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Abstract
This paper presents an integrated approach to simulate flooding and inundation for small- 
and medium-sized coastal river basins where measured data are not available or scarce. 
By coupling the rainfall–runoff model, the one-dimensional and two-dimensional models, 
and the integration of these with global tide model, satellite precipitation products, and 
synthetic aperture radar imageries, a comprehensive flood modeling system for Tra Bong 
river basin selected as a case study was set up and operated. Particularly, in this study, the 
lumped conceptual model was transformed into the semi-distributed model to increase the 
parameter sets of donor basins for applying the physical similarity approach. The tempo-
ral downscaling technique was applied to disaggregate daily rainfall data using satellite-
based precipitation products. To select an appropriate satellite-derived rainfall product, two 
high temporal-spatial resolution products (0.1 × 0.1 degrees and 1 h) including GSMaP_
GNRT6 and CMORPH_CRT were examined at 1-day and 1-h resolutions by comparing 
with ground-measured rainfall. The CMORPH_CRT product showed better performance 
in terms of statistical errors such as Correlation Coefficient, Probability of Detection, False 
Alarm Ratio, and Critical Success Index. Land cover/land use, flood extent, and flood 
depths derived from Sentinel-1A imageries and a digital elevation model were employed 
to determine the surface roughness and validate the flood modeling. The results obtained 
from the modeling system were found to be in good agreement with collected data in terms 
of NSE (0.3–0.8), RMSE (0.19–0.94), RPE (− 213 to 0.7%), F1 (0.55), and F2 (0.37). 
Subsequently, various scenarios of flood frequency with 10-, 20-, 50-, and 100-year return 
periods under the probability analysis of extreme values were developed to create the flood 
hazard maps for the study area. The flood hazards were then investigated based on the flood 
intensity classification of depth, duration, and velocity. These hazard maps are significantly 
important for flood hazard assessments or flood risk assessments. This study demonstrated 
that applying advanced hydrodynamic models on computing flood inundation and flood 
hazard analysis in data-scarce and ungauged coastal river basins is completely feasible. 
This study provides an approach that can be used also for other ungauged river basins to 
better understand flooding and inundation through flood hazard mapping.
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1 Introduction

Fluvial floods and coastal floods caused by high river discharge, high tide, and storm 
surge, or a combination of those, are some of the most common, dangerous, and devastat-
ing natural hazards occurring in coastal river basins, impacting millions of households and 
communities worldwide. The topics of flood hazards and flood risks have been generally 
investigated in the past few decades, and many studies have found that flood disasters have 
tremendously affected the development of the society and the economy of countries (Doug-
las 2017; Feyen et al. 2009; Tran et al. 2008). Research on flood hazard mapping can be 
primarily distinguished into two kinds of approaches: (1) Using Geographical Information 
System (GIS), satellite, and remote sensing products, and historical records (flood traces, 
flood marks) to investigate flood behaviors and characteristics for mapping floodplains and 
flood hazards (Chen et al. 2015; Dewan et al. 2007; Luu et al. 2018; Ntajal et al. 2017). 
It is noted that this approach does not involve flood modeling. Thus, for areas where nec-
essary data are not available or scarce, this approach is a potential option; however, due 
to lack of flood-related information, the hazards of flood velocity, flood depths, and flood 
duration are not usually considered in detail. Moreover, the ability to predict and compute 
future flooding is one of the drawbacks of the methods. (2) Using numerical models to 
simulate flood flows, aiming to obtain flood characteristics over floodplains for mapping 
flood hazards (Mani et al. 2014; Nam et al. 2015; Nga et al. 2018; Shrestha et al. 2019a). 
This approach is commonly used due to its ability to achieve good and reliable results, 
as well as its flexibility; via this method, flood behaviors and characteristics are clearly 
investigated. This can be considered as a traditional approach; however, a large amount of 
basin-related data and required information need to be collected once advanced hydrologi-
cal and hydraulic models are applied (Prinos 2008). In our study, we attempted to apply 
an integrated approach that includes both primary approaches above for data-scarce and 
ungauged coastal river basins. Particularly, some distinct numerical models were linked 
together as a comprehensive flood modeling system to simulate flooding and inundation 
in the Tra Bong river basin. In addition, new remote sensing precipitation data and SAR 
imageries conducted for the study region were examined and validated to use directly or 
indirectly as input data for the models as well as to support the model calibration and vali-
dation processes.

Since the nineteenth century, when the first rainfall–runoff model was introduced, 
hydrological and hydraulic models have been rapidly developing and widely utilized in 
hydrology and water resources management all over the world. For a long time, they have 
become useful and effective tools to address the real hydrological cycle processes, espe-
cially in flood inundation modeling, flood risk assessment, and flood forecasting (Horritt 
and Bates 2002; Teng et  al. 2017). However, there are currently still many data-scarce 
and ungauged river basins, especially in developing countries like Vietnam, or less devel-
oped areas. For these river basins, modeling floods and inundation is even more challeng-
ing. The regionalization can be defined simply as a methodology of transferring model 
parameters from nearby gauged river basins to ungauged river basins and may be suffi-
cient for applying hydrological models. Usually, due to the unavailability of long-term flow 
data in ungauged basins, many efforts have been made to investigate the regionalization 
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techniques for streamflow time series generation using various hydrological model-based 
approaches including conceptual and semi-distributed models. The regionalization basi-
cally consists of the four common transfer methods including Arithmetic Mean, Physical 
Similarity, Spatial Proximity, and Regression (He et al. 2011; Wallner et al. 2013; Swain 
and Patra 2017; Tegegne and Kim 2018). Boughton and Chiew (2007) applied the Austral-
ian Water Balance Model (AWBM) in combination with the multiple linear regressions 
technique to estimate the average annual runoff for each of 213 catchments of Australia. 
Two-third of the results were within 25% of real values. Makungo et al. (2010) used the 
MIKE11 NAM model to generate natural streamflow using the modified nearest neigh-
bor regionalization approach applied to an ungauged basin in South Africa. The proposed 
approach showed reasonably good results at daily and sub-quaternary catchment scales. 
Tegegne and Kim (2018) used a semi-distributed SWAT (Soil and Water Assessment Tool) 
model with the method of catchment runoff–response similarity to simulate runoff for two 
ungauged basins in South Korea and Ethiopia. The evaluation results showed at various 
test-gauging stations from 67% up to 91% were reached over the calibration and valida-
tion period. In this paper, we proposed a new approach in applying the MIKE11 NAM 
model for ungauged river basins, in the view of reducing the uncertainty of regionalization 
approach, to solve the problem of selecting similar or donor basins, and to suit the climate 
conditions, natural characteristics, and stream gauging station network density of the study 
basin. Accordingly, the model was transformed from the lumped conceptual model to the 
semi-distributed model by using sub-basins and Muskingum routing method. Moreover, 
much fewer works dealt with using coupled hydrological and hydrodynamic models for 
simulation of flood propagation processes and inundation in ungauged basins. Particularly, 
in Vietnam, to the best of our knowledge, we are not aware of any previous studies which 
covered similar topics and study characteristics in the same study area or regions.

