the European plate), which were 
separated by the Brianconnais microcontinent (Trümpy 
1960; Frisch 1978; Froitzheim and Manatschal 1996; 
Stampfli 2000). After the closure of the Penninic oceans, 
the European passive margin entered the subduction zone in 
the Early Eocene, which caused nappe stacking and crustal 

thickening (e.g., Termier 1903; Schmid et al. 1996; Bous-
quet et al. 2008; Handy et al. 2010). The presence of Ter-
tiary intrusions and mafic dykes along the Periadriatic Line 
(Fig. 1) has been interpreted to indicate the breakoff of the 
European slab in the Early Oligocene, because the intrusive 
rocks have a geochemical affinity to the mantle and formed 
mainly between 34 and 24 Ma, with few intrusive rocks 
being as old as 42–38 Ma (Bögel 1975; Exner 1976; Laub-
scher 1983a; von Blanckenburg and Davies 1995; Kissling 
et al. 2006). During the following plate convergence, the 
southeastward subduction of the European passive margin 
continued west of the Tauern Window, whereas east of the 
window, geophysical data seem to indicate a northeastward 
subduction of the Adriatic plate beneath Europe (e.g., Lip-
pitsch et al. 2003; Kissling et al. 2006; Kästle et al. 2020 
and references therein). In the area of the Tauern Window 
(Fig. 1), recent geophysical data suggest that the subducted 
European slab is detached from the orogenic crust and dips 
steeply to the NNE (Handy et al. 2021; Paffrath et al. 2021). 
A recent switch in subduction polarity with a northward sub-
duction of the Adriatic plate may have occurred here in the 
Miocene (Kästle et al. 2020; Eizenhöfer et al. 2021).

During post-collisional plate convergence and related 
crustal thickening, the formation of normal faults and con-
jugate strike-slip faults led to orogen-parallel extension of 
the Alps and the formation of tectonic windows (Fig. 1) 
(e.g., Tollmann 1962; Ratschbacher et al. 1989; Frisch et al. 
1998, 2000; Neubauer et al. 1999; Lammerer and Weger 
1998; Schmid et al. 2013). In the Central Alps, the Simplon 
normal fault aided the exhumation of the Lepontine dome 
(Campani et al. 2010). In the Eastern Alps, the Engadine 
and Tauern Windows (Fig. 1) expose European and Penninic 
units, which were underthrusted beneath the Adriatic plate 
represented by the Austroalpine nappes (Frisch 1974; Laub-
scher 1983b; Ratschbacher et al. 1990; Lammerer and Weger 
1998; Dal Piaz et al. 2003). The Tauern Window is 150 km 
long and bounded by the Brenner and Katschberg normal 
faults in the west and east, respectively (Fig. 2) (Genser and 
Neubauer 1988; Ratschbacher et al. 1991; Fügenschuh et al. 
1997; Rosenberg and Garcia 2011; Scharf et al. 2013). North 
and south of the window, conjugate strike-slip faults accom-
modated orogen-parallel extension (Figs. 1 and 2) (Behr-
mann and Frisch 1990; Ratschbacher et al. 1991; Neubauer 
et al. 1995; Frisch et al. 2000; Linzer et al. 2002; Scharf 
et al. 2013).

The metamorphic rocks of the Tauern Window comprise 
Variscan basement and Mesozoic sediments derived from 
the distal European margin and the Penninic nappes, respec-
tively (Fig. 2). The Variscan basement, including Permo-
Carboniferous intrusions, and its Upper Carboniferous to 
Permian sedimentary cover form a crustal-scale duplex 
called Venediger Duplex (Selverstone 1988; Lammerer and 
Weger 1998; Lammerer et al. 2008). The Venediger Duplex 
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has been overthrusted by the “Lower Schieferhülle”, which 
consists of Mesozoic sediments derived from the distal 
European margin (i.e., Wolfendorn nappe, Eclogite Zone, 
and Modereck nappe) (Frisch 1974; Lammerer 1986; Rock-
enschaub et al. 2003; Veselá and Lammerer 2008; Töchterle 
et al. 2011). The structurally highest unit is the “Upper 
Schieferhülle”, which consists of ophiolite-bearing units 
from the Penninic oceans (Fig. 2) (Frisch 1974; Froitzheim 
and Manatschal 1996). The Penninic units of the Tauern 
Window are lithologically heterogeneous; the Glockner 

nappe comprises calcareous micaschists intercalated with 
greenschists and amphibolites, whereas the Matrei zone is 
an imbricated unit or a mélange zone with Bündner schist-
type sediments and Austroalpine olistolithes (Frisch 1979; 
Handy et al. 2010; Schmid et al. 2013). During subduction, 
the rocks of the Lower Schieferhülle and Upper Schiefer-
hülle experienced peak pressures of 1.0–1.1 GPa and 0.7–0.8 
GPa, respectively (Selverstone 1985). After the juxtaposi-
tion of these units during duplex formation, the Lower and 
Upper Schieferhülle experienced Barrovian metamorphic 
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conditions with peak temperatures of 500–600 °C and pres-
sures of 0.7–1.0 GPa (Selverstone et al. 1984; Selverstone 
1985). Further shortening led to large-scale upright fold-
ing and the formation of two sub-domes in the western and 
eastern Tauern Window, respectively (Rosenberg et al. 2004; 
Schuster et al. 2004; Cliff et al. 2015). Oligocene-to-early 
Miocene apatite U–Pb ages from the Venediger Duplex 
record continuous cooling during dome formation (Schnei-
der et al. 2015).

The Brenner normal fault system

The 40-km-long Brenner fault system extends from Inns-
bruck to Sterzing (Fig. 2). Its northern part between Inns-
bruck and Matrei is developed as a brittle normal fault with-
out mylonites and referred to as Silltal fault (Schmidegg 
1964; Fügenschuh et al. 1997). Farther south, the Brenner 
fault sensu stricto between Matrei and Sterzing comprises 

west-dipping mylonites with a thickness of ~ 1.5 km and a 
brittle normal fault at the top of the mylonites (Behrmann 
1988; Selverstone 1988; Fügenschuh et al. 1997; Rosenberg 
and Garcia 2011; Rosenberg et al. 2018). In the hanging 
wall of the Brenner fault occur Austroalpine basement and 
cover nappes (Fig. 2), which include the Variscan basement 
of the Ötztal complex and its Mesozoic cover (Brenner 
Mesozoic), as well as the Paleozoic basement rocks of the 
Steinach nappe and its Mesozoic cover (Schmidegg 1964; 
Froitzheim 1994; Fügenschuh et al. 2000).

