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Abstract
The coexistence of a wide variety of subsurface uses in urban areas requires increasingly demanding geological prediction 
capacities for characterizing the geological heterogeneities at a small-scale. In particular, detrital systems are characterized 
by the presence of highly varying sediment mixtures which control the non-constant spatial distribution of properties, there-
fore presenting a crucial aspect for understanding the small-scale spatial variability of physical properties. The proposed 
methodology uses the lithological descriptions from drilled boreholes and implements sequential indicator simulation to 
simulate the cumulative frequencies of each lithological class in the whole sediment mixture. The resulting distributions 
are expressed by a set of voxel models, referred to as Di models. This solution is able to predict the relative amounts of each 
grain fraction on a cell-by-cell basis and therefore also derive a virtual grain size distribution. Its implementation allows 
the modeler to flexibly choose both the grain fractions to be modeled and the precision in the relative quantification. The 
concept of information entropy is adapted as a measure of the disorder state of the clasts mixture, resulting in the concept 
of “Model Lithological Uniformity,” proposed as a measure of the degree of detrital homogeneity. Moreover, the “Most 
Uniform Lithological Model” is presented as a distribution of the most prevailing lithologies. This method was tested in the 
city of Munich (Germany) using a dataset of over 20,000 boreholes, providing a significant step forward in capturing the 
spatial heterogeneity of detrital systems and addressing model scenarios for applications requiring variable relative amounts 
of grain fractions.

Keywords Geological 3-D modeling · Geostatistics · Sequential indicator simulation · Lithological heterogeneity · 
Underground management

Introduction

The development of cities implies a growing demand of 
space and natural resources spreading in depth in both the 
horizontal and vertical in-depth directions. With the aim 
of achieving orderly urban growth and ensuring both sus-
tainable and coexisting use of the various natural resource 
deposits and underground infrastructures, there then exists 
a clear need to manage the subsurface space (Schokker et al. 
2017; Campbell et al. 2010). This need is especially relevant 
in detrital depositional environments consisting of sediment 

mixtures of differing grain sizes, since many urban areas 
around the world are built on such deposits. Underground 
management will be even more accentuated in the next 
years given the straightforward integration of geological 
subsurface into the building information modeling (BIM) 
method, which will be mandatory within the timeframe of 
2021–2025 at a national level in some countries (Wehrens 
and Wolken 2019).

The highest possible level of knowledge of the geologi-
cal subsurface properties is desirable for this purpose, but it 
is unfortunately not available in most cases. These proper-
ties condition the suitability of a wide variety of geological 
potentials in the underground space, e.g., heat supply, storage, 
water resources, and as space for urban infrastructure. Direct 
soil observations from drilled materials constitute the most 
common types of geological data available. Borehole data, 
which are often very scarce and qualitatively heterogeneous, 
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are most abundant in urban areas. These data have become 
available for further analysis due to the increasing level of 
digitalization and represent a potential big data source for 
geological analysis in favor of spatial planning (Marti 2019). 
Alongside the common lack of knowledge, geology also pos-
sesses an inherent natural complexity of holding highly non-
constant properties in space (de Marsily et al. 2005). These 
facts often result in conservative procedures for managing 
the use of geological potentials with respect to legislative 
requirements. Understanding geological natural media implies 
acknowledging and accounting for their spatial heterogene-
ity (de Marsily et al. 2005). Added to this, the wide range of 
potential uses that the subsurface space might hold requires 
a flexible methodological approach that is able to address 
multi-functional specifications (Volchko et al. 2020). Both 
the 3-D spatial delimitation and the appropriate small-scale 
parameter assignments significantly constrain the suitability 
of both geological subsurface potentials and their sustainable 
and coexistent use.

In order to address these challenges, the use of massive 
borehole data and the digitalization of geological mapping 
in a more general sense (Jones et al. 2004) and, more con-
cretely, geological 3-D models, in their different forms and 
approaches, are gaining importance over the last decades — 
not only for visualization purposes but also as a planning and 
forecasting tool. This is evidenced by the fact that geological 
mapping is currently undergoing a transformation from tra-
ditional 2-D to 3-D, with geological 3-D modeling becoming 
a key priority for national geological surveys (NGS) (Berg 
et al. 2011).

Within the broad field of 3-D geomodeling approaches 
performed in order to face the aforementioned challenges, 
two key aspects will be addressed in the present paper: the 
predictive ability of geology with respect to heterogene-
ity and multi-purpose usability. This is all intended to be 
accompanied by a flexible and user-defined implementation.

Background of geological 3‑D modeling 
and model usability

The general term of “3-D structural modeling” constitutes the 
preliminary step of any geological 3-D model and addresses 
the definition of the accurate geometry of the geological 
domain as well as the integration of uncertainties associ-
ated with the geometrical input data (Turner 2006; Pyrcz 
and Deutsch 2014). In this respect, Wellmann and Caumon 
(2018) have provided a very complete description of the cur-
rent state and challenges of 3-D structural modeling. Therein, 
the sole consideration of structural geometric features by 
means of, e.g., layer-cake models or geometric 3-D models 
could be used as framework models (Wellmann and Caumon 
2018), but they are considered to be an approximation for 

understanding the small-scale effects and heterogeneities 
involved. The resulting geometrical model is commonly dis-
cretized in volume elements of the tetrahedron type or of a 
variety of voxel configurations with the ultimate goal of pro-
viding subdivisions in which property distributions can be 
predicted (Turner 2006).

The prediction of both the geological composition and 
continuous properties (petrophysical, geotechnical, or hydro-
geological) in 3-D space is addressed by means of 3-D prop-
erty modeling in voxelized domains. Property predictions 
based on voxel models enable modeling of the internal het-
erogeneity of the subsurface and are becoming increasingly 
important (Hademenos et al. 2019; Stafleu et al. 2011). In 
this regard, Kearsey et al. (2015) compared a 3-D model 
consisting of lithostratigraphic units, each of which pos-
sesses a unique dominant lithology, with a lithological 3-D 
model, thus providing a lithological prediction in each voxel. 
He concluded that the minor lithologies occurring within 
the units commonly represent a significant proportion of the 
lithological composition, which underlines the relevance 
of the small-scale geological variability. Focusing on the 
geological composition, the predictive ability of the model 
commonly depends upon the introduction of a categorical 
variable whose stationary classes represent subdivisions 
which are more geologically and statistically homogene-
ous (Deutsch 2006). Commonly used categorical variables 
may thus be based on lithofacies classes, such as in the 3-D 
model for the glacial and postglacial deposits underlying the 
city of Glasgow in the UK (Bianchi et al. 2015) and in the 
3-D lithofacies distributions of Zeeland in the Netherlands 
(Stafleu et al. 2011; Stafleu and Dubelaar 2016). Alterna-
tively, the grain sizes (or rather the lithological classes) can 
be considered, i.e., the 3-D lithological distributions also 
implemented in the models mentioned earlier (Stafleu et al. 
2011; Kearsey et al. 2015), as well as for the Belgian Con-
tinental Shelf (Hademenos et al. 2019). Lithological and 
stratigraphical information can be also combined to subdi-
vide the geological space into lithostratigraphic units (Royse 
2010; Stafleu et al. 2011; Hademoos et al. 2019). Another 
option is offered by hydrofacies classes showing lithological 
facies with distinctive hydraulic properties (Comunian et al. 
2011; Theel et al. 2020). The categorical variable chosen 
largely controls the degree of geological variability which 
the model may achieve, and it has strong implications for the 
quantification of model uncertainties and model usability 
(Potter et al. 2013). The introduction of this categorical vari-
able is case-specific (Diogo 2018), and the variable should 
be fixed in such a way that it does not oversimplify the geo-
logical reality (Lindsay et al. 2012) in addition to counting 
for the subsequent usability of the model — which should 
have a multi-purpose nature, if possible.

In regard to usability, geological 3-D models may be 
used based on pure visualization, the definition of geometric 
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architecture of geo-bodies, to multi-parameter estimation 
for various specific applications (Ross et  al. 2005) like 
groundwater flow numerical modeling. Regarding the geo-
metric architecture of geo-bodies, this commonly implies 
the definition of their lateral extension, thickness, and three- 
dimensional connectivity. The latter feature is of utmost impor-
tance to correct flow and transport predictions, especially 
when dealing with contamination assessments (de Marsily 
et al. 2005). This interconnectedness is provided by analyzing  
the geometrical dependences between the geological bod-
ies. Multi-parameter estimation largely depends on the level 
of detail introduced by the categorical variable defined. A 
lithological description as precise as possible is needed, on 
the basis of which properties will be assigned (de Marsily 
et al. 2005). The various stationary classes into which the 
geological reality is subdivided, whether they be lithologies, 
lithofacies, hydrofacies, or lithostratigraphical units, will be 
parametrized with constant geotechnical, hydrogeological, 
or petrophysical properties from the published literature, or 
with field data. In this regard, if the categorical variable con-
siderably oversimplifies the geological reality; the constant 
parameters derived from it would also be misrepresented. 
This was demonstrated by Kearsey et al. (2015) by using 
a lithologically-derived model compared with a lithostrati-
graphic model while modeling the glaciofluvial deposits in 
the city of Glasgow. In this sense, 3-D geomodels, most of 
them based on a structural approach, have been applied in the 
last years in a wide range of applications in fields as varied 
as hydrogeology (Bianchi et al. 2015; Campbell et al. 2010), 
hydrochemistry (Raiber et al. 2012; Royse 2010), resource 
assessment (Maljers et al. 2015; Van der Meulen et al. 2005, 
2007), seismic microzonation (Kruiver et al. 2017), geotech-
nics (Merritt et al. 2007), and environmental risk assessments 
(Wycisk et al. 2009).