Along with the development of mathematical models, the growing availability of dis-
tributed remote sensing data with high-resolution and free-of-charge sources, as well as 
increased computational resources, has reinforced the capability and opportunities for flood 
inundation modeling. Thus, remote sensing-based analysis of flooding can be implemented 
rapidly in near real-time and in large-scale applications (Cohen et al. 2019). More recently, 
many studies have been conducted to utilize satellite-derived data such as satellite precipi-
tation and satellite imagery to enhance model performances of flood inundation. Baldas-
sarre et  al. (2009) presented a methodology to calibrate a flood model (LISFLOOD-FP) 
using ten different flood extent maps derived from coarse resolution (ENVISAT ASAR) 
and high-resolution (ERS-2 SAR) satellite images. The methodology was applied for a 
river in the UK and proved to be more reliable than the standard techniques. Nguyen et al. 
(2016) proposed a method for estimating inundation depths using flood extent informa-
tion and then compared their results to hydrodynamic simulations. Promising results were 
found with an estimation precision of 0.02–0.17 m for two case studies in Vietnam. Chang 
et  al. (2019) proposed a model-aided altimetry-based flood forecasting system for the 
Mekong River based on an integration of satellite altimetry for water level measurements 
and the Variable Infiltration Capacity hydrologic (VIC) model. The forecasting capacity of 
the system in the region outside of the Mekong delta was limited; however, the forecast-
ing system was promising inside the Mekong delta. Corresponding to remote sensing pre-
cipitation, Ryo et al. (2014) introduced a method for temporal downscaling of daily gauged 
precipitation using the Global Satellite Mapping of Precipitation (GSMap) products and 
further used the downscaled precipitation as the input for a distributed hydrological model. 
The study illustrated that satellite-based precipitation measurements have potential appli-
cations in moderate-sized watersheds. Adjei et al. (2015) conducted a study in which the 



444 Natural Hazards (2021) 109:441–469

1 3

Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis data 
were used as an input in the SWAT model for runoff simulation. A good correlation and 
residual variation between model results and gauging stations were observed in the study. 
It can be observed that the development and availability of remote sensing data in terms of 
high resolution and accuracy have led to a significant shift in applying hydrological numer-
ical models in general, and for data-poor environments in particular (Bates 2004). In this 
paper, we examined and evaluated new products of satellite imagery and precipitation con-
ducted for regions in Southeast Asia. The accuracy of two satellite precipitation products 
was evaluated and compared with sub-daily and daily rain gauge-measured precipitation. 
An appropriate remote sensing precipitation product was then selected to support the 
hydrological model setup. Land cover/land use, flood extent, and flood depths derived from 
SAR imageries were employed to set up and validate the hydrodynamic model. Addition-
ally, flood depths were computed to augment the model calibration process by integrating 
inundation maps with an associated digital elevation model.

Flood hazard maps usually indicate where the flood characteristics may be dangerous 
to communities for a defined return period (LAWA 2006). However, in flood hazard map-
ping, as well as flood risk and damage assessments, many previous studies have primar-
ily focused on floodplain maps complemented with types of flooding such as the flood 
extent, flood depth, flood velocity, or relevant flow direction. In many cases, e.g. polder 
areas, lowland areas, or cultivated areas, the duration of inundation can be considered as an 
important factor for assessing damages and risks (Dang et al. 2011; De Moel et al. 2009). 
Currently, advanced hydrodynamic models and advances in the computational ability of 
computers have enabled the calculation of various parameters of flood inundation for a 
long period of time and large regions. As a result, comprehensive flood hazard assessments 
that take into account a combination of flood inundation, flood depth, flood velocity, and 
flood duration are getting more important and necessary in the field of flood risk man-
agement for not only gauged basins but also ungauged basins. The hazard maps can be 
used as a reference that can support flood risk assessments and management as well as 
help local governments to better understand and manage flood disasters. For these reasons, 
the objectives of this paper are: (1) to propose an integrated workflow for modeling flood 
inundation in data-scarce and ungauged coastal river basins and a new approach for the 
lumped conceptual rainfall–runoff model in applying the regionalization techniques, (2) to 
investigate the applicability of new remote sensing data of precipitation and imageries with 
high spatial–temporal resolutions in the study area, and (3) to obtain the flood hazard maps 
based on flood inundation, flood depth, flood velocity, and flood duration corresponding to 
various flood probabilities for the case study.

2  Study area and data

Vietnam is one of the ten countries most affected by extreme weather events ranked by 
GermanWatch Global Climate Risk Index (Kreft et al. 2015). The location selected as a 
case study area is the Tra Bong river basin, which is located in Binh Son district, Quang 
Ngai province, Central Vietnam (Fig.  1). This province has two river basin systems 
including Tra Khuc-Ve and Tra Bong, in which the Tra Bong River is located in the 
North and the Tra Khuc-Ve is located in the South. The population is distributed along 
the rivers in both rural and urban areas. The eastern part borders the Vietnam’s East Sea 
with a coastline of 54 km. A lot of large or extreme floods have been recorded and have 
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tremendously impacted the economy, environment, and society in this area recently, 
including some typical flood events in 1999, 2003, 2007, 2008, 2009, 2013, and 2016 
(Nhung 2016). The Tra Bong basin has a total basin area of 700  km2, of which more 
than 80% is mountainous or hilly (500–1500 m above mean sea level). The basin topog-
raphy is characterized as highland and lowland without a transition region in between. 
The basin has an average altitude of 196 m above mean sea level and an average slope 
of approximately 10.9%. The network density is about 0.43  km/km2. The main river 
length is 59 km (AusAID 2003). The basin consists of a main river and many tributaries 
around it. The river flows through Tra Bong and Son Tinh provinces, passing Chau O 
Town before splitting into three tributaries in the downstream area. The three tributaries 
meet again at a confluence before reaching the sea at the estuary (5 km upstream from 
the coast).