Thermochronological data of samples from the western 
Tauern Window indicate that cooling during the Miocene is 
related to normal faulting and footwall exhumation along the 
Brenner fault (Grundmann and Morteani 1985; von Blanck-
enburg et al. 1989; Fügenschuh et al. 1997; Most 2003; 
Bertrand et al. 2017). A thermokinematic modeling study 
that used new zircon and apatite (U–Th)/He (ZHe, AHe, 
respectively) as well as apatite fission-track (AFT) ages 
from a near-vertical transect (including a 1000-m-long drill 
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core) showed that the Brenner fault was active from 19 ± 2 to 
8.8 ± 0.4 Ma at a slip rate of 4.2 ± 0.9 km/Myr (Wolff et al. 
2020). Farther west in the hanging wall, AFT and ZFT ages 
from the Ötztal-Stubai Complex and the Brenner Mesozoic 
indicate an older phase of cooling between ~ 90 and ~ 60 Ma 
(Fügenschuh et al. 2000). Samples from the Steinach nappe, 
collected only 0.5–3.0 km west of the Brenner fault, yielded 
ZHe ages between 71 ± 10 and 63 ± 7 Ma, indicating that 
their post-Eoalpine cooling was not affected by the Miocene 
activity of the Brenner normal fault (Lünsdorf et al. 2012).

Structural data and topographic analysis

In the central part of the Brenner fault, the mylonites in 
the footwall consist of strongly deformed calc-micaschists 
(Bündner schists) of the Matrei Zone and mylonitic calcphyl-
lites of the Glockner nappe (Fig. 3A). The mylonites contain 
quartz, K-feldspar, calcite, chlorite with accessory musco-
vite, biotite, epidote, and rutile. Quartz grains show bulging 
and subgrain rotation recrystallization typical for low-grade 
metamorphic conditions. Together with the occurrence of 
chlorite, these microstructures indicate deformation during 
retrograde greenschist-facies metamorphic conditions. The 
well-developed mylonitic foliation dips gently to the west 
(10°–36°), and the stretching lineation plunges gently to the 
WSW to WNW (255°–290°) (Fig. 3). Asymmetric exten-
sional shear bands indicate a consistent top-to-the-W shear 
sense, as reported in earlier studies, which also showed that 
quartz-c-axis fabrics formed during top-to-the-W shearing 
(Behrmann 1988; Selverstone 1988).

Adjacent to the Brenner fault, both Austroalpine hanging 
wall rocks and footwall mylonites are affected by intense 
brittle deformation. Dolomites of the Mesozoic cover of the 
Ötztal complex and quartzphyllites of the Steinach nappe are 
intensely brecciated. Likewise, the mylonites near the top of 
the Brenner shear zone are overprinted by brittle faulting. 
These normal faults dip W to SW at angles between 20° and 
50°, and contain layers of fault gouge with a thickness of up 
to 0.4 m. It is noteworthy that these brittle faults are either 
parallel or only slightly steeper than the mylonitic foliation 
(Fig. 4A, B). This spatial relation is typical for low-angle 
normal fault systems that progressively exhume mid-crustal 
rocks in their footwalls.

It is important to note that the trace of the Brenner fault 
is not situated at the bottom of the N–S valley of the Sill 
and Eisack rivers, but on the western shoulder of this val-
ley (Figs. 3 and 4C). Five profiles, P1–P5, across the valley 
between the villages Gries am Brenner and Sterzing show 
the presence of low-relief surfaces dipping gently (10°–25°) 
to the west (Fig. 3D). The Brenner fault runs along the west-
ern margin of these low-relief surfaces. Near profile P4, a 
minor normal fault is located east of the main Brenner fault. 

The absolute elevation of the low-relief surfaces is highest 
on profile P3 (2020 m a.s.l.) and decreases towards the north 
and south to ~ 1700 m (P1) and ~ 1750 m (P5), respectively. 
The position of the Brenner fault several hundred meters 
above the main valley suggests that faulting must have 
ceased before the incision of the valley, and is consistent 
with the lack of crustal seismicity in the western Tauern 
Window, which indicates that the Brenner fault is not active 
(Reiter et al. 2018). The results of thermokinematic mod-
eling by Wolff et al. (2020) indicate that normal faulting 
stopped 8.8 ± 0.4 Ma ago. The envisioned paleotopography 
at the end of faulting is shown in Fig. 3C, which explains 
how we determine minimum and maximum amounts of val-
ley incision after faulting. A minimum amount can be esti-
mated from the vertical distance between the valley bottom 
and the highest points on the low-relief surfaces (Fig. 3C). 
This distance ranges from 340 m on profile 1 to 630 m on 
profile 3 (Fig. 3D). A maximum amount of incision can be 
obtained by extrapolating the Brenner fault towards the east 
assuming a fault dip of 35° (dashed lines in Fig. 3D). This 
approach leads to maximum incision values between 750 
and 1200 m.

Sampling and analytical methods

We employed ZHe, AHe, and AFT thermochronology to fur-
ther constrain the cooling history of the Brenner normal fault 
(Table 1). Along a ~ 16 km long WSW–ESE profile, which 
extends from the Brenner fault (near Brennerbad) along a 
prominent mountain ridge to Olperer mountain (Fig. 5), we 
collected four orthogneiss samples (17A15, 17A14, 17A22, 
and 17A19) that complement the five samples dated by Wolff 
et al. (2020). The elevation of the nine samples along this 
profile increases eastward from 1342 to 3236 m (Table 1). 
On the northern and southern flanks of Olperer mountain, 
we took four orthogneiss samples (16A19, 17A20, 17A21, 
and 17A25; Table 1). Together with the easternmost sample 
of the WSW–ENE profile (17A19), these samples cover a 
vertical distance of ~ 1.5 km. Close to the Brenner fault, we 
collected another six samples at two sites, A and B, located 
west of Brenner lake and west of Brennerbad, respectively 
(Fig. 3B). At site A, two samples that are ~ 2 m apart were 
collected in the footwall close to the fault, whereas a third 
sample was taken 100 m farther west in the hanging wall. At 
site B, where a second normal fault occurs ~ 400 m east of 
the Brenner fault (Fig. 3A), we took three samples between 
the two faults over a distance of 40 m.