The extended use of the subsurface in its wide variety 
of competing and coexisting functions — together with 
the inherent spatial variability of geology — motivates the 
need for underground management. This is being increas-
ingly addressed by the digitalization of the geological space, 
which has resulted in significant progress in advanced geo-
logical 3-D models in recent years. The current modeling 
methodologies implemented in detrital systems introduce 
a categorical variable which tends to assume a stationary 
prevailing class (lithologies, lithofacies, hydrofacies, etc.) 
in each voxel for both predicting the final image of geology 
and further parameterizing the model with property distribu-
tions. In this sense, the presence of highly variable sediment 
mixtures ultimately controls the non-constant spatial dis-
tribution of properties in detrital systems. Our understand-
ing of this small-scale spatial lithological variability can be 
improved by deepening the knowledge regarding the predic-
tion of 3-D distributions of relative amounts of the grain 
fractions composing the sediment mixture.

This paper proposes a 3-D modeling approach which pro-
vides substantial contributions for improved modeling detri-
tal depositional environments. On the one hand, this novel 
method addresses the prediction of the geological composi-
tion of detrital systems, considering these as clasts mixtures 
with quantifiable variable amounts of grain fractions. This 
approach is implemented by introducing a user-definition of 
the grain fractions being considered into the sediment mix-
ture and the precision of the relative amounts of each grain 
fraction. On the other hand, this approach aims to address 
multi-functional specifications for different purposes. Spe-
cial efforts have been made to combine model scenarios for 
applications requiring different relative frequencies of grain 
fractions.

After an explanation of the modeling method, its imple-
mentation in the city of Munich will be described using a 
large data set to display the geological prediction and the 
multi-user opportunities.

Methodology

In order to better understand the small-scale geological vari-
ability of sediment mixtures, a novel 3D-geological mod-
eling approach is presented to, on the one hand, improve 
the spatial prediction of the lithology distribution and, on 
the other hand, to provide a flexible interpretation of the 
modeled lithological distribution for user-specified appli-
cations. The cornerstone of this method is the lithological 
heterogeneities in detrital sedimentary systems being able 
to be described as grain size distributions. This distribution 
of cumulative frequencies of grain fractions can be geomod-
eled in 3-D space in a geostatistical simulation framework 
by means of a set of partial percentile lithological models, 
referred to herein as Di models. This set of models in turn 
defines the cumulative frequencies of each lithological class 
in each voxel after defining a constant frequency. The rela-
tive amounts of grain fractions are thus also inferred. They 
refer to the lithological stages of the subsurface, being equiv-
alent to the reference passing diameters Di of a grain-size 
distribution with the same percentile distances, whereby the 
subscript i defines the cumulative frequency of the total sedi-
ment mixture. This can be read as the grain size distribution 
curve at every voxel.

Based on this principle, the modeling approach uses a 
stochastic simulation framework by way of the sequential 
indicator simulation (SIS) method to reproduce (1) the hard 
data, which are truth measurements from the lithological 
descriptions from existing boreholes, (2) inferred spatial sta-
tistics in the distribution of grain sizes proportions, and (3) 
the spatial continuity of each lithological class for each Di. 
This process results in a multi-voxel solution in which many 
partial percentile lithological models as reference diameters 
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Di are defined. On this basis, the concept of “Model Litho-
logical Uniformity” is proposed, as a measure of the homo-
geneity of the grain sizes in the detrital mixture. The “Most 
Uniform Lithological Model” can be directly derived, and 
it represents the distribution of lithologies possessing the 
highest relative frequencies in the detrital mixture.

For a clear explanation of each methodological step, 
we have added some short examples of the case study in 
Munich.

Step 1 — Conceptual model

The first step of the proposed methodology includes:

i) Construction and discretization of the geometrical 
framework of the 3-D space being modeled.

ii) Definition of the grain fractions to be modeled in the 
detrital mixture. The grain fractions to be considered are 
defined by a categorical variable according to the grain 
sizes.

iii) Definition of the percentiles of interest of the grain size 
distribution, denoted as Di. In this context, D represents 
the grain diameter expressed by the lithological class, 
and the subscript i is an integer indicating the percen-
tile of interest. For example, the percentile of interest 
D10 denotes the lithological class below which the 10% 
finest grain fraction falls. The set of i values is defined 
so that the grain size distribution is divided into equal 
frequency groups. This is done by defining a constant 
step p between percentiles, e.g., the pth percentile, the 
(p + p)th percentile, the (p + 2p)th percentile, and the 
(p + 3p)th percentile. This implies a total number of N 
percentiles of interest considered (where N = 100/p). For 
instance, if we consider a step of p = 10, then i = 10, 20, 
30, 40, 50, 60, 70, 80, 90, and 100 and we obtain N = 10 
percentiles of interest. The number of percentiles can be 
adjusted by selecting a smaller or bigger step p, which 
increases respectively decreases the number N (e.g., 
N = 20 for p = 5). As a consequence, the percentile step 
p sets also the precision in the frequency quantification 
that the model is able to account for.

On this basis, the construction of N percentile lithologi-
cal models is addressed using a geostatistical simulation 
approach. These models, which are linked to each percen-
tile of interest of the sediment mixture, can be expressed as 
Di models.

To illustrate this, the conceptual model for the case study 
in Munich considers three grain fractions to be modeled 
(clay/silt, sand, and gravel), although a finer graduation is 
conceivable which also includes minor lithological compo-
nents. In our case, the construction of ten partial percentile 
models (N = 10) was required in order to obtain a lithological 

prediction with a precision of 10% (p = 10). These are linked 
to the following ten reference diameters: D10, D20, D30, D40, 
D50, D60, D70, D80, D90, and D100 of the whole sediment 
mixture.

Step 2 — Input data: lithological descriptions 
from borehole data

The proposed method is intended for and already being 
applied to process large amounts of lithological descriptions 
from boreholes. This information is the basic input for the 
modeling approach. Given the conceptual model and, more 
specifically, once the grain fractions and the precision of 
the model are set, the lithological descriptions are prepared 
and interpreted for each described borehole section in the 
available dataset accordingly to constrain the partial per-
centile models as hard data. Borehole data might be stored 
in databases, which are normally managed at the national or 
regional level, and they include information about the inter-
sected geology. One common aspect of all databases is that 
the borehole descriptions consist of coded information rep-
resenting the geological composition for each drilled inter-
val in terms of (1) the geological nature and (2) the degree 
of intensity or presence of the lithological components. In 
this respect, the use of common codes information for soil 
description is promoted at the European level by European 
standards EN ISO 14688–1 and EN ISO 14688–2. Beyond 
this, additional information based on regional or national 
guidelines, e.g., DIN 4023 (2006), might be also used. The 
workflows adopted in this approach for data acquisition and 
preparation were adapted to the borehole database used for 
the present case study in the city of Munich (Germany) using 
the integration of the aforementioned European references 
into the German standards (DIN EN ISO 14688–1 (2020); 
DIN EN ISO 14688–2 (2020); DIN EN ISO 14689 (2018); 
and the DIN standards (DIN 4023 (2006)). The “Conceptual 
model and borehole database” section summarizes the fea-
tures of this database.

Steps 1 and 2 of the methodology, the data acquisition to 
the interpretation ready-to-use in geostatistical simulations 
is illustrated below (Fig. 1) by the following lithological 
description as an example: (gG,s,o). This can be translated 
into moderately sandy (s) coarse gravels (gG) with a pres-
ence of organic material (o).

In order to achieve a grain-size based, consistent data-
base, the borehole descriptions were firstly subject to qual-
ity control (QC), a plausibility analysis, and homogeniza-
tion, because the borehole descriptions in the databases 
generally include unnecessary or implausible information. 
In our example, and as a consequence of the QC, the latter 
component from the description (gG,s,o) was discarded, 
resulting in (gG,s), since the presence of organic material 
does not provide grain-size-based relevant information 
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(see Fig. 1b). Every linguistic code indicating a lithology 
was converted into an interval in the form of  [mmin,mmax], 
representing its possible imprecise region of relative fre-
quency values in which the true value  (mtrue) lies. These 
ranges arise from the inherent generalizations linked with 
the soil description schemes used, which provide reference 
values for the minimal and maximal relative frequencies 
for each code. Hence, in order to obtain a homogeneous 
data set for the further use, a correction process of not 
plausible borehole descriptions ignoring the inherent fre-
quency classification scheme (e.g., describing a lithologi-
cal frequency over 100%) was also accomplished. In the 
classification schemes, the true relative quantification of 
the soil components was bounded between some intervals. 
Following this interval arithmetic, the borehole descrip-
tion in our example (gG,s) indicates that the relative fre-
quency (%) of the clasts in the range of grain sizes between 
20 and 63 mm lies in the interval [70, 85], and in the case 
of the clasts between 0.063 and 2 mm lies in the interval 
[15, 30] (Fig. 1b).

Based on these intervals, cumulative distribution func-
tions (CDFs) of the different grain fractions are built. 
Therefore, the grain-size distribution curve is equal to the 
discrete cumulative distribution of the lithological classes. 
The CDFs are considered as synthetic distribution functions, 
since they are not based on results from a real particle size 
sieve analysis.