The basin is located in a tropical monsoon climate and is affected by the topography of 
the Truong Son mountain range as well as the climatic phenomena from the sea. A large 
percentage of the rainfall amount is contributed by typhoons; therefore, most of the floods 
are a result of typhoons from the sea (Huong 2010). Every year the total rainfall often 
fluctuates from 2200 to 2500 mm in the delta areas. In the highland regions, the value var-
ies from 3000 to 3500 mm and is less than 2000 mm in the southern areas. Hydrological 
and meteorological data are very limited in the entire province in general, and in the study 
basin in particular. The river flow discharge is not measured in the basin despite flooding 
being one of the most concerning problems. Rainfall is only measured at Tra Bong rain 
gauge at daily intervals and the river water levels are rarely observed at Chau O (Fig. 1). 
Moreover, the observed tidal data are not available at the river mouth. For these reasons, 
the Tra Bong river basin is primarily considered as an ungauged and data-poor coastal river 
basin.

Fig. 1  Location of the study area, the Tra Bong’s sub-basins, and An Chi’s sub-basins



446 Natural Hazards (2021) 109:441–469

1 3

3  Methodology and model evaluation

3.1  Methodology

A workflow chart of the proposed methodology applied for this study, aiming to develop 
flood hazard maps for basins that experience a lack of data or high-quality data, is shown 
in Fig. 2. The methodology consists of three main sections including data collection and 
preparation, rainfall–runoff modeling, and hydrodynamic modeling. These sections are 
described in detail as following:

(1) Data collection and preparation: A lot of data and basin-related information are required 
in this step. Due to the lack of information and data scarcity in the target basin, data of a 
donor basin are collected instead. However, the donor basin also needs to have the nec-

Fig. 2  Methodological workflow chart adopted in the case study



447Natural Hazards (2021) 109:441–469 

1 3

essary data available. To estimate flood flows from heavy rainfall, it is clear that daily 
and sub-daily rainfall, evaporation, and discharge need to be collected. The observed 
tidal and modeled tidal time series are also collected to calculate storm surges. The 
land cover and terrain data such as river cross sections, geographic maps, and digital 
elevation models (DEMs) are important for modeling hydraulic flows. The satellite data 
including remote sensing precipitation and SAR imagery with high temporal-spatial 
resolution are one of the most essential data for this work.

(2) Rainfall–runoff modeling: The parameter sensitivity analysis is implemented using the 
Global Sensitivity Analysis method to identify the sensitive parameters for the model 
calibration. Then, for the model setup, we propose an approach in which the lumped 
model is transformed into the semi-distributed model aiming to increase the parameter 
sets of a donor basin for applying the physical similarity approach, which is one of 
the regionalization methods. For that reason, by delineating the entire basin into small 
sub-basins, each sub-basin is assigned with a distinguished parameter set, and outflows 
from sub-basins are combined using Muskingum routing. The satellite precipitation 
is then utilized to downscale from daily to sub-daily for gauging stations where only 
daily data are measured. Afterward, the rainfall–runoff model parameters are optimized 
by observed flood events with various peaks and periods based on the optimization 
methods (e.g. Shuffled Complex Evolution Algorithm). The physical characteristics of 
each donor sub-basin are obtained using GIS methods, and its optimal parameter set 
is transferred to the target sub-basin if their physical characteristics are more or less 
identical. Eventually, the generalized extreme value (GEV) distribution is chosen to 
estimate the return level and magnitudes of maximum daily rainfall to compute flood 
flows as the upstream boundary conditions in the hydrodynamic models.

(3) Hydrodynamic modeling: Runoff estimation of target sub-basins is obtained from the 
rainfall–runoff model. Flood flow results from this model are used in the 1D flow 
simulations as upstream and lateral flows. The tidal water levels, which are the down-
stream boundary conditions of the hydraulic model, are extracted from a GTM and 
then adjusted with correction factors for two distinct periods: during typhoons and 
not during typhoons. The 2D model is set up to define a calculated flexible mesh of 
triangular elements for the floodplain flow simulations. Then, a coupling of the rain-
fall–runoff model, 1D hydraulic model, and 2D hydraulic model for the river system is 
developed. The surface roughness coefficients of the floodplain areas are determined 
from SAR imageries. Historical flood extents and flood depths are also computed using 
SAR imageries and a DEM for the model calibration and validation. The development 
of flood hazard maps is based on the results of the maximum flood extent, flood depth, 
flood velocity, and flood duration corresponding to different flood scenarios derived 
from a combination of extreme rainfall and storm surges for various return periods.

3.1.1  Rainfall temporal downscaling and satellite rainfall adjustment

The accuracy of precipitation measurement is of utmost importance for modeling run-
off from rainfall and forecasting extreme flood events as well as other natural haz-
ards and disasters. However, sub-daily or short time step climate data such as rainfall 
and evaporation are not often available for many gauging stations in developing coun-
tries, or less developed areas (Ozawa et  al. 2011; Ryo et  al. 2014; Ostad-Ali-Askari 
et al. 2020). Particularly, in flood modeling, short-duration records as inputs for rain-
fall–runoff modeling play a crucial role in simulating flood flows. Using daily time 



448 Natural Hazards (2021) 109:441–469

1 3

steps of input data for hydrological models might lead to poor performances in repre-
senting flood peak values and timing (Ficchì et al. 2016; Shrestha et al. 2019b). Many 
global satellite precipitation products have been improving in archiving more accurate 
data, with higher precision and finer spatial and temporal resolutions (Maggioni et al. 
2016). Some of the satellite sources are now free of charge for the hydrology com-
munity. Several typical and well-known satellite-based precipitation sources include 
the products of the TRMM Multi-Satellite Precipitation Analysis, the Global Satellite 
Mapping of precipitation, and the National Oceanic and Atmospheric Administration 
Climate Prediction Center morphing (CMORPH) technique. Before applying the tem-
poral downscaling technique, the satellite-derived precipitation products are used to 
examine the accuracy in comparison with rain gauge measurements to select a suitable 
product for the study area. After that, the daily rain gauge data are disaggregated to 
sub-daily by dividing the measured daily rainfall obtained at gauging stations to the 
accumulated sub-daily rainfall derived from satellite data, and then multiplying with 
satellite sub-daily rainfall as expressed in the simple formula as follows:

where PDownscale(i) is downscaled rainfall at time (i); PObs-daily is the observed daily rain-
fall; ΣPSat-subdaily(i) is the accumulated sub-daily rainfall derived from satellites for 24  h; 
PSat-subdaily(i) is the sub-daily rainfall at time (i).