For (U–Th)/He thermochronology, we selected euhedral 
zircon and apatite crystals without inclusions by hand-
picking after heavy-liquid separation. The single crystals 
were wrapped in 1 × 1 mm-sized platinum capsules and 
degassed in high vacuum by heating with an infrared diode 
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laser at the GÖochron Laboratories, University of Göttin-
gen. The extracted gas was purified using an SAES Ti–Zr 
getter at 450 °C and spiked with 3He. The chemically inert 

noble gases and a minor amount of other trace gases were 
then expanded into a Hiden triple-filter quadrupole mass 
spectrometer equipped with an ion counting detector. 

Fig. 3  A Geological map of 
the central part of the Brenner 
normal fault (simplified after 
Schmid et al. 2013 and Rock-
enschaub and Nowotny 2009). 
Position of Brenner fault after 
Rosenberg and Garcia (2011). 
The hanging wall comprises 
the Ötztal complex and its 
Mesozoic cover as well as the 
Steinach nappe, whereas the 
footwall includes Penninic and 
Subpenninic nappes as well as 
part of the Lower Austroalpine 
nappe. B Shaded relief image of 
the area shown in A. The Bren-
ner fault runs along the western 
margin of a gently dipping 
low-relief surface. Straight lines 
indicate position of profiles P1–
P5 shown in D. Image is based 
on TanDEM-X digital elevation 
data with a resolution of 8 m. C 
Sketch illustrating our approach 
to estimate the amount of valley 
incision after faulting from the 
inferred paleotopography and 
a fault dip of 35°. A minimum 
estimate is given by the vertical 
distance between the valley bot-
tom and the highest point on the 
low-relief surface in the fault 
footwall. The elevation differ-
ence between the paleo-valley 
and the present-day surface 
yields the maximum amount of 
incision. D Geological profiles 
P1–P5 across the valley in the 
footwall of the Brenner fault 
(profiles have no vertical exag-
geration). The vertical distance 
between valley bottom and 
valley shoulder is a minimum 
for the amount of valley inci-
sion after faulting stopped. The 
dashed lines approximate the 
paleotopography at the end of 
faulting and provide a maxi-
mum amount of incision
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Crystals were checked for complete degassing of helium 
by sequential reheating and helium measurement. Follow-
ing degassing, crystals were retrieved from the gas extrac-
tion line, unpacked, and spiked with calibrated 230Th and 
233U solutions and dissolved in pressurized teflon bombs 
at 220 °C using distilled 48% HF + 65%  HNO3 for 5 days, 
or in 4%  HNO3 for 1 day, for zircons and apatites, respec-
tively. Spiked solutions were analyzed by the isotope dilu-
tion method using an iCAP Q ICP-MS equipped with an 

APEX micro-flow nebulizer. Crystal shape parameters 
were determined by multiple microphotographs and used 
to determine correction factors for alpha-ejection (Farley 
et al. 1996) with the constants of Hourigan et al. (2005).

Apatite fission track dating by the external detector 
method (Gleadow 1981) was carried out at the Institute of 
Geological Sciences, Polish Academy of Sciences in Kra-
kow (Poland). The selected apatite crystals were embed-
ded in epoxy resin and polished using  Al2O3 suspensions. 
Then, they were etched in 5N  HNO3 at a temperature of 
21 °C for 20 s to reveal spontaneous fission tracks (Zaun 
and Wagner 1985; Donelick et al. 1999). Neutron irradia-
tion of samples, age standards (Fish Canyon Tuff, Durango 
and Mount Dromedary apatites), and CN5 glass dosim-
eter was performed at the TRIGA reactor (Oregon State 
University, USA). After irradiation, the induced fission 
tracks in the mica detectors were revealed by etching in 
40% HF for 45 min. Track counting and length measure-
ments were made with a NIKON Eclipse E-600 micro-
scope computer-controlled stage system (Dumitru 1993) 
with 1250 × magnification. Calculations and plots were 
done with the software TRACKKEY (Dunkl 2002). The 
fission-track ages were determined by the zeta method 
(Hurford and Green 1983) using age standards listed in 
Hurford (1998). The error was calculated following the 
procedure of Green (1981). The fission-track annealing 
kinetics was assessed by measuring the etch pit diameters 
(Dpar) (Burtner et al. 1994).

Results of thermochronology 
and thermokinematic modeling

In this section, we describe our thermochronological data set 
and the thermokinematic model (Fig. 6A) that we use to pre-
dict the cooling ages obtained from the three different ther-
mochronometers (ZHe, AFT, and AHe). The single-crystal 
ZHe and AHe ages and the unweighted average ages for all 
samples (including those of Wolff et al. 2020) are reported 
in Tables 2 and 3. The radiation damage densities of the 
apatite and zircon crystals range from 1.6 ×  1013 to 3.4 ×  1015 
alpha decay events/gram and from 6.5 ×  1015 to 2.6 ×  1017 
alpha decay events/gram, respectively. These ranges are 
well below the thresholds for a damage-induced decrease of 
closure temperatures (Flowers et al. 2009; Gautheron et al. 
2009; Guenthner et al. 2013). The AFT data are given in 
Table 4. All AFT samples passed the Chi-square test and 
are therefore considered to form one age population. In the 
following, we describe the cooling ages obtained from the 
WSW–ENE profile and the age-elevation profile at Olperer 
mountain, followed by the age results at the sites A and B 
near the Brenner fault.

ENE

ENE WSW

WSW

ENE WSW

Brenner 
fault

low-relief surface

fault gouge
mylonite

mylonite

A

B

C

Fig. 4  Pictures of normal fault near Gries am Brenner (see Fig. 5 for 
location of photographs). A Brittle normal fault (white arrows) with 
0.4 m-thick fault gouge dipping ~ 35° to the SW. The fault is slightly 
steeper than the mylonitic foliation in the calc-micaschists (150/27 
SW). Outcrop is ~ 40 m wide. B Brittle normal fault with brown fault 
gouge that is parallel to the foliation in adjacent calc-mylonites. Fault 
dips ~ 25° SW. Hammer is 53 cm long. C Photograph of the low-relief 
surface in the footwall of the Brenner fault, which forms a prominent 
shoulder above the steep valley. View direction is to the SSE
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Table 1  Coordinates of 
sampling locations at the 
Brenner fault

Samples with asterisks are from Wolff et al. (2020)
a Sample locations are shown in Fig. 5