Since the intervals describe a range and not a precise per-
centage of the lithological components, the intervals of relative 
frequencies are used to build upper and a lower CDF curves 
representing the most coarse-grained and most fine-grained 
interpretations of the lithological descriptions. Similar to the 
probability bounds analysis (PBA) (Aughenbaugh and Paredis 
2007), these curves represent the interpreted bounds between 
which all possible distributions might lie. Returning to our 
example, the point (63,100) in Fig. 1c indicates that 100% 
of all grain fractions are finer than a cobble. At the 20 mm 
abscissa position, two points are represented, one for each 
minimal and maximal relative frequencies for the sands men-
tioned earlier. Whereas point (20,15) shows that 15% of all 
grain fractions are finer than a coarse gravel, point (20,30) 
indicates a relative amount of 30% being finer than the afore-
mentioned lithology. The first point then belongs to the most 
coarse-grained interpretation from the borehole descriptions, 
and the latter to the most fine-grained interpretation. Lastly, at 
the 0.063 mm abscissa position, two points are represented in 
the same position, indicating that there are no particles finer 
than a sand. The grain fractions which were not included in 
the borehole descriptions are represented by horizontal steps 
in the shape of both CDF curves, since they do not provide 
any cumulative relative amounts. We observe in Fig. 1c that 
this occurs for the following grain fractions: clay, silt, fine to 
medium gravel, and cobble. The exact distribution within a 
grain size composed of several minor grain fractions (in this 

Fig. 1  Steps 1 and 2 of the Di models method. a)  Lithological 
description for a drilled interval in a borehole database. b) Quality 
control (QC), data homogenization, and translation of lithological 
descriptions into intervals of relative frequencies. c) Capturing the 

lower and upper cumulative distribution functions (CDF) bounds for 
all sediments. d) Reading and coding of lithological classes at each Di 
according to conceptual model (precision of quantification and grain 
sizes to be modeled)
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case, e.g., between 0.063 and 2 mm), is unknown when using a 
lithological scheme as described above. As a result, the propor-
tions of fine-grained to coarse-grained sands are interpolated 
by applying a linear equation between two pairs of values for 
a semi-log plot with an abscissa axis logarithmically scaled.

In order to constrain the partial percentile models, both 
the lower and upper CDF bounds are read at each of the N 
reference diameters of the sediment mixture representing the 
cumulative frequencies. The reading process is implemented 
according to the parameters defined in the conceptual model: 
three grain fractions (gravel, sand, and clay/silt) and a preci-
sion p of 10% (see Fig. 1d). A set of two recorded lithologi-
cal classes for each reference diameter Di is obtained, one 
from the most fine-grained interpretation from the borehole 
descriptions, i.e., the lower CDF, and another from the most 
coarse-grained borehole descriptions, i.e., the higher CDF. 
This set is then coded into categories, in our example into: 1 
(clay/silt), 2 (sand), and 3 (gravel). In this way, the informa-
tion initially contained in the borehole descriptions for each 
drilled interval, given as linguistic codes, was converted into 
a set of data in the format of three rows (Di, lithological 
class for lower CDF, lithological class for upper CDF) and 
by as many columns as the Di values defined. These data 
sets describe the interpreted existing lithological class at the 
specific Di values for the upper and lower CDF interpretation 
and can be easily imported into the discretized 3-D space as 
input data in the form of interval-logs (see Fig. 1d).

Step 3 — Spatial statistical inference

This step includes the spatial analysis of geological trends 
in the distributions of the grain size proportions detected in 
the available geological data. As a result, “soft” informa-
tion on areal trends in the distribution of the proportions of 
the lithological classes are provided. The integration of the 
trends or “soft” data is a necessary step prior to geostatistical 
simulation (Pyrcz and Deutsch 2014). The application of all 
geostatistical algorithms implicitly considers the assump-
tion of stationarity underlying the variable in question — 
in this case the prevailing lithology from all possible grain 
sizes defined in the conceptual model. The introduction of 
deterministic trends overcomes these assumptions (Ringrose 
and Bentley 2015). Although a wide range of techniques 
are used in order to account for trends, no purely objective 
method for trend modeling exists (Pyrcz and Deutsch 2014). 
Areal trends and vertical proportion curves (VPC) provide 
a 2-D insight into the spatial distribution of the variables 
under consideration. In contrast, the 3-D trends combine 
both in-depth and areal information and account for a fully 
three-dimensional trend model. Currently, the most common 
practice consists of subdividing the modeling domain into 
different large-scale units, e.g., lithostratigraphic units, and 
inferring the proportions of the categorical variable from the 

available borehole data in each separated volume (Stafleu 
et al. 2011; Kearsey et al. 2015).

This modeling approach enables the superimposition of 
trends, in all their variants, onto the simulation. The type of 
kriging chosen by the modeler conditions the treatment of 
stationarity (Ringrose and Bentley 2015). The trends were 
addressed separately for each of the reference diameters Di. 
In order to account for the interpretation from both the lower 
and upper CDF (see Step 1), each Di value required two trends, 
one for each CDF bound. Trends were then applied as inputs 
to constrain the geostatistical simulation in the following form 
p(u; k), where k = 1, 2, and 3 and p(u; k) is the continuous 
probability between 0 and 1 of lithological class k at location u.

Step 4 — Spatial continuity model

Step 4 of the methodology concerned the quantification of 
spatial correlation by means of 3-D variogram analysis, 
providing the understanding of the spatial continuity of 
the lithological classes from the hard data, which is the 
continuity of the indicator variables i(u; k). For instance, 
Goovaerts (1997) and Gringarten and Deutsch (1999) pro-
vide a comprehensive description of variogram interpreta-
tion and modeling.

The spatial geological variance in the borehole data was 
investigated both for each reference diameter Di and for the 
lithological classes considered in the conceptual model. The 
hard data in interval-logs (see Fig. 1d) needed to be adapted 
in the form of indicator data in order to use it for the 3-D 
variogram analysis, and to feed the geostatistical simulations 
(Step 5). To do this, if we consider the categorical variable 
under study (which is in this case the lithological class), as 
well as their mutually exclusive and discrete k values, we can 
express the indicator categorical variable as (Deutsch 2006):

where:

Consequently, the hard data are coded into 1 s if the litho-
logical class prevails, and into 0 s if it does not.

Step 5 — Geostatistical simulation

The modeling approach considers the geostatistical simulation 
of the lithological class for each Di in 3-D space. Geostatisti-
cal simulation is preferred over estimation in order to generate 
multiple equiprobable models (Pyrcz and Deutsch 2014). This 
is intended to include the various equiprobable interpreted 

i(u;k) =

{

1, if lithological class prevails at location u

0, otherwise
, k = 1, 2, 3

u ∶ location being estimated.

k ∶ lithological class.

i(u;k) ∶ indicator variable for the lithological class k in the location u.
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lithologies of the lower and upper CDF bounds for each Di 
(see Fig. 1d). The integration of the lithological classes for 
both bounds ultimately implies the introduction and propaga-
tion of uncertainties from the borehole descriptions. In order 
to ensure an equal representation of both valid interpretations 
for each Di model, it was necessary to fix the same number of 
simulations for the lower CDF bound as for the upper bound.

Among other possibilities for the geostatistical simu-
lation, the SIS algorithm was selected. This choice was 
influenced by a variety of aspects. The presence of dense 
conditioning well data (Hassanpour and Deutsch 2010) and 
the lack of clear genetic shapes of the sedimentary bodies 
(Deutsch 2006) prioritize the use of SIS and may limit the 
use of object-based methods. Its voxel-based character also 
enables the incorporation of high-resolution trends as sec-
ondary data (Step 3), as well as the reproduction of small-
scale features (Pyrcz and Deutsch 2014). SIS methods apply 
indicator kriging (IK) for the simulation of categorical vari-
ables (Deutsch 2006; Goovaerts 1997), and they introduce 
heterogeneity using a sequential random path for visiting 
unsimulated locations in order to draw Gaussian realizations 
using an indicator transform (Ringrose and Bentley 2015). 
SIS visits (iteratively and one-by-one) all unsampled loca-
tions until all locations are informed by a simulated value 
(Journel 1989). Further, SIS reproduces the hard data from 
the boreholes (Step 2), the inferred spatial statistics (Step 3), 
and the spatial continuity of the indicator categorical vari-
ables of each lithological class (Step 4). Most SIS variations 

relate to how the trends are superimposed on the simulation. 
The general remarks of the different options are summarized 
in detail in Deutsch (2006).

The application of SIS honors the conceptual model 
taking place separately for each of the reference diameters 
defined (Di). The required number of realizations concerning 
each Di is estimated through the analysis of the frequency 
distribution of the assigned lithological class in the whole 
model domain. Based on a certain number of simulations, 
the frequency distribution does not vary significantly. Vari-
ous simulation sets are run for this purpose, each of them 
having a different number of realizations. The effort then 
focused on observing from which simulation set an increase 
in the number of realizations did not lead to a significant 
change in the lithological attribution in the whole model. In 
the example shown in Fig. 2, a total of ten sets are consid-
ered. The starting set consisted of 10 realizations and was 
increased by steps of 10 simulations, reaching a maximal 
number of 100 for the last set. For each simulation set, the 
information entropy of the membership to a lithological class 
was calculated for all voxels of the whole model domain. 
Figure 2 illustrates the process of estimating the number of 
simulations required for each Di. Figure 2a, b show the his-
togram and the probability plot for the information entropy 
for 10 and 30 simulations, respectively, from which the sum-
mary statistics can be computed. The minimal number of 
simulations was obtained when the entropy summary sta-
tistics converged to a constant value. Figure 2c shows how 

Fig. 2  Step 5 of the Di models method: estimation of the required 
number of geostatistical simulations for each Di. a) Histogram and 
probability plot of the information entropy of the membership to a 
lithological class. Number of bins of histogram: 30. b) Histogram 
and probability plot of the information entropy of the membership 
to a lithological class. Number of bins of histogram: 30. c) Plot of 

summary statistics of the information entropy of the membership to a 
lithological class obtained for different number of simulations. d) Plot 
of sum of variation of the summary statistics obtained by increasing 
the number of simulations. Figure 13 in Appendix 1 provides an addi-
tional illustration of this process
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the aforementioned summary statistics vary when increasing 
the number of simulations by steps of 10 realizations. We 
observe that the mean has an initial value of 0.4 and becomes 
stabilized at a value of 0.5 when at least 30 simulations are 
run. The simulation process also shows that the 10th, 50th, 
and 90th percentiles of the values obtained vary widely when 
running simulations sets of 10 and 20 realizations and reach 
a stable value when the simulation reaches a number of 30 
realizations. We can also appreciate this stabilization but 
less intensively in the case of the standard deviation and the 
standard error of the mean. In this example a minimum num-
ber of 30 simulations is satisfactory. Figure 2d represents the 
sum of the variation of all aforementioned summary statis-
tics between contiguous simulations sets and shows clearly 
the simulation set from which the information entropy asso-
ciated to the membership to a lithological class did not vary 
significantly. Figure 13 in Appendix 1 provides an additional 
illustration of this process.