For areas where observed rainfall is not available, rainfall can be potentially 
extracted from satellite-based precipitation products. Even though satellite precipita-
tion estimates have a great potential application, they still contain error characteris-
tics compared to gauging stations, and they must be analyzed and corrected before 
utilization (Haile et  al. 2015; Thanh et  al. 2013; Ozawa et  al. 2011). To get better 
performances for hydrological models, we present a correction ratio for the adjustment 
of satellite rainfall at a local scale. The authors do not try to enhance the accuracy 
of outputs of satellite products, but simply aim to reduce the gap between observed 
and predicted data as much as possible. Accordingly, satellite rainfall at an ungauged 
location can be corrected by using the difference determined among gauged sites and 
satellite products of surrounding sites. Related equations are suggested based on the 
Inverse Distance Weight method, which is widely applied in hydrology and described 
as follows:

where Cr is the correction ratio; di is the distance from a given observed gauge i to a given 
corrected gauge; Ki is the correction ratio of gauge i between the observed and the satellite 
daily precipitation Ki = PObs(i)/PSat(i), p is the exponential number.

Hence, for areas where measured rainfall is not available, the corrected rainfall is 
simply expressed as below:

where PCor-sat(i), PSat(i) are the corrected satellite rainfall and satellite rainfall at time i.

(1)PDownscale(i) = PSat-subdaily(i)
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3.1.2  Rainfall–runoff model description

A hydrological model is illustrated in this paper, namely NAM (Danish: Nedbør-
Afstrømnings-Model), which was originally developed at the Technical University of 
Denmark (DHI 2017a). The model is a lumped conceptual rainfall–runoff model inte-
grated into the MIKE11 river modeling system, which is developed by the Danish 
Hydraulic Institute (DHI), Denmark, as an individual module. This model is used for 
simulating the overland, interflow, and base-flow components of a basin based on a 
structure of four different storages corresponding to a function of the moisture contents 
that represent some physical elements of a basin such as snow storage, surface stor-
age, lower zone storage, and groundwater storage (DHI 2017a). Table 1 provides a brief 
description of the nine major model parameters. More details of these parameters and 
others can be seen in the documentation of MIKE11, “A modeling system for rivers and 
channels” (DHI 2017a).

The lumped conceptual rainfall–runoff models are suitable for ungauged or data-poor 
basins because they require fewer data and information as model inputs, and they are 
easy to use with  the regionalization techniques (Bardossy 2007; Makungo et al. 2010; 
Merz and Blöschl 2004; Ostad-Ali-Askari et al. 2016, 2019). One of the disadvantages 
of lumped conceptual models is that the models use assumptions of homogeneity of 
input data, especially areal basin precipitation. This can lead to some errors of model 
outputs if rain gauges are not evenly distributed over large areas. To apply the region-
alization method, it is necessary to examine as many surrounding gauged basins as pos-
sible, in order to gather many parameter sets and reduce errors due to the differences 
of basin characteristics (Lebecherel et al. 2016; Tegegne and Kim 2018). However, to 
match the above conditions of the regionalization techniques is sometimes impossi-
ble since gauged basins are limited, and the differences in basin areas between the two 
kinds of basins can be significant in less developed areas.

To mitigate the above issues in this study, we proposed a new approach of trans-
ferring parameters, based on a transition of lumped modeling to semi-distributed mod-
eling. The detailed procedures of the proposed method are summarized in the following 
steps (Fig. 2):

Step 1 The gauged and ungauged basins are delineated into smaller sub-basins 
using GIS software. The physical sizes of these sub-basins must be approximated to 

Table 1  Description of the MIKE11 NAM model parameters (DHI 2017a)

Parameter Description Limit values

Umax Maximum water content in surface storage 10–20 mm
Lmax Maximum water content in root zone storage 50–300 mm
CQOF Overland flow runoff coefficient 0.0–1.0
CKIF Time constant for interflow 500–1000 h
CK1,2 Time constants for routing overland flow 3–48 h
TOF Root zone threshold value for overland flow 0.0–0.99
TIF Root zone threshold value for inter low 0.0–0.99
TG Root zone threshold value for groundwater recharge 0.0–0.99
CKBF Time constant for routing base-flow 1000–4000 h
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avoid errors caused by differences in basin areas. The natural characteristics of each 
sub-basin, such as area, slope, river length, vegetation cover, and average elevation, 
are calculated in this step.
Step 2 The hydrological models for the gauged and ungauged basins are set up with 
the initial conditions, model parameters, and meteorological data. Particularly, the 
gauged basins are set up by adding the well-known routing method, Muskingum, to 
combine all the sub-basin flows. This routing method is also easy to implement in 
the ungauged basins and does not require the information of river bed topography.
Step 3 Model parameters are calibrated and validated for each sub-basin of the 
gauged basins using an optimal parameter search algorithm. In this study, we 
applied the Shuffled Complex Evolution method (Duan et al. 1993).
Step 4 Once the hydrologically identical sub-basins, based on the similarity of 
basin natural characteristics, are defined, the final parameter sets for gauged sub-
basins can be easily transferred to the ungauged sub-basins.

3.1.3  Hydrodynamic model description

As mentioned above, hydrodynamic models including 1D models and 2D models have 
been commonly applied in many studies corresponding to flooding simulations and 
flood risk management. Most recently, a new hybrid approach for simulating flood 
flow couples a 1D model for representing flow in river channels with a 2D model for 
representing the flow in floodplain areas. Since 1D models do not simulate accurate 
results for a complex 2D topography and do not provide comprehensive information 
on floodplains, 2D models that can accurately handle this issue are used. Even with the 
computers commonly available today, one setback of 2D models is that they might not 
be efficient in terms of computational time (Barthélémy et al. 2018; Rai et al. 2018). 
In other words, using a coupled approach enables us to take advantage of both models. 
The hydrodynamic models MIKE11 HD and MIKE21 FM were used in this study for 
flood simulations in the river and its floodplains, and they were then coupled together 
by MIKE Flood, which is a dynamic coupling tool.