Sample  numbera Latitude (°N) Longitude (°E) Elevation (m) Sample lithology

WSW–ENE profile and elevation profile near Olperer mountain
 17A9* 46.9664 11.4690 1342 Mylonitic schist
 17A11* 46.9715 11.5032 1975 Calcschist
 17A17* 46.9878 11.5465 2557 Calcschist
 17A16* 46.9904 11.5541 2606 Orthogneiss
 17A15 46.9929 11.5651 2737 Orthogneiss
 17A14 46.9947 11.5737 2629 Orthogneiss
 17A13* 46.9971 11.5813 2721 Orthogneiss
 17A22 47.0375 11.6496 2958 Orthogneiss
 17A19 47.0617 11.6804 3236 Orthogneiss
 16A19 47.0337 11.6983 1781 Orthogneiss
 17A20 47.0768 11.6723 2605 Orthogneiss
 17A21 47.0975 11.6737 1745 Orthogneiss
 17A25 47.0439 11.6898 2416 Orthogneiss

Site A
 19A9 47.0182 11.4925 1661 Mylonitic schist
 19A10 47.0182 11.4925 1662 Mylonitic schist
 19A12 47.0183 11.4906 1693 Quarzphyllite

Site B
 19A14 46.9780 11.4673 1709 Mylonitic schist
 19A15 46.9780 11.4671 1705 Mylonitic schist
 19A16 46.9780 11.4664 1703 Mylonitic schist

Fig. 5  Shaded relief image 
of the study area with sample 
locations. Grey dots indicate 
position of photos in Fig. 4. 
Samples 17A9 to 17A19 along 
ridge crest are shown in Fig. 7. 
Samples in black rectangle near 
Olperer mountain are shown in 
Fig. 8. Sites A and B are shown 
in Fig. 9. Elevation profile and 
drill core position of Wolff et al. 
(2020) are shown by black line. 
Image is based on TanDEM-X 
digital elevation data with a 
resolution of 8 m
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Profile in fault footwall and age‑elevation profile 
near Olperer mountain

The ZHe, AFT, and AHe ages of the nine samples collected 
along the mountain ridge in the footwall of the Brenner fault 
are shown in Fig. 7. The ZHe ages range from 7.9 ± 0.3 to 
11.1 ± 1.1 Ma and show a trend of increasing ages towards 
the east, although there is considerable scatter in the data 
(Fig. 7B). This is the reason why a regression line in the 
age-versus-distance plot with an inverse slope of 6.9 km/
Myr is not well defined (R2 = 0.4). A least-square regression 
(York 1966) through the ZHe ages yields a different inverse 
slope of 3.9 ± 0.9 km/Myr. The AFT and AHe ages along 

the profile range from 7.3 ± 2.2 to 10.8 ± 2.0 Ma and from 
8.5 ± 0.3 to 9.8 ± 5.4 Ma, respectively. In contrast to the ZHe 
ages, neither the AFT ages (with their relatively large errors) 
nor the AHe ages show a significant correlation between 
cooling ages and distance to the Brenner fault (Fig. 7C, D). 
Owing to the relatively large errors of two He ages (ZHe age 
of sample 17A17 and AHe age of 17A19), it is not surprising 
that local age inversions occur along the profile.

The results from the elevation profile at Olperer moun-
tain (see Fig. 5) are shown in Fig. 8. By adding published 
AFT ages (Grundmann and Morteani 1985; Most 2003; see 
rectangle in Fig. 5), we increased the vertical distance cov-
ered by the profile from 1.5 to 1.8 km. The ZHe ages range 
between 8.6 ± 1.3 and 10.7 ± 0.7 Ma and least-square fitting 
yields a regression line with a slope of 1.1 ± 0.7 km/Myr. For 
our AFT ages, we obtain a similar slope of 1.0 km/Myr, but 
with a large uncertainty of ± 1.3 km/Myr. If the AFT ages 
of Most (2003) and Grundmann and Morteani (1985) are 
included, the slope is only 0.5 ± 0.1 km/Myr. The nominal 
AHe ages do not vary with elevation (three of the four AHe 
ages are 9.5 Ma old), and therefore, it is not possible to 
derive a meaningful slope value.

Although thermochronological ages from normal fault 
footwalls are often used to estimate rates of faulting and 
exhumation (e.g., Brady 2002; Brichau et al. 2010; Buscher 
et  al. 2013), geologically meaningful rates can only be 
obtained if the slopes of regression lines are well defined, 
and if the isotherms remained spatially and temporally invar-
iant during the episode of faulting and exhumation recorded 
by the data. Thermokinematic modeling can be used to test 
whether these assumptions are met and can help to interpret 
age data in a meaningful way.

Thermokinematic modeling

To predict ZHe, AFT, and AHe cooling ages for the samples 
described in Sect. 6.1, we used the thermokinematic model 
of Wolff et al. (2020), which is based on the finite-element 
code PECUBE (Braun et al. 2012). To calculate ages with 
PECUBE, we used the same diffusion and annealing models 
as employed by Wolff et al. (2020). These are the diffusion 
model of Farley (2000) for AHe, the annealing model of 
Ketcham (2005) for AFT, and the diffusion model of Rein-
ers et al. (2004) for ZHe. The latter was adjusted using a 
D0/a2 value of 37,800 1/s and an activation energy of 168 kJ/
mol to account for the rather low radiation damage of the 
zircon samples (cf. Guenthner et al. 2013). This model was 
able to predict the ZHe, AFT, and AHe cooling ages from a 
vertical profile close to the Brenner fault, which included a 
1000-m-long drill core, within their uncertainties (see Fig. 5 
for location of the profile and the drill core). The only differ-
ence of the current model to the one of Wolff et al. (2020) 
is the model size, which was increased to 55 × 20 km to 
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Fig. 6  A Three-dimensional view of the thermokinematic model used 
in this study. The entire model is 70  km thick (only the upper part 
is shown here). The planar normal fault is active between 19.0 and 
8.8 Ma. The isotherms (blue to red surfaces with a spacing of 50 °C) 
are shown at 10  Ma model time. Yellow dots are sample positions. 
B The temperature evolution in the fault footwall is shown at model 
times of 10, 9, and 8 Ma. Heat advection due to normal faulting has 
shifted the isotherms in the fault footwall towards the surface, which 
causes rapid syntectonic cooling. When faulting stops at 8.8 Ma, the 
upper crust cools rapidly during thermal relaxation as can be seen by 
the downward shift of the isotherms between 9 and 8 Ma
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enable the tracking of all samples during normal faulting and 
footwall exhumation (Fig. 6). The model parameters used in 
PECUBE are given in Table 5. The timing of faulting (from 
19.0 until 8.8 Ma) and the fault-slip rate (4.2 km/Myr) were 
taken from the best-fit model of Wolff et al. (2020).