Step 6 — Lithological predictability

Partial percentile lithological models (Di models)

The Di models represent the lithological class associated 
with each cumulative frequency of the total detrital mixture 

in each voxel. Figure 3a illustrates a schematic example of 
a set of Di models. The relative frequency value remained 
constant and corresponded to the precision p defined in the 
conception model (10% in this example; see Step 1). There 
are as many partial lithological models as the number N 
of percentiles of interest considered. The probability dis-
tribution of lithological classes for each Di in each voxel 
was calculated as a result of the stochastic simulation. For 
each Di, the multiple probability field was encoded on a 
representation of the most probable lithological classes. 
The sum of the relative frequencies of each grain fraction 
can be directly inferred and is shown for two locations, in 
Fig. 3b, c.

Model Lithological Uniformity (MLU)

The proposed methodology introduces the concept of “Model 
Lithological Uniformity” as a measure of the degree of the  
lithological composition homogeneity of a clasts mixture. Figure  
3b, c show the “Model Lithological Uniformity” values at  
two locations based on the relative frequencies obtained from 
the Di models. The concept of information entropy (Shannon 
1948) has been used in geological 3-D models as an objec-
tive measure of uncertainty (Goovaerts 1997; Wellmann and 

Fig. 3  Step 6 of the Di models method: lithological predictability. 
a) Partial percentile lithological models (Di models). b) Location 
u1 showing a low MLU value. c) Location u2 showing a high MLU 
value. d) Most Uniform Lithological Model representing the distribu-
tion of lithological classes owning the highest relative frequencies in 

each voxel. The lithological class k is represented in different colors: 
k = 1 (clay/silt) in purple, k = 2 (sand) in orange, and k = 3 (gravel) in 
yellow. Lithological descriptions according to DIN standards DIN 
4023 (2006). (S,g/,tu): strongly gravelly sands with a moderate pres-
ence of silt/clay. (G,s’): slightly sandy gravels
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Regenauer-Lieb 2011). This concept was adapted to the par-
ticular context of clasts mixtures and understood as a measure 
of the disorder state of a detrital system at a grain-size level in 
each voxel. The greater the lithological disorder, the higher the 
lithological entropy, so the entropy equals 0 if the heterogene-
ity has a maximum value, and the lithological uniformity thus 
reaches a minimum value. In this context, the standardized 
lithological heterogeneity (normalized to 1) can be expressed 
as the ratio between the estimated lithological entropy in the 
presence of three possible lithological classes and the upper 
bound of the lithological entropy (log k). This can be expressed 
as follows:

where:

Most Uniform Lithological Model (MULM)

By applying the concept of “Model Lithological Uniformity” 
(MLU), the relative frequencies of each lithological class were 
computed based on the Di models. To illustrate this, Fig. 3b, 
c show the resulting relative frequencies at two random loca-
tions, u1 and u2 with differing degrees of lithological homoge-
neity. In each location of the 3-D space, the lithological classes 
possessing the highest relative frequency, e.g., k = 2 (sand) for 
u1 and k = 3 (gravel) for location u2, conform with the Most 
Uniform Lithological Model of the system (see Fig. 3d). This 
model itself does not show the complexity of the geological 
reality in each voxel (the clast mixture), but rather represents 
the distribution of the most dominant lithology.

where:

MLU(u;k) = 1 −
h(u; k)

log k
= 1

−

�

−
∑j

k=1
pk(u) × log

�

pk(u)
�

log k

�

[0, 1]

MLU(u;k) ∶ Model Lithological Uniformity to a lithological class k at location u.

u ∶ location being estimated.

k ∶ lithological class.

j ∶ largest lithological class (j = 3 for gravel in the default case).

h(u;k) ∶ lithological entropy of the membership to a lithological class k at location u.

pk(u) ∶ relative frequency of lithological class k at location u based on the Di models.

MULM (u) = k with max
({

pk(u) ∶ k = 1,… , j
})

u ∶ location being estimated.

k ∶ lithological class.

j ∶ largest lithological class (j = 3 for gravel in the default case).

MULM(u) ∶ Most Uniform Lithological Model in the location u.

pk(u) ∶ relative frequency of lithological class k at location u.

Step 7 — Multipurpose usability

As shown in Step 6, the relative frequencies of each grain 
fraction given by the conceptual model were directly inferred 
from the Di models. This is shown at the center of Fig. 3b and 
c. A synthetic grain size distribution curve can thus also be 
derived at each location (see at right of the preceding figures) 
or extracted along virtual wells. The availability of synthetic 
grain size curves in individual voxels strongly encourages the 
model usability from various points of view, which are sum-
marized in Fig. 4. The lithological classes can be reclassified 
on a cell-by-cell basis, with categories for sediment mixtures, 
lithofacies types, soil classes for civil engineering purposes, or 
from cutoffs from numerical property distributions (Fig. 4a3). 
If needed, the expected lithological composition at a voxel 
scale can be expressed as coded information according to 
regional or national guidelines (see the examples in Fig. 3). 
Moreover, the numerical attribution and modeling of property 
distributions is not limited to the mere parameterization of 

assignments based on the literature or field/laboratory data 
(Fig. 4a1). The Di models approach enables derivation of 
empirical parameters that are dependent on the virtual grain 
size variations at each model location, e.g., hydraulic conduc-
tivity (Hazen 1892; Seelheim 1880; Beyer 1964), effective 
porosity (Marotz 1968), and geotechnical parameters. Alterna-
tively, the aforementioned grain size-dependent parameters can 
be calculated from the CDF bounds of the lithological descrip-
tions along the drilled boreholes. The 3-D property distribu-
tions can then be modeled, if required (Fig. 4a2). Whatever 
the choice made, it then leads to a prediction of the property 
distributions of such parameters more accurately in 3-D space 
than those obtained with the straightforward attribution.

In addition, building linkages or groundwater related issues 
between model cells based on geometrical or parametrical con-
straints is the basis for identifying groups of cells in compli-
ance with some requirements. This is, for example, the case 
when analyzing the connectivity of geological bodies in order 
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to determine a reservoir architecture (see Fig. 4b1), or when 
capturing the saturated aquifer parts overlying a confining 
layer owing to a certain thickness (Fig. 4b2).

The identification of pessimistic, realistic, and optimistic 
scenarios for the distribution of specific lithologies in space 
on the basis of modeled grain-size fractions can be of benefit 
to applications demanding the geometries of, e.g., confining 
layers or aquifers (see Fig. 4b3), or for civil engineering 
issues like tunnel construction. Given that the modeling of 
lithology distribution always includes uncertainties (caused 
by non-optimal spatial distribution of input data, imprecise 
lithological descriptions, etc.), a conservative representa-
tion of the lithology geometry of interest (e.g., the maximal 
lithology distribution with a higher permeability) can sup-
port practical assessments like the calculation of dewatering 
regarding underground structures (to name one example). 
In this example, a conservative representation of the lithol-
ogy of interest means that lithology having a higher degree 
of permeability (gravel, sand), thus causing a higher water 
encroachment, is modeled with a larger spatial occurrence 

in order to be on the safe side for the further dewatering cal-
culations. For example, we would in this use case propose a 
specific Di model (e.g., 60th percentile) as a representation 
of the lithology distribution.

The aforementioned unicellular and macrocellular work-
arounds are susceptible to further analysis by means of 
classical 2-D computations combining features from both 
approaches.

Application of the method in the case study 
in the city of Munich

Geological setting

The proposed methodology was tested on a city-wide scale 
in Munich (Germany), which is located in the North Alpine 
Foreland Basin in the southern part of Germany (Fig. 5a). 
This typical asymmetric foreland basin, also known as 
Molasse basin, dips southwards underneath the Alps and is 

Fig. 4  Step 7 of the Di models method: multipurpose usability
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filled with up to 5000 m of sediments belonging to several 
marine to continental transgressive/regressive sequences 
(Lemcke 1988). The most recent deposits in this basin are 
formed mainly by Quaternary coarse-grained gravels from 
glacio-fluvial origin, and they cover a total surface area of 
2250  km2 along the so-called Munich Gravel Plain (MGP) 
(see Fig. 5b).