MIKE Flood is a comprehensive tool for combining the 1D and 2D dynamic models 
into a single modeling system. The model uses an integrated coupling technique that 
enables the overflow water from 1D to 2D domains by using some defined linkage 
types. There are five different types of links available in MIKE Flood, including stand-
ard, lateral, structure, side structures, and zero flow links (DHI 2019a). The lateral 
link, which allows a string of MIKE 21 FM elements to be laterally linked to a given 
reach in MIKE11 HD, is highly recommended to use for this work due to its flexibility. 
The overland flow is directly connected to the floodplain from the 1D river model to 
the 2D floodplain model. Therefore, the river bed topography is not crucial in this case, 
and the computational time is significantly reduced. Consequently, the model setup is 
based on the requirements of the mesh generation, and the domain is designed with the 
mesh in the floodplain and without mesh in the river bed. This approach is suitable for 
river basins where topographical data of the river bed are limited. For more details of 
this technique, please refer to Sect. 4.3 of the modeling work.
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3.1.4  Global tide model and storm surges

River flow in coastal river basins is usually influenced by high tide as well as storm surges 
caused by typhoons or cyclones. For modeling hydraulic flows of these basins, tidal time 
series play an important role as the downstream boundary conditions. Similar to other data, 
the tide is not commonly gauged in developing countries or might not be publicly avail-
able. However, the level of accuracy of GTMs has been improved over the years (Stammer 
et al. 2014). For that reason, the tidal time series can be extracted from a GTM for model 
simulations. Here we used the DTU10 model, which is developed by Denmark’s National 
Space Institute. DTU10 has a high spatial resolution of 0.125 × 0.125 degrees for the main 
10 tidal constituents. The model uses multi-measurements from satellite altimetry as the 
inputs for sea level residuals analysis such as TOPEX/POSEIDON, Jason-1, and Jason-2 
(Cheng and Andersen 2011; DHI 2017b). Similar to other satellite products and modeled 
results, the model-derived tidal data are validated and adjusted by using gauged stations 
nearby or close to the study areas aiming to strengthen the accuracy of simulations.

Storm surges caused by extreme events of typhoons or cyclones also increase inunda-
tion in coastal river deltas. Storm surge heights are not normally recorded during storm 
periods. Here we try to compute the heights of storm surges by simply comparing tidal 
time series at a gauged site, which is affected by the same storms and closest to the study 
area, with the predicted tidal time series. The main hypothesis here is that the storm surges 
between two selected locations are correlated in terms of heights and periods. The differen-
tial heights are directly added to the tidal water levels extracted for the study site and used 
as the downstream boundary in the 1D hydraulic modeling.

3.1.5  Satellite‑derived land cover and flood inundation maps

Synthetic Aperture Radars (active sensors) have more advantages over the visible and 
infrared instruments (passive sensors) in penetrating clouds, darkness, and tree canopies at 
longer wavelengths (Smith 1997). In other words, SARs are not particularly influenced by 
weather conditions or day and night capacity, and they are very sensitive to water. The per-
centage of cloud cover over satellite imageries is critical for determining flood inundation 
or monitoring flood events. Clouds and extended rainfall events occur regularly during the 
flood season in the study area. Deriving flood-related information from SAR imageries for 
flood modeling has been done by many studies, illustrating a great potential for application 
in terms of hydrodynamic modeling (Horritt et al. 2007; Schumann et al. 2007; Baldassarre 
et  al. 2009; Sadeh et  al. 2018). Moreover, the dominant land cover type in the selected 
floodplains is cultivated crops; therefore, the determination of the land cover before or after 
crop harvesting in relation to flood events is necessary here. To avoid the aforementioned 
issues, Sentinel-1 SAR is recommended to be used for the derivation of useful data such as 
the land cover, flood depths, and flood extents for flood modeling.

The Sentinel-1 sensor is currently operated by the European Space Agency (ESA) and 
it has the mission of conducting C-band imagery operations in four modes with different 
geometric resolutions (5–40  m) and coverage (20–400  km) (https:// senti nels. coper nicus. 
eu). Sentinel-1 includes two satellites, Sentinel-1A, launched in 2014, and Sentinel-1B, 
launched in 2016, providing free continuous imagery for a 6-day and 12-day revisit time. 
In this study, Sentinel-1A products, including high-resolution images (10  m) of Level-1 
Ground Range Detected (GRD), were downloaded from the Sentinel Data Hub and 

https://sentinels.copernicus.eu
https://sentinels.copernicus.eu
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employed to derive land cover/land use for assigning Manning’s values, flood water extent, 
and water depths by integrating with a DEM. The Science Toolbox Exploitation Platform 
(SNAP) Toolkit developed by ESA was applied to derive the high-resolution flood inunda-
tion extent from Sentinel-1 SAR (Mcvittie 2019). The Floodwater Depth Estimation Tool 
(FwDET) developed as part of the National Aeronautics and Space Administration (NASA) 
Applied Sciences Mid-Atlantic Communities and Areas at Intensive Risk demonstration 
project was employed to achieve flood inundation depths (Cohen et al. 2018, 2019).

3.2  Model evaluation statistics

The objective functions applied to the performances of the rainfall–runoff modeling and 
the 1D hydraulic modeling in both calibration and validation processes are the well-known 
evaluation statistics including Nash–Sutcliffe Efficient (NSE), Root Mean Square Error 
(RMSE), Relative Peak Error (RPE), and Relative Volume Bias (VB). These metrics are 
defined as follows:

where  Obsi and  Simi are the observed and simulated variables at time i, respectively, 
Obs and Sim are the average observed and simulated variables, respectively,  MaxObs and 
 MaxSim are the maximum values of observed and simulated variables, n is the number of 
time steps.

Evaluation of flood extent and flood depths derived from the satellite imagery and the 
two-dimensional model is based on the measure of fit (F1, F2) suggested by Horritt et al. 
(2007) and the Root Mean Square Error (Eq. 5).

where ASat and ASim are total flooded areas derived from satellite imagery and 2D model, 
respectively. F1 (Eq. 8) varies from 0 for no match between model and satellite to + 1 for 

(4)NSE = 1 −

∑n

i=1

�

Obsi − Simi

�2

∑n

i=1

�

Obsi − Obs
�2

(5)RMSE =

�

∑n

i=1

�

Obsi − Simi

�2

n

(6)RPE =
MaxObs −MaxSim

MaxObs
× 100%

(7)VB =

∑n

i=1

�

Obsi − Simi

�

∑n

i=1
Obsi

× 100%

(8)F1 =
ASat ∩ ASim

ASat ∪ ASim

(9)F2 =
(ASat ∩ ASim) −

[

ASim −
(

ASat ∩ ASim

)]

ASat ∪ ASim



453Natural Hazards (2021) 109:441–469 

1 3

the best match between model and satellite. F2 (Eq. 9) varies from − 1 for over-simulation 
to + 1 for best simulation by a 2D model.