The cooling ages predicted by our thermokinematic 
model are shown as red dots in Figs. 7 and 8. It can be 
seen that our model roughly predicts the ZHe ages on the 
long profile (Fig. 7B), although the measured ZHe ages 
for the two westernmost samples are ~ 1.5 Ma lower than 
the modelled ones. The three closely spaced samples at a 
distance of ~ 6 km from the Brenner fault yielded two ZHe 
ages that are younger than predicted by the model (~ 8.3 
and ~ 9.4 Ma), whereas the third age is older (~ 11.1 Ma). 
Despite this variability, the mean of the three ZHe ages 
(i.e., 9.6 ± 0.8 Ma) is in good agreement with the modelled 
ages of ~ 9.9 Ma. The nearly invariant ZHe ages calculated 
by our model result from the fact that the 200 °C isotherm 
in the model is nearly horizontal at a distance of greater 
than ~ 5 km away from the surface trace of the fault (Fig. 6B) 
and that the rate of rock exhumation during faulting in the 
footwall is everywhere the same. In nature, the amount and 
rate of exhumation commonly decrease away from normal 
faults over a distance of 20–30 km, because of syntectonic 
footwall tilting. To take this effect into account, we intro-
duced a kink in the fault plane, which changes its dip from 
35° to 20° at a distance of 5 km from of the surface trace of 
the fault. As the footwall in the model must move parallel to 
the fault plane, this kink causes footwall tilting and changes 
the modelled exhumation paths of the samples (cf. Braun 

et al. 2012; Campani et al. 2010; Styron et al. 2013). As a 
result, the ZHe ages predicted by this second model become 
older with increasing distance from the fault (green dots in 
Fig. 7). Both models predict the measured ages from all 
three thermochronometers reasonably well (for reasons out-
lined in the discussion, we prefer the model without footwall 
tilting). At the elevation profile near Olperer mountain, the 
predicted ZHe, AFT, and AHe of the two models are also in 
good agreement with the measured cooling ages, except for 
three previously published AFT ages (Fig. 8).

Sites A and B near Brenner fault

The westernmost sample at site A (19A12) yields ZHe and 
AHe ages of 36 ± 15 and 32 ± 13 Ma, respectively, whereas 
the ZHe ages of the mylonite samples are 6.7 ± 1.6 Ma and 
7.8 ± 0.7 Ma (Fig. 9, Table 2). Hence, the Brenner normal 
fault causes an abrupt jump from young ages in the footwall 
to much older ages in the hanging wall. The age data also 
demonstrate that the Brenner fault is indeed located on the 
western shoulder of the valley (Fig. 9).

At site B, the three ZHe ages range from 7.2 ± 0.2 to 
8.1 ± 0.8 Ma and are similar to the ZHe age of 8.0 ± 0.7 Ma 
for the westernmost sample 17A9 on the long profile (Fig. 9). 
Hence, the main Brenner fault must be located west of the 
samples and the minor normal fault east of the samples has 
no significant effect on their cooling history. The AHe ages 
for the three samples range from 8.8 ± 1.4 to 10.8 ± 0.4 Ma, 
with all nominal ages being higher than the respective ZHe 
ages (possible reasons are discussed in Sect. 7.2).

Table 4  Results of apatite fission-track analysis

ρ: track densities are as measured (×  106 tr/cm2)
N: number of tracks counted
�
2 P[%]: probability obtaining Chi-square value for n degree of freedom (n = number of crystals − 1)

ζ value is 348.2 ± 6.5 yr/cm2

a Samples with asterisk are from Wolff et al. (2020)
b Using dosimeter glass CN5
c Central age calculated according to Galbraith and Laslett (1993)
d MTL: mean track length (TL)

Sample  numbera No. of crystals Spontane-
ous

Induced Dosimeterb P ( �2) Central  agec MTLd No. of 
measured 
TL

Dpar U

ρ N ρ N ρ N [%]  ± 1σ [Ma] [µm] [µm] [ppm]

E–W profile and elevation profile
 17A11* 11 0.07 11 2.09 339 1.29 3887 100 7.3 ± 2.2 13.2 ± 0.3 15 1.81 20
 17A16* 20 0.10 31 2.03 652 1.31 3928 100 10.8 ± 2.0 12.8 ± 0.2 41 1.76 19
 17A13* 20 0.12 32 2.89 789 1.26 3786 100 8.9 ± 1.6 13.0 ± 0.2 35 1.60 27
 17A22 20 0.10 27 2.30 631 1.28 3837 100 9.5 ± 1.9 12.2 ± 0.3 23 1.73 22
 17A19 20 0.11 30 2.53 675 1.24 3719 100 9.6 ± 1.8 12.1 ± 0.3 11 1.62 25
 16A19 20 0.09 27 2.41 754 1.32 3959 100 8.2 ± 1.6 12.6 ± 0.2 34 1.73 23
 17A25 20 0.10 52 2.31 1146 1.24 3711 100 9.8 ± 1.4 13.1 ± 0.3 24 1.66 23
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Discussion

Interpretation of thermochronological ages in fault 
footwall

The ZHe ages predicted by our thermokinematic models 
(with and without footwall tilting) are broadly in agreement 

with those measured along the profile in the footwall of the 
Brenner normal fault (Fig. 7B). As the misfit ϕ between 
our ZHe ages and the ages predicted by the two models is 
smaller for the model without footwall tilting (misfit ϕ of 
1.9 versus ϕ of 2.6; calculated after Braun et al. 2012), we 
prefer this model over the one with footwall tilting. A regres-
sion line through the ZHe ages yields an inverse slope of 
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Fig. 7  Thermochronological samples and age data along profile 
located in the footwall of the Brenner normal fault. Samples are pro-
jected on E–W profile parallel to the fault-slip direction. A Topo-
graphic profile with samples shown as yellow circles. B–D ZHe, 
AFT, and AHe ages with uncertainties along profile shown in (A). 