In the city of Munich, the MGP comprises various sandur 
terraces as well as the floodplain of the Isar River, formed 
by gravel deposits having a thickness from few meters up to 
several decameters. Most of the deposits in the MGP were 
formed during the Pleistocene glacial cycles of Riss and 
Würm. The melt waters of the Isar-Loisach glacier resulted 
in the formation of braided rivers which piled up gravelly 
deposits to huge outwash plains (Bauer et al. 2005). The 
Quaternary aquifer constitutes one of the most productive 
groundwater occurrences in Europe (Freudenberger and 
Schwerd 1996) and conforms with the principal shallow 
aquifer in the region, which hosts a wide variety of coex-
isting groundwater uses, such as industrial water, drink-
ing water, or groundwater heat pumps (GWHPs) for open 
loop geothermal systems. The city of Munich, covering an 
area of approximately 310  km2 of the total extent of the 
MGP, is situated in the central part of this outwash plain 
(see Fig. 5b) and concentrates the majority of uses (e.g., 
over 2800 GWHPs were recorded in 2020). This relevance 
has led to an increasing number of scientific activities in 
recent years addressing various aspects of this aquifer in 
the Munich area, e.g., its hydrogeological classification like 
hydrofacies characterization of the gravely deposits (Theel 
et al. 2020) and the geostatistical relief modeling of the 
geometry of the aquifer basis (Albarrán-Ordás and Zosseder 

2020) or characterization for geothermal purposes (Böttcher  
et al. 2019). These deposits are underlain by flavio-lacustrine  
successions in erosive discordance, representing the last 
Tertiary sedimentation stage of the basin (see Fig. 5c). 
This deposition occurred during the Middle and Late Mio-
cene and is represented by the Upper Freshwater Molasse 
(UFM) (Bachmann and Müller 1992). The filling deposits 
of UFM are several hundred meters thick and comprise grey 
or brownish and partly also reddish clayed-marly slackwater 
sediments and sandy to coarse-grained river channel depos-
its. The mica-bearing clayed and sandy sediments are fairly 
characteristic of the UFM deposits. The latter are yellowish 
grey to brownish and are commonly known as Flinz. Since 
these formations consist almost exclusively of unhardened 
fluvioterrestrial sediments, the lithological differentia-
tion represents the distinctive criterion for subdividing the 
UFM into major lithostratigraphical units, which are in turn 
classified into the Western and the Eastern Molasse facies  
(Schwerd et  al. 1996; Doppler et  al. 2005). The UFM 
includes relevant but less-explored groundwater occurrences 
and are characterized by their high level of geological com-
plexity, which poses a major challenge to characterizing 
their geometric architecture and geological composition. 
The groundwater from this aquifer system is exploited at 
different depths for a wide variety of uses. Among others, it 
is mainly used for public and drinking water but also as an 
industrial and brewing water supply. In addition, this aqui-
fer is conceived for facilitating emergency water supply, if 
required. A great deal of infrastructure has been built in both 
the Quaternary and the Tertiary units, e.g., pipework sys-
tems, tunnels, and the deeper subway structures. The coex-
istence of this diverse range of uses and influences as well 

Fig. 5  Geological setting in the case study area. a)  Location map. 
b)  Simplified geological map in the Munich area showing the main 
lithostratigraphic units and the boundaries of the city of Munich (mod-

ified after Bayerisches Geologisches Landesamt 1996). c)  Schematic 
geological view of the city of Munich (modified after Münichsdorfer 
1922). m.a.s.l.: meters above sea level
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as the high natural variability of these deposits highlights 
the need for their long-term groundwater management. Due 
to its relevance, the latter formation has also been subject of 
research in recent years (Prösl and Anders 2011; Zosseder 
et al. 2019).

Conceptual model and borehole database

A borehole database from the Soil Information System of 
Bavaria (Germany), abbreviated as BIS, was considered in 
the present case study. This database is a comprehensive 
soil inventory managed by the Bavarian Environmental 
Agency and is typical of the datasets provided by govern-
mental institutions, e.g., geological surveys. This database 
includes, among other issues, information on an exhaus-
tive borehole database from the drilling operations during 
recent decades (Kresse and Danko 2012). Consequently, the 
workflows adopted for the data acquisition and preparation 
were adapted to the peculiarities of this borehole database. 
However, as mentioned in the “Methodology” section (Step 
2), the workflow can be adapted to other borehole databases 
as needed.

The borehole descriptions contained in the BIS database 
consist of coded information representing the geological 
composition for each drilled interval and according to the fol-
lowing standards: DIN 4023 (2006); DIN EN ISO 14688–1 

(2020); DIN EN ISO 14688–2 (2020); DIN EN ISO 14689 
(2018). These standards define the symbolic codes used for 
soil description. The dataset used is comprised of the litho-
logical descriptions from 210322 drilling intervals. This 
information corresponds to a total number of 20,114 bore-
holes amounting to a density of approximately 64 boreholes 
per  km2 on average (see Fig. 6). The lithological descriptions 
from the boreholes sum up to a total of 347 km of drilled 
materials with lithological information to process.

The framework model consisted of a grid covering an 
area of 27 by 21 km. This was comprised of approximately 
23 million voxels, each of which had a resolution of 100 by 
100 m in the horizontal axis, and 1 m in the vertical direc-
tion. The modeling domain had a maximal depth of 170 m 
above sea level (m.a.s.l.), and the highest voxel was at a 
height of 590 (m.a.s.l.). The model holds a very variable 
thickness, since the ground surface has a marked downward 
slope towards the north. The user-defined categorization of 
the lithological classes resulted in three types, depending on 
the particle grain sizes: 1 for clay and silt (≤ 0.063 mm), 2 
for sand (> 0.063–2 mm), and 3 for gravel (> 2 mm). This 
decision was primarily based upon selecting the lithological 
classes with more practice-oriented implications. In addi-
tion, a precision p of 10% in the relative amounts of grain 
fractions was defined as previously mentioned by way of 
example in the “Methodology” section.

Fig. 6  Borehole database in the case study area. a) Histogram show-
ing the number of boreholes reaching a certain final depth in the city 
of Munich. The total number of boreholes is 20114. b) Location map 

of the area of the case study showing the location of the boreholes 
used and two cross sections AA’ and BB’, which are used to present 
and discuss the results
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Spatial continuity of the lithological classes

To describe the spatial correlation of each lithological class 
(1, 2, 3), the variograms were estimated from the available 
interval-based lithological information of the 210,322 bore-
hole descriptions. The points in Fig. 7a show the relationship 
between the maximal horizontal correlation ranges and the 
vertical correlation ranges for all Di values and all lithologi-
cal classes. Although the variogram ranges are not the same 
as the element body sizes (Ringrose and Bentley 2015), a set 
of dotted lines was also plotted in order to visualize different 
reference width-thickness ratios (W/T) and to compare the 
correlation ranges obtained with the dimensions of fluvial 
channel bodies. The W/T ratio defines the broadness or nar-
rowness of architectural elements of fluvial systems (Miall 
2014). Gibling (2006) emphasized in the study of the 3D 
geometry of fluvial channel bodies proposing twelve different 
types of channel bodies and valley fills based on more than 
1500 bedrock and fluvial bodies for which width and thick-
ness were recorded. A comparison between the correlation 
ranges obtained and the results from Gibling (2006) indicated 
that the correlation ranges of the gravels can be attributed to 
the common W/T spectrum of values for meandering rivers 
(see Fig. 7a), which are the result of the juxtaposition of 
deposits from different courses. These fluvial channel bodies 
typically have ranges from 4 to 20 m in thickness, from 0.3 to 
3 km in width, and W/T values from 7 to 940. Similarly, we 

can also observe that the narrower correlation ranges of the 
sands very closely fit the dimensions of fixed river systems 
(see Fig. 7a). These deposits may represent single-channel or 
braided-sand bed networks (Gibling 2006) and typically have 
a W/T from 2.5 to 150, a thickness of between 3 and 15 m, 
and widths of between 15 and 300 m.

On the other hand, Fig. 7b, c, d illustrate the spatial conti-
nuity in the horizontal direction by means of the ellipsoidal 
representations regarding the direction of maximal correlation 
and correlation ranges in the horizontal direction for the three 
lithological classes as well as each Di reference diameter.

The variogram analysis showed that the gravels have 
high horizontal-vertical ratios for almost every Di (Fig. 7a) 
and, at the same time, they have high horizontal correlation 
ranges, especially from the D40 value (Fig. 7b). Although 
most variograms are less anisotropic, the prevailing angles 
of maximal correlation are E-W. In the case of sands, lower 
ranges in both figures were evident, indicating a priori nar-
rower geometries associated with this lithology (Fig. 7c). 
Except for D10, D20, and D100, all of the maximal horizontal 
correlation ranges were smaller than approximately 200 m, 
with correlation angles approximately along the 100° line.

Partial percentile lithological models (Di models)

The distribution of lithological classes 1, 2, and 3 was mod-
eled for each fixed Di value of the cumulative frequencies. 

Fig. 7  Spatial continuity results of the lithological classes in the 
subsurface 3-D space in the city of Munich. a) Relation between the 
correlation ranges in the horizontal and vertical directions of each 
Di model for each lithological class and comparison with common 
width/thickness (W/T) spaces of fluvial-channel bodies from Gibling 

(2006). The dotted lines represent different W/T ratios. b) Correlation 
ellipsoids for the lithological class “gravel” for each Di value. c) Cor-
relation ellipsoids for the lithological class “sand” for each Di value. 
d) Correlation ellipsoids for the lithological class “silt/clay” for each 
Di value
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The D10, D50, and D100 lithological models are shown in 
Fig. 8 as an example of the set of Di models. Behind each 
Di model, the probability of occurrence of each lithological 
class in each voxel based on 50 stochastic simulations for 
each Di model will remain for further interpretation.

As might be expected, an increment in particle size of 
the sediments became clearly evident as the cumulative fre-
quency of the whole sediment mixture increased from D10 
to D100. The distribution of lithological classes obtained for 
the D10 model indicated that the 10% of the finest particles in 
both the Quaternary and UFM units are mostly composed of 
clays and silts and, to a lesser extent, of sands. The gravelly 
areas in this model are extremely rare and reflect deposits 
made of at least 90% gravel, which are only present very 
locally in the Quaternary and a deep UFM formation. The 
D50 model shows that the 50% of the finest sediments in 
the UFM are still mostly fine-grained. The Quaternary, in 
contrast, is characterized by a picture dominated by the pres-
ence of gravels, indicating that all areas marked as yellow 
are expected to own relative percentages of gravels of at 
least 50%. The last partial lithological model shown here, 
this is the D100 model, shows clearly the presence of clayed/
silty successions in the UFM, which means expected relative 
percentages of 100% of the same lithologies. These imper-
meable beds are likely to behave as aquifuges between the 
different confined aquifers in the UFM, mostly composed 
of sands. In this case, the Quaternary sediments are almost 
completely formed by at least a small relative percentage 
of gravels.