4  Results and discussion

4.1  Comparison of satellite precipitation datasets

Recently, many satellite precipitation datasets with various temporal-spatial resolutions 
have been validated by many studies all over the world at global, regional, and local scales. 
To the best of our knowledge, not many studies have been done to validate high-resolution 
satellite precipitation products and using them for hydrologic modeling analysis for regions 
in Southeast Asia. Therefore, to select an appropriate satellite-derived rainfall product for 
this study, the authors investigated two high temporal-spatial resolution products (0.1 × 0.1 
degrees and 1 h) including GSMaP_GNRT6 developed by the Japan Aerospace Explora-
tion Agency (JAXA), Japan and CMORPH_CRT developed by the National Oceanic and 
Atmospheric Administration-Climate Prediction Center, USA. They are provided through-
out the Space-based Weather and Climate Extremes Monitoring Demonstration Projects in 
East Asia and regions of the Western Pacific. This project is powered by the World Mete-
orology Organization, the National Meteorological and Hydrological Services, and the 
Global Satellite-derived Products Providers.

To examine the accuracy of these products, they were validated through comparisons 
with ground-measured rainfall, in which some common statistical errors were used, includ-
ing the Correlation Coefficient (R), the RMSE, and the Percentage Bias (PBIAS). On 
top of that, other statistical errors related to the contingency table-based detection of rain 
events, including the Probability of Detection (POD), the False Alarm Ratio (FAR), and 
the Critical Success Index (CSI), were employed. The best performances of these metrics 
were 1, 0, and 1, respectively. More information on the formulas of these statistics can be 
found in Ryo et al. (2014).

The rainfall observation datasets of four rain gauges, including Quang Ngai, Tra 
Bong, Son Giang, and Ba To (Fig.  1), were selected to validate the two products in 
this study at 1-day and 1-h temporal resolutions. This selection was made due to the 
availability of long-term data, in which only Quang Ngai and Ba To observe hourly 
rainfall. The observed rainfall of the rain season (September to December) of the annual 
series from 2000 to 2017 was chosen as the reference dataset. The remote sensing rain-
fall data were extracted at the pixels where the rain gauges are located (Fig. 3). Table 2 
shows that on a daily scale, whereby only rain events with the threshold of 50  mm/
day were qualified, GSMaP_GNRT6 and CMORPH_CRT show underestimation due 
to the PBIAS being negative. The RMSEs are relatively high with 126 mm/day of the 
maximum values, the Correlation Coefficient of CMORPH_CRT is much higher than 
GSMAP_GNRT6, and the PODs of both are impressively very high meaning that all the 
selected rain events were captured well. Similarly, as for a 1-h scale, in terms of PODs, 
FARs, and CSIs, the GSMaP_GNRT6 and CMORPH_CRT show good performances, 
the Correlation Coefficient of CMORPH_CRT, in this case, is higher than the one of 
GSMAP_GNRT6; however, the Correlation Coefficients are relatively low in both prod-
ucts. Our results confirmed the conclusion of the study reported by Ryo et  al (2014), 
satellite precipitation algorithms generally underestimated rainfall intensity. In general, 
both products show nearly identical performances; however, a comparison between two 
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products shows that CMORPH_CRT has a slightly better performance at each gauge. 
Therefore, the CMORPH_CRT is recommended for this area and further used for the 
analyses in this work.

The temporal resolution of the rainfall data as an input for hydrological modeling 
significantly influences the model outputs, especially with small and medium-sized river 
basins. As mentioned above, daily rainfall is then disaggregated into 1-hourly rainfall 
by using Eq. 1. The empirical cumulative distribution functions (CDFs) are estimated 
to evaluate the fit among gauged, satellite, and downscaled hourly rainfall distribution. 
The empirical CDFs plots with large and extreme observed rain events for two typical 
rain gauges in 2009 and 2017 are shown in Fig. 4. It can be understood that the empiri-
cal CDFs for the satellite precipitation tend to get closer to the observed precipitation 
for the two gauges meaning that the gap in the temporal resolution of data-poor river 
basins is partly narrowed down.

Fig. 3  Gridded rainfall of GSMaP_GNRT6 (a) and CMORPH_CRT (b)

Table 2  Summary of statistical errors at the two typical locations at 1-h and 1-day scales

Rain gauges GSMaP-GNRT6 CMORPH-CRT 

1 h (threshold > 0.1 mm/h)

R RMSE PBIAS POD FAR CSI R RMSE PBIAS POD FAR CSI

Quang Ngai 0.20 8.7 − 51.8 0.75 0.07 0.7 0.22 8.20 − 27.18 0.80 0.08 0.8
Ba To 0.14 10 − 68.1 0.53 0.06 0.5 0.24 9.60 − 61.10 0.63 0.06 0.6

Rain gauges 1 day (threshold > 50 mm/day)

R RMSE PBIAS POD FAR CSI R RMSE PBIAS POD FAR CSI

Quang Ngai 0.27 95 − 50.60 0.97 – – 0.5 71 − 27.91 1.0 – –
Ba To 0.39 126 − 69.05 0.94 – – 0.6 120 − 80.95 0.98 – –
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4.2  Manning values, flood depth, and flood extent for model calibration 
and validation

In 2D hydrodynamic modeling, surface roughness is one of the major meaningful vari-
ables and plays a crucial role in simulating flow in river channels or floodplains. Surface 
roughness can be commonly expressed by using Manning’s roughness coefficient derived 
from land cover/land use maps. In addition, the land cover/land use maps can be derived 
from high-resolution SAR sensor data (Engdahl and Hyyppä 2003; Abdikan et al. 2016; 
Khalil and Saad-ul-Haque 2018). In this work, Sentinel-1A imageries were employed to 
conduct the land cover map of the floodplain using amplitude information of dual pola-
rimetric SAR imageries (vertical transmit and vertical receive (VV)/vertical transmit and 
horizontal receive (VH)) with the single date Level-1 GRD product. Data pre-processing 
was performed with the SNAP toolbox for the Sentinel 1A image including an imagery 
subset, radiometric calibration, speckle filter, radiometric terrain correction, and linear 
to backscattering coefficient decibel scaling (dB) transformation for both VV and VH 
polarizations.

Combining the single VV, VH polarization, and their differences has been proven nec-
essary for image classification (Makinde and Oyelade 2018). A composite of Sigma0_VV, 

Fig. 4  Empirical cumulative distribution of hourly gauged, satellite, and downscaled extreme rain events at 
Quang Ngai (upper row) and Ba To (lower row) stations



456 Natural Hazards (2021) 109:441–469

1 3

Sigma0_VH, and Sigma0 (VV-VH) was used to classify the land cover in this study. The 
Regions of Interest (ROIs) and the Random Forest Model were applied as the training 
samples and the supervised classification method, respectively. Additionally, knowing the 
cropping calendar at the time when the image was captured is very important. The land 
cover types include water bodies, built-up land, forest (woodland, orchard), cultivated areas 
(rice crops, pasture, shrub), and bare land. Figure 5a shows the land cover map of the study 
floodplain illustrating that forest and cultivated areas account for the largest areas, followed 
by urban and bare land. The range of roughness values for these land cover types was 
determined based on the studies of McCuen (1998) and George et al. (1989).