Red and green dots indicate the ages predicted by the thermokin-
ematic models described in Sect. 6.2. The horizontal grey line in C 
and D indicates the end of normal faulting on the Brenner fault at 
8.8 ± 0.4 Ma (Wolff et al. 2020)
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6.9 km/Myr (dashed line in Fig. 7B). Without caution, this 
value could be interpreted as the fault-slip rate during crustal 
extension; however, the following reasons argue against such 
a simple interpretation. First, there is considerable scatter in 
the age data and the uncertainties of the individual ZHe ages 
are quite variable. Second, a least-square fit, which takes 
these different uncertainties into account, gives an inverse 
slope of only 3.9 ± 0.9 km/Myr. This lower value agrees 
with the fault-slip rate of 4.2 ± 0.9 km/Myr obtained from 
a PECUBE model that accurately predicts the ZHe, AFT, 
and AHe ages from a ~ 2-km-long elevation profile near the 

Brenner fault (Wolff et al. 2020). According to this model, 
the Brenner fault was active for ~ 10 Ma (i.e., from 19 ± 2 
to 8.8 ± 0.4 Ma) and caused 35 ± 10 km of crustal exten-
sion. If we would use the inverse slope value of 6.9 km/Myr 
and a faulting period of 10 Ma, this would imply a much 
higher amount of extension of ~ 70 km. Although such a high 
value was initially proposed for the Brenner fault (Fügens-
chuh et al. 1997), it was later revised to a value of ~ 44 km 
(Fügenschuh et al. 2012), which is compatible with our data 
and preferred model. Therefore, we argue that our new ZHe 
data and our enlarged PECUBE model confirm the results of 
Wolff et al. (2020). Finally, we note that both the AFT and 
the AHe ages show no correlation with distance to the Bren-
ner fault (Fig. 7C, D) and can therefore not be used to derive 
a fault-slip rate. At least for the AHe ages, we interpret this 
lack of correlation to result from the rapid cooling of the 
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Fig. 8  ZHe, AFT, and AHe ages with uncertainties for samples of 
the elevation profile near Olperer mountain. Red and green dots indi-
cate the ages predicted by the thermokinematic models described in 
Sect.  6.2. Regression lines obtained by least-square fit through the 
data are shown for the ZHe and the AFT ages

Table 5  Parameters of PECUBE model for Brenner fault

The values given in parentheses are the units used by PECUBE

Model dimensions: length, width, 
depth

55 km, 20 km, 70 km

Temperature at base of model 800 °C
Temperature at top of model 5 °C
Radiogenic heat production 2.6 ×  10–6 W/m3 (= 30 °C/Myr)
E-folding depth of heat production 20 km
Thermal diffusivity 6.4 ×  10–7  m2/s (= 20  km2/Myr)
Crustal density 2700 kg/m3

Mantle density 3200 kg/m3

Fault dip 35°

Mylonitic rocks

Distance (km)

7.8±0.7 Ma6.7±1.6 Ma36±15 Ma
32±13 Ma

ZHe ages:
AHe ages: 
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Fig. 9  Topographic profiles with ZHe and AHe ages at sites A and 
B. For location, see Fig. 3b and Fig. 5. The footwall and the hanging 
wall of the Brenner fault are shown in different colors
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fault footwall by the combined effects of normal faulting and 
the subsequent thermal relaxation (Fig. 6B). For the AFT 
ages, a trend in the ages with distance to the fault may be 
obscured by the relatively large errors of the ages.

The ZHe, AFT, and AHe ages of the elevation profile 
are also rather well reproduced by our two thermokinematic 
models (Fig. 8). Again, the misfit ϕ between the measured 
and predicted thermochronological ages is smaller for the 
model without footwall tilting (ϕ of 1.2 versus ϕ of 1.4). The 
inverse slopes obtained by least-square regressions through 
the ZHe and AFT age data are 1.1 ± 0.7 and 1.0 ± 1.3 km/
Myr, respectively (Fig. 8). These values could be interpreted 
as exhumation rates during normal faulting, provided that 
the isotherms in the upper crust were spatially and tempo-
rally invariant during the period of cooling recorded by the 
data. As the vertical slip rate of the Brenner fault derived 
from our thermokinematic model is 2.4 ± 0.4 km/Myr, the 
nominal slope values underestimate the modelled exhuma-
tion rate. Whatever may be the reasons for this discrepancy, 
the relatively large uncertainties of the slope values imply 
that they are still roughly consistent with our model.

The nominal AHe ages on the elevation profile are nearly 
invariant (Fig. 8) and the same is true for the upper part of 
the age-elevation profile near the Brenner fault studied by 
Wolff et al. (2020); for location, see Fig. 5. Here, the nearly 
identical AHe ages were interpreted to be caused by rapid 
tectonic exhumation followed by thermal relaxation after 
the end of normal faulting (Wolff et al. 2020). The similarity 
between both elevation profiles and the observation that the 
AHe ages along the WSW–ENE profile are also invariant 
(see Fig. 7D), indicates that the processes of heat advection 
during normal faulting and the subsequent thermal relaxa-
tion after faulting are reflected in our entire age data set (i.e., 
up to a distance of at least 16 km from the Brenner fault).

Interpretation of thermochronological data at sites 
A and B

At site A, there is a significant age difference between our 
two ZHe ages in the footwall (~ 7 and ~ 8 Ma) and the ZHe 
age of 36 ± 15 Ma in the hanging wall of the Brenner fault 
(Fig. 9). The ZHe ages for three samples at distances of 
0.5–3 km west of the Brenner fault (Fig. 5) range from 63 ± 7 
to 71 ± 10 Ma and show no spatial trend (Lünsdorf et al. 
2012). We interpret the overall age pattern to be caused by 
a local heating of the fault hanging wall during its emplace-
ment against the hot footwall. This heating has affected only 
our sample with the ZHe age of ~ 36 Ma (~ 100 m away from 
the fault), but not the three samples of Lünsdorf et al. (2012).

At site B, the nominal AHe ages of the three mylonitic 
samples in the fault footwall are slightly older than their ZHe 
ages, with the oldest AHe age being 10.8 ± 0.4 Ma (Fig. 9). 
Processes that may cause such elevated AHe ages include 

the incorporation of excess He from hydrothermal fluids 
(e.g., Zeitler et al. 2017), in particular in or near fault zones 
(e.g., Wölfler et al. 2010; Louis et al. 2019; Milesi et al. 
2019), and the mobilization of U from apatite by acidic flu-
ids (e.g., Milesi et al. 2019). In this context, it is important 
to note that the U concentration of apatite in the Bündner 
schists of the Matrei zone is rather low. The apatites ana-
lyzed at site B have U concentrations of 0.4–2.9 ppm, sig-
nificantly lower than those of apatite in the coarse-grained 
orthogneiss samples discussed above, which range from 4 
to 107 ppm (Table 3). Owing to the low U content of apatite 
and the small grain size of the Bündner schists, the rocks 
near the Brenner fault are likely susceptible to fluid flow, 
hydrothermal alteration, and a change of their (U–Th)/He 
systematics either during or after faulting. Therefore, the 
elevated AHe ages at site B should not be interpreted as 
geologically meaningful cooling ages.