Model Lithological Uniformity (MLU) and Most 
Uniform Lithological Model (MULM)

Based on the Di models shown above, the Model Lithologi-
cal Uniformity and the Most Uniform Model are derived  
as described in Step 6 in the “Methodology” section. Figure  
9a, b show the Model Lithological Uniformity of the  

detrital mixtures in Munich´s subsurface, representing the 
degree of homogeneity of the clastic mixtures present in the 
Quaternary and UFM deposits (see the “Application of the 
method in the case study in the city of Munich” section). The 
lithological classes owing the highest relative frequencies in 
each voxel in the city of Munich constitute the Most Uniform 
Lithological Model presented in Fig. 9c, d.

The results clearly highlight a main gravel body at the 
top, holding a median Model Lithological Uniformity of 
0.38. Only 10% of the Quaternary gravels show extremely 
high MLU values above 0.54. This volume covers, with a 
median thickness of 13 m, the first meters from the topo-
graphical relief and corresponds with the Quaternary glacio-
fluvial deposits. Moreover, the bottom surface of this geo-
body exhibits a variable relief composed of meander-shaped  
channels and plateaus (Albarrán-Ordás and Zosseder  
2020). The thickness distribution of the Quaternary depos-
its is highly variable and only locally interrupted at Ter-
tiary hills, such as the “Aubinger Lohe,” a spot at the west-
ern end of the city or along the slope edges of the Isar  
River crossing the city of Munich from south to north (see 
Figs. 5b, 6b, and 9c). As we can see, the gravelly sediments 
in the Quaternary are interrupted in depth by a prominent 
erosive discordance below which the sandy, silty, and 
clayed lithologies of the UFM become predominant. As a 
result, wide areas of the Quaternary gravels along this dis-
cordance are directly underlying of sandy UFM-sediments  
and hence, showing a potential hydraulic interaction area 
between Quaternary and Tertiary aquifers (so called hydrau-
lic windows). Below, we can distinguish the UFM as a sys-
tem consisting of a series of more coarse-grained (sandy)  
geological bodies alternating with fine-grained successions. 
Fine-grained deposits can reach significant thicknesses and 
they separate the numerous coarse-grained geo-bodies one 
another. The coarse deposits are mainly composed of sands 
and in greater depths of approximately 300–350 m.a.s.l. the 
content of gravel bodies increases importantly. As shown 
in Fig. 9a, b, the Model Lithological Uniformity values are 

Fig. 8  3-D views of the partial percentile lithological models (Di models) in the city of Munich. a) D10 model. b) D50 model. c) D100 model
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highest in many clayed and silty formations in the UFM, 
which correspond with the areas mentioned in the “Partial 
percentile lithological models (Di models)” section, when 
describing the D100 model. The MLU decreases to 0.2–0.4 
in the Tertiary sandy-dominated aquifers. Almost 25% of 
the deposits in the UFM, most of them fine-grained, reach 
the highest MLU values and about the same percentage 
are below 0.54. Compared to the Quaternary sediments, 
a larger dispersion of the MLU values is observed in the 
UFM (IQR of 0.46 versus only 0.26 in the Quaternary). 
The increased thickness of these fine-grained homogene-
ous deposits increased the median of the MLU to 0.7 in 
the whole UFM.

Architectural model of the Quaternary and UFM 
deposits

As previously mentioned in the “Geological setting” section, 
both the wide variety of existing and potential future subsur-
face uses and the inherent non-constant geological proper-
ties of the fluvio-glacial and lacustrine deposits underlying 
the city of Munich will require a long-term management 
of the underground space. The challenge for a successful 
underground management is to identify geo-bodies hav-
ing specific potentials and their connection or separation to 
others, like the connection between different aquifers and 
potential hydraulic interactions. For this purpose, it is criti-
cal to analyze the geometrical continuity of the prevailing 
lithologies shown in Fig. 9c. This leads to a subdivision of 
the modeling space into different geological bodies accord-
ing to their geometrical associations to ultimately determine 
the reservoir architecture (Fig. 9e, f). Immediately prior to 
analyze the geometrical continuity of the lithological distri-
bution of the model shown in Fig. 9c, d, a Moving Window 
Filtering (windows size of 5 cells in the three directions) was 
applied. The aim of this filtering is to exclude isolated cells, 
such as small isolated sand lenses, in the architectural model. 
The excluded cells were not considered to be relevant for 
the purposes of the architectural model due to their isolated 
nature and minimum extension.

The application of the Di models method and the sub-
sequent interconnectivity analysis resulted in four extensive 
coarse-grained geological bodies separated from one another 
by fine-grained silty and clayed successions in the UFM. This 
subset of bodies was termed as T1 to T4, from shallower to 
greater depths, respectively. At the top, the T1 geo-body con-
sists of a multistory and laterally extended sand body with a 
maximum depth of 138 m below ground level. Within the T1 
body additional separations were made which exist only in 
some spatial parts. Hence, T1 was identified in tiers, named 
herein T1A to T1D, which have a variable extension and 
thickness but remain, as a whole, geometrically connected 

in the city area presenting different areas of preferential con-
nectivity at various depths. As we can see in Fig. 9e, f, the 
gravelly sediments in the Quaternary are interrupted by a 
prominent erosive discordance. As a result of the erosion 
processes, some of the old deposits of UFM are only pre-
sent locally and not throughout the whole modeling area, 
which can be seen, for instance, in Fig. 9f, where the T1A 
geo-body (highlighted in dark blue) in the northern half of 
the city is missing. Based on the reservoir architecture, dif-
ferentiated erosion at the Quaternary aquifer base ultimately 
leads to a connection of this aquifer with different underlying 
aquifer parts of the UFM in multiple areas throughout the 
city (see Fig. 9f). The coarse-grained sandy body T1 (A-D) 
hosts the main aquifer systems exploited at different depths 
in the UFM in a complex structure. In contrast, the deeper 
aquifers T2-T4 of the UFM can be clearly separated and have 
no further hydraulic interlinkage to other aquifers. Therefore, 
reservoir architecture derived by the Di models method and 
its consequences in terms of aquifer interactions constitute a 
significant step forward in understanding and ultimately pro-
viding an effective groundwater management system. Both 
a schematic graph and a detailed description of the aquifer 
systems and tiers from the architectural model are shown in 
Table 1 and Fig. 14 of Appendix 2.

The wide range of groundwater uses present in UFM 
aquifers was mentioned earlier in the “Geological setting” 
section. In order to properly manage these and future appli-
cations and characterize the aquifer systems in the UFM, it 
will be necessary to itemize the current exploitation status 
of the different aquifers. This can be done by means of 
analyzing the filter pipes length and depth for a number 
of nearly 4500 existing wells and groundwater stations 
installed in the Munich subsurface. A short extract of this 
process is illustrated in Fig. 9f. This itemization enables the 
selective grouping of groundwater measurements together 
for each separated aquifer system and support ultimately 
the generation of reasonable hydraulic potentiometric 
surface maps for each aquifer. Hence, individual hydrau-
lic potential maps for the aquifer sections T1A-D and T2 
were produced in the city of Munich based on the modeled 
underground architecture, as Fig. 9f shows. The potentio-
metric surface maps were generated using geostatistical 
interpolation methods (Universal Kriging) and relied on 
an elaborate groundwater measurement campaign per-
formed in April 2018 within the framework of the GeoPot 
research project (Geopotentials of the Tertiary subsurface 
in the wider area of Munich, Germany) (Zosseder et al. 
2019). The individual analysis for each aquifer provided by 
this approach also enables individually addressing a water 
chemistry characterization of each aquifer in subsequent 
steps. This was also accomplished in the aforementioned 
research project and showed significant variations for the 
different aquifer sections.
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Example of application for scenario analysis: design 
process of a dewatering system

The set of Di models offers a flexible system for a scenario 
analysis in determining both coarse-grained and fine-grained 
geological deposits for various applications. In this example, 
the ultimate goal consists of determining the parts of the grav-
elly Quaternary aquifer that influence the design process of a 
dewatering system for an excavation in an urban area based 
on conservative assumptions. To this end, we considered the 
groundwater contour map of the Quaternary aquifer obtained 
from a detailed measurement campaign containing over 6000 
groundwater wells performed in April 2014 (Zosseder et al. 
2015; Böttcher et al. 2019; Albarrán-Ordás and Zosseder 2020).

In this case, the conservative scenario (in terms of the 
most demanding dewatering), was estimated by capturing 
the aquifer geometries holding a maximum expected amount 
of water-saturated coarse-grained sediments (gravels). 
According to the standards for soil description used in this 
case study (see the “Conceptual model and borehole data-
base” section), gravel-dominated deposits were character-
ized by a minimum relative amount of 40% of gravels. Thus, 
water-saturated aquifer volumes holding 40% of gravels can 
be therefore considered as the most demanding dewatering 
scenario. These volumes can be assessed by estimating the 
groundwater which fills the gravelly sediments below the 
water table in the D60 model, which can be identified in 
Fig. 10a. By contrast, the aquifer parts holding at least 60% 
of gravels may represent an optimistic forecast regarding 
a better situation for dewatering shown in Fig. 10b. The 
latter scenario can be inferred by the water-saturated grav-
elly volumes in the D40 model. The results show that the 
conservative scenario for the most demanding dewatering 
design resulted in a substantial increment representing an 
83% increase in the water-saturated areas along the cross 
section (represented in blue).