The flood inundation extent can also be extracted from Sentinel-1A Level 1 GRD with 
VV polarization data, which is very sensitive to water. At the end of October 2019, the 
study area experienced a flood event. During the flooding, a high-resolution satellite image 
(Sentinel-1A) was acquired at 10:56:35 AM on October 31, 2019 in UTC time. The satel-
lite image was then pre-processed with the same steps mentioned in the land cover pro-
cessing. Then the flooded areas were firstly visualized by comparing two images: one was 
captured before the flood event, and the other one was captured during or right after the 
flood event. Then a binary mask, where the backscatter was below a cutoff threshold of 
0.05 (Sigma0_VV < 0.05), was created representing the flooded areas (Fig.  5b). Besides 
the flood extent, the flood depth is also one of the crucial variables for the 2D model cali-
bration and validation processes. In this study, the FwDET Toolbox integrated into a GIS 
software was employed to calculate flood depth based on the flood inundation extent map 
and the DEM ALOS World 3D. The latter product is the global digital surface model with 
a horizontal resolution of approximately 30 m provided by JAXA. Figure 5c presents the 
flood depth map of the 2019 flood event showing the water depths that change from 0.1 to 
above 5.5 m.

Fig. 5  Land cover (a), flood extent (b), and flood depth (c) of the floodplain
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4.3  Model setup, calibration and validation

4.3.1  Rainfall–runoff modeling

The rainfall–runoff model was firstly set up for a donor river basin. Due to the lack of 
gauged basins surrounding the study area, spatial proximity, which is a method of region-
alization techniques and based on the spatial distance between basins (He et al. 2011), was 
used to identify the donor basins. Accordingly, the An Chi basin (690  km2), which satis-
fies all the assumptions corresponding to the method, was selected as the donor basin. The 
selected gauged basin was then divided into five smaller sub-basins (Fig. 1) ranging from 
approximately 50 up to 300  km2. Initial parameters and conditions were entered for each 
sub-basin and all sub-basins were connected by using three Muskingum reaches. The pre-
cipitation and potential evapotranspiration of three gauging stations (An Chi, Ba To, Gia 
Vuc) were used as the meteorological input data for the model, in which the weighted aver-
age areal rainfall was automatically computed.

The parameter sensitivity analysis was analyzed for the donor basin and computed using 
the method of regional sensitivity analysis. This method is also known as Global Sensitiv-
ity Analysis or Generalized Sensitivity Analysis (Song et  al. 2015) and has been widely 
used in the field of hydrology. The Monte Carlo sampling technique was employed to gen-
erate 2000 model parameter sets, equivalent to 2000 model runs with hourly time steps, in 
the ranges of parameter space using a uniform distribution. For model performances, three 
objective functions were used to screen the sensitivity of the hydrological model including 
the Average Error, the Root Mean Square Error, and the Error of Maximum Values. Sensi-
tive parameters were identified according to the graphical method by examining the dif-
ferences in the marginal cumulative distributions (Tang et al. 2007). The results indicated 
that CQOF, Lmax, CK12, TOF, and TIF, within the nine main parameters recommended 
by DHI (2017a) (Table. 1), are the most sensitive parameters of the rainfall–runoff model 
for the basin. These findings are slightly different from those in Makungo et  al. (2010) 
because TOF and TIF were not determined as sensitive parameters in their study. Those 
model parameters were most heavily focused on during the model calibration process in 
this work.

The calibration and validation runs of this model were carried out using time periods of 
3 and 2 years, respectively, including the largest and extreme flood events that occurred in 
the years of 1999, 2003, 2009, 2013, and 2017. The rainfall–runoff model was automati-
cally calibrated by applying the Shuffled Complex Evolution algorithm, which is in-built 
within the model, based on the optimization of several objective functions. Seven of nine 
main parameters (Fig. 6) mentioned above were used for the optimal search algorithm, in 
which the TG and CKBF regarding the groundwater recharge and routing were eliminated 
due to their minor effect and sensitivity on the peak flow, as well as to reduce the compu-
tational time.

The goodness-of-fit metrics of NSE, RMSE, RPE, and VB (Eqs. 4–7) were used as the 
calibration and validation objective functions, and the observed data from the An Chi sta-
tion were used for these processes. The results of calibration and validation (Fig. 7) show 
that the hydrograph shapes, as well as the peak flows fit to timing, rate, and volume. The 
computed NSE values for both processes ranged from 0.61 to 0.92, and the RMSE values 
ranged from 245 to 413  (m3/s). The RPE and VB values ranged from − 1.76 to 3%, and 
from − 0.5 to 10%, respectively. The final rainfall–runoff model parameters were obtained 
during the calibration as shown in Fig. 6. The CQOF values, which are the most sensitive 
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Fig. 6  Optimal model parameters of the donor sub-basins. The box and whisker plots show the 25th and 
75th percentiles, and range of the data. The lines in the center of the boxes denote the median, and the dots 
denote outliers

Fig. 7  Hydrographs of measured and simulated streamflow (unit: cubic meter per second) of flood events 
that occurred in 2013 and 2017 at the donor basin for the validation process
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parameters, varying from 0.5 to 0.96, were obtained for the sub-basins in the donor river 
basin with a median of 0.85. Similarly, CK12 and Lmax varied from 8 to 45 and from 52 to 
258 with medians of 25 and 180, respectively. These optimal parameters were then used to 
transfer to the target river basin in the next step.

As stated in the previous sections, the physical similarity approach was used for trans-
ferring optimal parameter sets from gauged ones to ungauged ones in this study. For each 
ungauged sub-basin, a donor sub-basin was determined based on the most similarity in 
terms of physical basin descriptors. The entire target basin was delineated into four sub-
basins (Fig. 1) ranging from 70 up to 313  km2. Several basin attributes have been frequently 
used for this approach in general, such as basin and river geomorphology, vegetation cover, 
climate and soil properties, and flow characteristics (Merz and Blöschl 2004; Arsenault 
and Brissette 2014; Pagliero et al. 2019). Based on the data availability and the physical 
meanings of model parameters, we selected five major basin characteristics including basin 
area, river length, vegetation cover, average elevation, and basin slope as major criteria for 
choosing similar sub-basins. The basin and river geomorphology were computed by using 
the GIS software with the DEM used as the input. Eventually, the optimal model param-
eters were added to the target ungauged sub-basins for simulating flood events using the 
hydrodynamic model.