Effect of enhanced footwall cooling 
near the Brenner fault

During normal faulting and heat advection, isotherms in the 
fault footwall are shifted towards the surface and the con-
duction of heat into the hanging wall leads to a warping of 
the isotherms (Grasemann and Mancktelow 1993; Ketcham 
1996; Seward et al. 2009). When faulting stops, the upper 
crust in the fault footwall cools rapidly during thermal relax-
ation (Braun 2016). To illustrate these processes, we use the 
thermokinematic model without footwall tilting described in 
Sect. 6.2 and the faulting history of the Brenner fault (Wolff 
et al. 2020). The thermal structure in this model is shown 
at four different time steps (Fig. 10A). Due to the warping 
of the isotherms, the cooling ages predicted for different 
thermochronometers in the fault footwall increase towards 
the fault over a distance of up to 30 km (Fig. 10B). It is 
important to note that the increase in cooling ages is larger 
for systems with higher closure temperature and smaller for 
low-temperature thermochronometers. Hence, for low-tem-
perature systems such as AHe and AFT, the effect may not 
be detectable. However, for geochronological systems with 
higher closure temperature, this effect is recognizable and 
needs to be considered as illustrated by K–Ar phengite and 
biotite ages from two sites located ~ 6 and ~ 13 km east of 
the Brenner fault (i.e., Landshuter Hütte and Pfitscher-Joch; 
for location see Fig. 5). The mean K–Ar ages for phengite 
(15.6 ± 2.0 and 14.5 ± 1.1 Ma) and biotite (13.8 ± 0.8 and 
12.9 ± 0.2 Ma) at these two sites (von Blanckenburg et al. 
1989) are in good agreement with our model predictions 
(Fig. 10B). The position of the two sites during and after 
faulting is shown in Fig. 10A. The K–Ar ages for phengite 
and biotite predicted by our model correspond to closure 
temperatures of 450 and 400 °C, respectively, and fall in the 
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range of closure temperatures previously inferred for these 
systems (e.g., Villa 1998; Chew and Spikings 2015).

Phengite Rb–Sr ages in the westernmost Tauern Window 
are more variable (i.e., 20.3 ± 0.3 to 15.6 ± 0.4 Ma), but they 
do not increase towards the Brenner fault (von Blanckenburg 
et al. 1989). This observation can be explained by our find-
ing that the Brenner fault became active 19 ± 2 Ma ago. At 
this time, the warping of the isotherms as a result of normal 
faulting was just about to start. Therefore, a significant cool-
ing of the footwall of the Brenner fault has not yet occurred 
when the samples cooled through the closure temperature 
of Rb–Sr in phengite.

Folding and erosion as a mechanism 
for the exhumation of the Tauern Window

On N–S profiles through the Tauern Window, cooling ages 
from different thermochronological systems (AFT, ZFT, 
K–Ar mica, U–Pb apatite) form a U-shaped pattern, with 
ages increasing towards the north and south. Based on pre-
dictions by two-dimensional thermomechanical models for 
compressional orogens (Batt and Braun 1997), this spatial 
distribution of cooling ages has been interpreted to reflect 
N–S shortening, folding, and coeval erosion (Rosenberg and 
Garcia 2011; Schneider et al. 2015; Bertrand et al. 2017; 
Rosenberg et al. 2018). Although this interpretation is able 
to explain the available age data in the central part of the 
Tauern Window, the effect of the Brenner normal fault on 
the cooling and exhumation history of the westernmost 
20–30 km of the window is not adequately accounted for 
in this interpretation for the following reasons. First, the 
age difference between ZFT and AFT ages along an ~ E–W 
profile through the Tauern Window decreases markedly in 
its western part (Bertrand et al. 2017, their Fig. 10), which 
suggests an increase in the rates of cooling and exhuma-
tion towards the west. We interpret this pattern to reflect the 
combined effect of heat advection and thermal relaxation 
during and after normal faulting on the Brenner fault. A 
similar pattern of ZFT and AFT ages is seen in the eastern 
Tauern Window and seems to be caused by the Katschberg 
normal fault (cf. Genser and Neubauer 1988; Scharf et al. 
2013), although this interpretation remains to be evalu-
ated by thermokinematic modeling. Second, the westward 
increase in K–Ar phengite and biotite ages towards the Bren-
ner fault (Fig. 10) is caused by cooling of the footwall dur-
ing normal faulting (see Sect. 7.3) and cannot be explained 
by folding around E–W trending axes and erosion. Third, 
the E–W gradient in ZHe cooling ages (Fig. 7b) reflects the 
progressive exhumation of the western Tauern Window by 
normal faulting, whereas the largely invariant AHe and AFT 
ages on the vertical transect at Olperer mountain (Fig. 8) 
are best explained by heat advection during normal faulting 
and exhumation followed by posttectonic thermal relaxation 

C
oo

lin
g 

ag
e 

(M
a)

10 20 30 40
8

10

12

Distance to fault (km)

400°C

AHe

ZHe
ZFT

AFT

14

B
predicted ages 
in fault footwall16

0

450°C

K/Ar phengite

K/Ar biotite

A
D

ep
th

 (k
m

)

10

5

0

15
400°C

300°C

100°C
200°C

20

isotherms at onset of faulting

isotherms at the 
end of faulting

syntectonic heat advection

posttectonic thermal relaxation

19 Ma

15 Ma

8.8 Ma

5 Ma

D
ep

th
 (k

m
)

10

5

0

15

20

D
ep

th
 (k

m
)

10

5

0

15

20

D
ep

th
 (k

m
)