Discussion

The modeling approach presented herein aims at better 
capturing the lithological variability of detrital systems 
at a voxel scale. This is achieved by estimating relative 

proportions of mass fractions of the lithological classes, 
and thus reducing significantly the stationary assumption 
in each voxel. The current modeling methodologies tend to 
assume a stationary prevailing class (lithologies, lithofa-
cies, hydrofacies, etc.) in each voxel in predicting the final 
image of geology (Stafleu et al. 2011; Kearsey et al. 2015; 
Hademenos et al. 2019). They are commonly applied in 
combination with stochastic simulations, thus providing 
probabilities of occurrences from multiple realizations 
which actually do not represent the relative quantifica-
tion of the classes in the sediment mixture (Stafleu and 
Dubelaar 2016). The aforementioned assumption is even 
more notable in lithostratigraphic models, in which con-
stant properties are assigned to each unit (Kearsey et al. 
2015). In contrast, the proposed methodology predicts the 
lithological classes associated to cumulative frequencies 
of the whole clasts mixture in each voxel after defining a 
constant frequency or precision p (e.g., 10% in the case 
study). Herein, the stationarity space lies only within the 
lithology assigned to each cumulative frequency, so no 
quantification of lithological classes is possible below the 
defined precision. The introduction of the concept of Model 
Lithological Uniformity (MLU) expresses the degree of 
homogeneity presented in the clasts mixture in each voxel 
based on all cumulative frequencies. This concept arises 
from the adaptation of the concept of information entropy 
as a measure of the disorder state of a detrital system. The 
concept of information entropy, which has been applied 
successfully as an objective measure of uncertainty in geo-
logical 3-D models (Wellmann and Regenauer-Lieb 2012; 
Bianchi et al. 2015), is then used in a different context.

The quantitative aspect of this method benefits from 
high borehole densities and high levels of detail in the 
lithological descriptions. If no grain-size-based descrip-
tions are available, then the method loses its added pre-
dictive value in terms of relative amounts of lithologies. 
The user-defined character of this method may result in 
an overly arduous process if the number of grain fractions 
being modeled and the precision are unrealistically high.

One common aspect of 3-D geomodels in detrital sys-
tems is obtaining a 3-D distribution of the most dominant 
or prevailing lithological classes. This representation, 
sometimes referred as a mean model (Pyrcz and Deutsch 
2014), holds the categories most likely present in each 
voxel. Current methods address this by assigning the most 
probable distribution of classes from the stochastic simu-
lation, and this constitutes the main modeling objective. 
The proposed method can directly derive a Most Uniform 
Lithological Model (MULM), with the distribution of 
classes owning the highest relative frequency in the clasts 
mixture. The MULM has been successfully implemented 
in the city of Munich. This is the basis for the architec-
tural model representing the reservoir configuration in the 

Fig. 9  Case study in the city of Munich. a)  3-D view of the Model 
Lithological Uniformity. b)  Cross section BB’ showing the Model 
Lithological Uniformity. c)  3-D view of the Most Uniform Litho-
logical Model. d)  Cross section BB’ showing the Most Uniform 
Lithological Model. e)  3-D view of the architectural model of the 
Quaternary and UFM deposits. f)  Cross section BB’ showing the 
architectural model, the aquifer assignation to the filter pipes and 
the groundwater and potenciometric surfaces (T3 almost not promi-
nent, because it occurs mainly in the western part of Munich; m.a.s.l.: 
meters above sea level)

◂
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Quaternary and UFM deposits and the subsequent itemiza-
tion of the current exploitation status of the various aqui-
fers (“Architectural model of the Quaternary and UFM 
deposits” section).

In order to discuss the predictive ability of the pre-
sented methodology, a cross validation procedure was 
implemented for the estimation of lithological classes in 
the case study. This technique was based on the elimi-
nation of some hard data — a number of boreholes and 
their known lithological descriptions — and the ulterior 
re-estimation of the lithological composition at those loca-
tions where the true lithology is known from the remaining 
borehole data (e.g., Isaaks and Srivastava 1989). The sub-
sequent analysis of the discrepancies indicates the quality 
of prediction of the modeling process (Pyrcz and Deutsch 
2014). Special attention was given to the impacts of mis-
classification and to the ability of the modeling approach 
to predict different degrees of lithological homogeneity 
given by the Model Lithological Uniformity.

In a first step, 5% of all hard data was randomly 
excluded. This amounted to a total number of 1000 bore-
holes covering 19,022 m of lithological descriptions. To 
this end, the excluded data comprised boreholes at differ-
ent depths distributed throughout the whole model. The 
3-D modeling process was run with the same model setup 
and the spatial continuity model of the indicator categori-
cal variables of each lithological class as those described 
in the “Step 2 — Input data: lithological descriptions from 
borehole data” and “Step 3 — Spatial statistical inference” 
sections. The superimposition of trends was adapted so 
as to ignore the lithological descriptions of the excluded 
1000 boreholes.

The quality of prediction was checked along the excluded 
boreholes to their final depths at intervals of 10 cm along 
the 1000 boreholes. This checking process was developed 

qualitatively by measuring the fuzzy closeness of the esti-
mation to the truth lithological classes. The fuzzy closeness 
accounted for the fact that the impact of misclassifications 
was different in the sense that assigning “sand” instead 
of “gravel” is less consequential that assigning “silt/clay” 
instead of “gravel”. The closeness of the prediction to the 
true lithologies was calculated for each 10 cm interval. As 
a result, if the closeness to the true lithology was 0, the 
estimation was correct because the predicted lithology cor-
responded to the true value. However, if the closeness to the 
true values was 1, the contiguous lithology was predicted 
instead of the true one. Although the prediction was incor-
rect, the impact of misclassification was less consequential 
(e.g., true = sand, estimate = silt/clay). In the case that gravel 
was estimated instead of silt/clay, the closeness to the true 
lithology would be 2. In this case, the prediction is incorrect 
and far from the true class, so the impact of misclassification 
is high. This made it possible to account for the worst cases 
of prediction.

Figure 11 illustrates a bubble plot representing a close-
ness matrix of the estimated and true lithological classes 
in the collocated intervals for the partial percentile models 
and the Most Uniform Lithological Model presented in the 
“Partial percentile lithological models (Di models)” and 
“Model Lithological Uniformity (MLU) and Most Uniform 
Lithological Model (MULM)” sections. This plot enables 
calculation of the success rate of prediction. We observed 
that more than 83% of the estimated lithologies coincided 
with the true ones for all the partial percentile models, 
except for the D10 and D20 models, where the percentage 
of success reaches 67% and 69%, respectively (see close-
ness to true = 0 in Fig. 11). In the case of the Most Uniform 
Lithological Model (MULM), the lithological prediction 
was correct in 89% of the intervals. Of the remaining pre-
dictions, only 3% of the estimated classes (corresponding 

Fig. 10  Cross section AA’ showing the results of the scenario anal-
ysis for the design process of dewatering systems in the Quaternary 
aquifer in the city of Munich. a) Conservative scenario representing 

the most demanding dewatering in view of the D60 model. b) Opti-
mistic scenario representing the less demanding dewatering in view 
of the D40 model (m.a.s.l.: meters above sea level)
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to 6178 intervals of 10 cm) showed higher impacts of 
misclassifications.

The measure of the fuzzy closeness also makes it pos-
sible to identify the misclassifications in the form of under-
estimations and overestimations. In this context, if the true 
lithological class was coarser than the estimated one (e.g., 
true = sand, estimate = clay/silt), the prediction underes-
timated the grain size of the true lithology. These cases 
are represented by a light gray area in Fig. 11. In contrast, 
an overestimation in the prediction occurred when the 
true lithology was finer than the estimated lithology (e.g., 
true = sand, estimate = gravel). This situation is represented 

by a dark gray area in Fig. 11. We can also observe that the 
incorrected predictions were equally represented in overes-
timations and underestimations for all models, except for the 
D10 and D20 models. In the latter cases, an overestimation 
was noticed mostly in terms of a prediction of sand instead 
of clay/silt, which will be discussed below.

Emphasis was placed on those locations of the cross 
validation showing drastically different lithological classes 
in the Most Uniform Lithological Model. Specifically, 
locations possessing a misclassification of two orders of 
magnitude (closeness to true = 2), specifically predictions 
of clay/silt instead of gravel, and vice versa, were further 

Fig. 11  Summary of results for cross validation: Bubble plot repre-
senting the fuzzy closeness of the estimated lithological classes to the 
true lithological classes for the D10 to the D100 models and the Most 
Uniform Lithological Model (MULM). Whereas the bottom right half 
of the bubbles represents the estimated lithological classes, the upper 
left half shows the collocated true lithologies. The number of loca-
tions for each true-estimate case is represented through the size of 
the dots. If the closeness to the true lithology was 0, the estimation 
was correct. These cases are represented along the dotted blue line 
(true = estimate). If the closeness to the true values was 1, the contig-

uous lithology was predicted instead of the true one. In the case that 
gravel was estimated instead of silt/clay, and vice versa, the closeness 
to the true lithology was 2 and the impact of misclassification was 
high. The light gray area represents the cases when the prediction 
underestimated the grain size of the true lithology (e.g., true = sand, 
estimate = clay/silt). An overestimation in the prediction occurred 
when the true lithology was finer than the estimated lithology (e.g., 
true = sand, estimate = gravel). This case is represented by a dark gray 
area
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investigated due to their major impact on the model inter-
pretation. These locations were contrasted with the Model 
Lithological Uniformity presented in the “Partial percen-
tile lithological models (Di models)” section. As shown in 
Fig. 12, the distribution of the MLU for the worst-cases was 
more or less positively skewed having a median of 0.18. 
Almost 25% of the locations show Model Lithological Uni-
formities below 0.06 and only 25% of the locations is above 
0.54. Not surprisingly, this highlights that the worst-cases in 
the prediction were predominantly associated with deposits 
having lower MLU values and the greater lithological vari-
ability thereby.

In view of the above issue, one might wonder whether 
the model is able to predict only deposits having high 
Model Lithological Uniformity and less complexity. For 
this reason, the distribution of the MLU values at loca-
tions where the estimation is correct was also analyzed 
in order to explore the ability of the model to predict the 
true lithologies in different degrees of sediment mixing. 
The results are represented in Fig. 12 and show a median 
of 0.44, indicating an almost centered distribution of the 
locations. This implies that the mass of the distribution of 
corrected predictions was not concentrated in areas neither 
of greater lithological variability nor with more uniform 
lithological composition. The 25% quantile, with 0.18, and 
the 75% quantile, with 0.70, also showed a wider range of 
uniformity values.

The predictive ability of the method was proven in the 
case study, showing a successful prediction of the MULM at 

89% of the tested locations for a wide range of Model Litho-
logical Uniformity values. Only 3% of the locations tested 
showed worst-case predictions and were associated with 
highly heterogeneous deposits having very low MLU values 
(mean: 0.18). In the case of the partial percentile models, a 
success rate of between 83 and 90% was ascertained, except 
for D10 and D20 (67–69%). Most of the latter discrepan-
cies show up as misclassifications of sand instead of clay/
silt (Fig. 11). This effect can be explained by a significant 
increase in the horizontal correlation ranges of sand identi-
fied in the spatial continuity models (Fig. 7c). The spatial 
variation of lithologies inferred from 3-D variogram analysis 
was assumed for the whole modeling domain. More accurate 
3-D variogram models from large-scale subdivisions of the 
model volume showing similar depositional conditions may 
resolve these issues.

Regarding model usability, the classical, straightforward 
attribution of numerical values from the literature or field 
data on lithology or sediment mixtures (see Fig. 4a1) com-
monly oversimplifies the property distributions in 3-D space. 
This method provides synthetic grain size curves at a voxel 
scale, which can then lead to (i) direct derivation of empiric 
parameters dependent on the grain size variations at each 
voxel, or (ii) 3-D modeling of the property distributions of 
such parameters based on the information available on exist-
ing boreholes. Whichever alternative is chosen, this method 
enables a more accurate 3-D modeling of property distribu-
tions in space than those obtained using the straightforward 
attribution (see example in Fig. 4a2).

Fig. 12  Analysis of worst-case predictions (closeness to true = 2) 
and checking the degree of sediment mixing for correct predictions 
(closeness to true = 0): Boxplots showing the distribution of Model 
Lithological Uniformity (MLU) for correct predictions and for worst 

cases of prediction with a high impact of misclassification. The 
number of locations (each location represents an interval of 10  cm) 
is 168,209 in the case of correct predictions and 6178 for the worst-
cases
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This methodology makes use of stochastic simulations 
for generating the most probable classes for each partial 
percentile model related to a different cumulative frequency, 
where the stationarity is assumed. Additionally, this allows 
the integration of imprecisions associated with the inherent 
generalizations for soil description. The advantage thereby 
is that the uncertainty contributions present in the lithologi-
cal descriptions are propagated along the modeling process, 
which is commonly more or less ignored in all of the cur-
rent modeling strategies. The development of a compre-
hensive measure of uncertainty based on the perspective of 
this method in detrital mixtures will require further study.

Conclusions

The need to manage the subsurface space especially in 
detrital depositional environments requires approaches for 
improving the capabilities of geological 3-D modeling and, 
among other aspects, in preserving geological realism, inte-
grating uncertainties in the modeling process to avoid under-
estimations in the reliability of the model and aspiring to 
provide a multi-purpose, user-oriented framework.

The Di models method proposes substantial contribu-
tions to these aspects based on the cornerstone that the 
lithological heterogeneities in detrital systems, under-
stood as being mixtures of clasts of a wide range of par-
ticle sizes, can be geomodeled in 3-D space. These con-
tributions have been proven in a case study in the city 
of Munich (Germany). Following this premise, a multi-
voxel modeling solution is presented which uses massive 
lithological descriptions of borehole data and is able to 
predict, at a grain-size scale and with a user-define imple-
mentation, the relative amounts of each grain fraction 
and, therefore, the full lithological composition on a cell-
by-cell basis. In conducting this approach, uncertainties 
due to imprecise soil description associated to the inher-
ent generalizations are integrated by interpreting different 
equally valid combinations of the soil components and are 
ultimately propagated along the modeling process through 
the stochastic simulations. The further development of 
the Di models method includes the introduction of the 
concepts of Model Lithological Uniformity (MLU) and 
the Most Uniform Lithological Model (MULM). The pre-
dictive quality is evaluated in a cross validation process 
showing a success rate of prediction in the Most Uniform 
Model of 89% of cases considering 1000 boreholes which 
amount 19 km of lithological descriptions. The combined 
analysis of quality of prediction and Model Lithological 
Uniformity highlights the ability of the method to cap-
ture the complexity of geological reality for a wide range 

of MLU values and, therefore, a wide level of sediment 
mixing.

The multi-voxel character of this approach provides 
the relative amounts of each grain fraction in all voxels 
and encourages its flexibility of use for further applica-
tions. On the one hand, it enables an understanding of the 
small-scale effects present on a cell-by-cell basis derived 
from the sediment mixing by, e.g., attributing numerical 
values from the literature or field data to sediment mix-
tures, thus deriving empiric parameters dependent on the 
grain-size variations (effective porosity, hydraulic con-
ductivity, share-wave velocity) and modeling property 
distributions more accurately. On the other hand, macro-
cellular approaches based on geometrical or cell-by-cell 
parametrical linkages between cells enable an understand-
ing of complex reservoir architectures, e.g., multistory, 
laterally extended sand bodies like those presented in the 
UFM. In the case study in the city of Munich, this process 
ultimately led to an itemization of approximately 4500 
filter pipes classified according to eight aquifers in which 
they are installed, and the subsequent individual hydro-
geological characterization of the groundwater systems 
by delineating its hydraulic characteristics and their water 
chemistry.

Equally, this approach has been shown to be very use-
ful when the identification of different relative amounts 
of grain fractions is needed. The quantification of cumu-
lative frequencies of lithologies can be used in the sce-
nario analysis associated with conservative or optimistic 
assumptions supporting assessments for specific applica-
tions, e.g., groundwater management or civil engineer-
ing issues (“Example of application for scenario analysis: 
design process of a dewatering system” section). This was 
shown in an example of application for determining the 
water-saturated parts of the Quaternary aquifer that might 
influence the design process of a dewatering system of 
an excavation on conservative assumptions in the city of 
Munich. This flexibility has great potential for many other 
applications requiring a high degree of lithological vari-
ability in each voxel. Moreover, the variability captured 
by this method may lead to a more closely definition or 
modeling of continuous properties in 3-D, as well as for 
deriving grain-size-based dependent properties or for finer 
model parameterization.

Appendix 1. Estimation of the required 
number of geostatistical simulations 
for each Di
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Appendix 2. Architectural model 
of the Quaternary and UFM deposits 
in the case study in the city of Munich

Table 1  Overview of the aquifer systems and tiers from the architec-
tural model of the Quaternary and UFM deposits in the case study 
in the city of Munich. m.a.s.l.: meters above sea level, UFM: Upper 

Freshwater Molasse, P10: 10th percentile, P50: 50th percentile, P90: 
90th percentile, M: arithmetic mean, SD: Standard deviation, min: 
minimum value, max: maximum value

Aquifer 
system/
tier

Description Thickness (m) Stratigraphy and 
lithology

Area 
 (km2)

Elevation 
(m.a.s.l.)

Aquifer  
interactions

T1A T1: first Tertiary aquifer system from the 
Earth’s surface. A: highest aquifer tier 
located in T1 aquifer system

P10 = 2.00, P50 = 7.00, 
P90 = 12.99, M = 7.10, 
min = 1.00, max = 23.00, 
SD = 4.08

Tertiary, UFM, 
sandy

95 492–533 -Quaternary
-T1B

T1B T1: first Tertiary aquifer system from the 
Earth’s surface. B: second highest aquifer 
tier located in T1 aquifer system

P10 = 3.00, P50 = 8.02, 
P90 = 14.99, M = 8.67, 
min = 1.00, max = 28.00, 
SD = 4.66

Tertiary, UFM, 
sandy

163 476–518 -Quaternary
-T1A
-T1C

T1C T1: first Tertiary aquifer system from the 
Earth’s surface. C: third highest aquifer 
tier located in T1 aquifer system

P10 = 2.02, P50 = 8.00, 
P90 = 15.02, M = 8.56, 
min = 1.00, max = 23.00, 
SD = 4.84

Tertiary, UFM, 
sandy

115 465–496 -Quaternary
-T1B
-T1D

T1D T1: first Tertiary aquifer system from the 
Earth’s surface. D: forth highest aquifer 
tier located in T1 aquifer system

P10 = 2.01, P50 = 9.02, 
P90 = 22.00, M = 11.03, 
min = 1.00, max = 28.00, 
SD = 7.37

Tertiary, UFM 144 435–474 -Quaternary
-T1C

T2 T2: second Tertiary aquifer system from 
the Earth’s surface

P10 = 3.00, P50 = 7.03, 
P90 = 16.02, M = 8.61, 
min = 1.00, max = 26.00, 
SD = 5.37

Tertiary, UFM, 
sandy, locally 
gravelly

235 381–448 No

T3 T3: second Tertiary aquifer system from 
the Earth’s surface

P10 = 2.99, P50 = 6.98, 
P90 = 29.00, M = 11.48, 
min = 1.00, max = 46.00, 
SD = 10.52

Tertiary, UFM, 
sandy and gravelly

134 352–414 No

T4 T4: second Tertiary aquifer system from 
the Earth’s surface

P10 = 4.01, P50 = 14.00, 
P90 = 19.00, M = 12.79, 
min = 1.00, max = 22.00, 
SD = 5.45

Tertiary, UFM, 
sandy and gravelly

154 157–170 No

Fig. 13  Illustration showing the process of quantifying the summary 
statistics of the information entropy of the membership to a lithologi-
cal class for two simulation sets consisted of 10 and 30 simulations. 
The procedure is the same for the remaining sets of 20, 40, 50, 60, 70, 
80, 90, etc. simulations, respectively. The minimal number of simula-
tions required was obtained when the summary statistics converged to 
a constant value so that an increase in the number of realizations did 
not lead to a significant change in the lithological attribution in the 
whole model

◂
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