10

5

0

15

20
-40 -30 -20 -10 0 10 20 30

Distance to fault (km)

 during faulting450°C

500°C

350°C

Fig. 10  A Results of thermokinematic model illustrating how heat 
advection during normal faulting (from 19 to 8.8 Ma) shifts the iso-
therms in the fault footwall towards the surface. As a result of warp-
ing of the isotherms, cooling ages in the fault footwall increase 
towards the fault. When faulting stops, the upper crust cools rapidly 
during thermal relaxation (compare the two model stages at 8.8 and 
5  Ma). The model used to generate this figure is identical to that 
described in Sect. 6.2, except that the model surface is horizontal. B 
Predicted cooling ages in the fault footwall increase towards the nor-
mal fault. Note that the effect is minor for low-temperature thermo-
chronometers (AHe, AFT, and ZHe) but becomes more pronounced 
for thermochronometers with higher closure temperature. The phen-
gite and biotite K–Ar ages of samples from Landshuter Hütte and 
Pfitscher-Joch Haus (see Fig. 5 for location) are from von Blancken-
burg et al. (1989). The position of these samples is shown in (A) by 
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(Fig. 6) (cf. Wolff et al. 2020). Finally, we note that ero-
sion can only have affected the rocks of the western Tauern 
Window once they were tectonically exhumed from beneath 
the hanging wall by slip on the Brenner fault. As long as 
the rocks were buried below the fault hanging wall (i.e., 
Steinach nappe and Ötztal nappe with its sedimentary cover; 
Figs. 2 and 5), erosion can only have affected units in the 
hanging wall. However, these units experienced only a lim-
ited amount of erosion during the past ~ 20 Ma as shown by 
AFT, ZHe, and ZFT ages that are much older than those in 
the western Tauern Window (Fügenschuh et al. 1997, 2012; 
Lünsdorf et al. 2012; Wolff et al. 2020).

Amount and rate of valley incision after cessation 
of normal faulting

After normal faulting on the Brenner fault had ceased, an 
N–S trending valley has been incised into the fault foot-
wall. The location of this valley was presumably controlled 
by differences in rock strength between the resistant hang-
ing wall units (Steinach nappe and Brenner Mesozoic) and 
weaker rocks in the fault footwall (Matrei zone, Glockner, 
and Modereck nappes) (Fig. 3). The maximum estimates 
for the amount of valley incision (750–1200 m on profiles 
P1–P5) are based on a fault dip of 35° (broadly consistent 
with our field observations; Fig. 4). With respect to the fault 
dip, we note that Rosenberg and Garcia (2011) estimated 
quite variable fault dips of 19°–57° between Sterzing and 
Gries am Brenner (for location of these towns, see Figs. 2 
and 3). Based on our topographic profiles, we suggest that 
a value of 1000 m is a reasonable average for the amount of 
incision and assign an uncertainty of ± 300 m to this value. 
If we combine this estimate (1000 ± 300 m) with the time 
constraint for the end of normal faulting (8.8 ± 0.4 Ma; Wolff 
et al. 2020), we obtain a time-averaged incision rate of about 
110 m/Myr in the Brenner pass area. This incision rate is in 
agreement with the exhumation rate of 0.1 km/Myr after the 
end of normal faulting derived from the PECUBE model 
(Wolff et al. 2020). Given that the valley is situated in the 
internal part of the Alpine mountain chain, this long-term 
incision rate is surprisingly low. One may argue that erosion 
and valley incision have accelerated in the Quaternary as a 
result of frequent climate oscillations and enhanced glacial 
or fluvial erosion (e.g., Valla et al. 2011; Leith et al. 2018). 
However, even if we assume that rates of erosion and valley 
incision increased by a factor of four after 2.5 Ma, we obtain 
a Quaternary incision rate of only ~ 250 m/Myr, while the 
pre-Quaternary rate would be ~ 60 m/Myr. In this scenario, 
the Quaternary incision rate is still much lower than rates 
of erosion and valley deepening inferred in other parts of 
the Alps. In the central Alps, for example, incision rates of 

1.0–1.5 km/Myr have been derived from burial dating of 
cave sediments (Haeuselmann et al. 2007), 4He/3He thermo-
chronometry (Valla et al. 2011), and topographic signatures 
indicative of fluvial incision (Leith et al. 2018). In the high 
part of the western Alps, exhumation rates of > 1 km/Myr 
over the last 3 Ma were estimated from low-temperature 
thermochronological data (Glotzbach et al. 2008).

We suggest that the main reasons for the limited amount 
of valley incision (either by fluvial or glacial processes) in 
the area of the Brenner pass are the position of the Alpine 
drainage divide, which runs through the study area (Fig. 3). 
As the location of the drainage divide coincides with the 
maximum displacement on the Brenner fault (cf. Rosenberg 
et al. 2011), the N–S trending valley with its low-channel 
gradient appears to be related to the Brenner normal fault. 
As glacial erosion rates scale with ice discharge and basal 
sliding speed, which increase with valley gradient (e.g., Hal-
let 1979; Anderson et al. 2006), the amount of glacial (and 
fluvial) erosion during the Quaternary was limited by the 
low valley gradient near the Brenner drainage divide. This 
is consistent with a recent ice-flow modeling study, which 
indicates that the ice-flow divide during the last glaciation 
of the Alps was located near the current drainage divide and 
that the ice-surface velocity in the Brenner pass region was 
below ~ 20 m/yr (Seguinot et al. 2018). Our interpretation of 
a limited amount of erosion (~ 1000 m) after the end of nor-
mal faulting is consistent with the absence of well-developed 
U-shaped valleys in the Brenner region.

Conclusions

Our thermochronological data and thermokinematic mode-
ling show that the Brenner normal fault exerted an important 
control on the cooling and exhumation history of the rocks 
exposed in the westernmost ~ 25 km of the Tauern Window. 
Normal faulting caused the advection of hot rocks towards 
the surface and the conduction of heat into the cooler hang-
ing wall. After faulting ended at ~ 9 Ma, posttectonic thermal 
relaxation induced rapid cooling of the upper crust, which 
explains the invariant AHe ages on horizontal and vertical 
profiles. Farther to the east, the effect of the Brenner normal 
fault seems to vanish and the exhumation of the metamor-
phic rocks in the Tauern Window may have largely been 
controlled by prolonged N–S shortening, folding, and ero-
sion (e.g., Rosenberg et al. 2018). The topography of the 
Brenner area—where the Brenner normal fault runs along 
the western shoulder of a N–S valley, which was incised into 
the fault footwall after faulting ceased—indicates that fluvio-
glacial erosion and valley incision near the drainage divide 
of the Alps were limited to about 1 km in the past ~ 9 Ma.
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