4.3.2  Hydrodynamic modeling

The 1D, 2D hydrodynamic models, and the coupling tool setup are described in detail in 
this section. The rainfall–runoff model was integrated into the 1D hydraulic model for 
simulating upstream and lateral inflows of the entire river system of the Tra Bong basin. 
Figure 8a shows the hydraulic schematization of the 1D model setup with three reaches 
including one main river and the other two tributaries, in which the measured river cross-
sections were entered. Each cross-section contained information of coordinates, elevation, 
and the Manning’s roughness coefficient. The initial Manning’s values for the river and its 
tributaries were chosen from the studies of Chow (1959) and Werner et al. (2005).

The tidal water level time series used as the downstream boundary condition was 
extracted from the DTU10 model. Cuong et al. (2017) and Bon et al. (2016) showed poten-
tial inundation due to storm surges caused by heavy typhoons and super typhoons in the 
coastal regions of Vietnam. Obviously, storm surges or storm tide cannot be computed in 
the GTMs. Moreover, Stammer et al. (2014) concluded that GTMs potentially consist of 
large errors when compared with coastal tide gauges in the near-coastal zone. Thus, the 
adjustments of extracted tidal water levels are necessary. The seawater level of Ly Son tidal 
station (Fig. 1), which is closest to the study area (30 km from the estuary), was utilized 
to investigate the correlation between predicted and observed tidal levels. Accordingly, a 
linear regressive equation was used to adjust the predicted water levels before a typhoon 
hitting. During a typhoon landfall, a correction factor (identical to storm surge heights) of 
0.5 up to 1.5 m depending on various magnitudes of typhoons was added to the predicted 
water level time series.

In the 2D model, a suitable mesh is essential for obtaining reliable results including a 
selection of an appropriate domain being modeled and adequate resolution of the bathyme-
try (DHI 2019b). To generate a mesh for the study area, a DEM was used and subsequently 
combined with a topography map with a scale of 1:2000. The domain was coordinated in 
the projection of UTM WGS 84 zone 49 N and designed with the mesh in the floodplain 
and the river bed set as undefined values to link with the 1D model. Figure 8b shows a 
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3D view of the floodplain where several structures such as dikes, roads (highways, rail-
ways), and sluices are integrated into the model due to their significant impacts on flooding 
behaviors. In this study, the 1D and 2D models were then linked together using a coupling 
technique to simulate flood flows and overbank flows. The lateral link was chosen for simu-
lating overbank flows from the river into floodplains using a structure equation or a relation 
of discharge and water level, in which every calculation point in the river and its tributaries 
was linked to every cell in the 2D model or mesh element in the floodplains.

To evaluate the performances of this modeling system, the simulated water level was 
compared with the observed water level at the Chau O gauging station (Fig. 1), and the 
simulated flood inundation was also compared with the satellite-derived flood inundation. 
The model performances are graphically plotted in Fig. 8c. For the 1D model, the results 
are presented here for events that occurred in 2013, 2017, and 2019. For the 2D model, 
only the flood inundation captured in the 2019 flood event is illustrated here. It can be 
observed that there is a high degree of conformity in the phase and the amplitude of the 
water level hydrograph at Chau O station. Particularly, the peak water levels and the time 
of the peak values are generally well simulated for all cases. Table 3 lists the goodness-
of-fit errors between simulated and observed data. For the flood events of 2013 and 2019, 
the modeling system performed fairly well in terms of NSE, RMSE, and RPE. The flood 
shapes of the 2013 and 2019 events are slightly different due to some uncertainties dur-
ing the running of the modeling system. A possible main reason could be the usage of the 

Fig. 8  Hydraulic schematization and 1D, 2D model performances
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results of the hydrological model as input data in the hydrodynamic models. Obviously, the 
hydrographs obtained from the rainfall–runoff model do not represent exactly the hydro-
logical conditions of the basin. In 2017 the model performance was much lower in terms 
of NSE and RMSE due to the differences of two flood volumes. One of the reasons can 
be interpreted as the effect of the coarse existing rain gauge network and low intensity of 
satellite rainfall, from which the rainfall distribution might not be observed well during the 
period, leading to a decrease of total flood volume.

It can be observed that the reproduced inundation exhibits good agreement with the 
satellite-derived inundation. The modeled flood inundation extent is evaluated as relatively 
consistent with the satellite-derived one (F1 > 0.5); however, it was slightly overpredicted 
by the model (F2 < 0.5). As for flood depths, the depths estimated from satellite images 
and DEMs are strongly controlled by the ground topography, or in other words, the estima-
tion of inundation depths is mainly directly dependent on the quality of ground elevation 
datasets (Nguyen et al. 2016; Cohen et al. 2018). In this study, we downloaded a free DEM 
with a lower quality therefore, we only used the estimated flood depth values as a reference 
factor for evaluating the model performance. Examining 30 random locations evenly allo-
cated over the flooded areas by comparing flood depths estimated from the satellite data 
and the model, RMSE is 0.96 m (Table. 3), in which maximum depth error is 2.5 m, and 
minimum depth error is 0.1 m. According to the statistical metrics, it can be concluded that 
the hydrological and hydraulic models used for this case study again performed rather well 
for the flood flows simulation in the river and the floodplain.

Although the modeling system with many types of models was applied in the ungauged 
river basin, it still exhibited an advantage for mapping the inundation extent. One of the 
major challenges of this study includes the lack of observed information such as rain-
fall and river discharges, as well as the non-availability of the observed flood depths in 
the floodplains. In the recent past, flood models in combination with satellite imageries 
and GIS were commonly used for flood risk assessment. However, the combination of 
flood model and remote sensing-based products, including precipitation and images for 
ungauged basins, was rarely taken into account, especially in Southeast Asia. In this pre-
sented approach, the optimal parameter search algorithm is very important in transferring 
the parameters from the borrowed basin to the study basin. In the process of transferring 
the lumped conceptual model to the semi-distributed model, the more sub-basins a model 
has, the more computational time is needed to determine optimal parameter sets. Sub-daily 
variability of rainfall is extremely significant for the accuracy of flood modeling. Shrestha 
et al. (2019b) also demonstrated that sub-daily information from satellite precipitation used 
for temporal downscaling of rain gauge data provides the best option for accurate hydro-
logical modeling of floods. Therefore, it is recommended to examine and evaluate the accu-
racy of potential satellite rainfall products over selected areas in order to select a suitable 

Table 3  Model evaluation 
statistics for the calibration and 
validation processes

Flood events 1D hydraulic model 2D hydraulic model

NSE RMSE-
Water level 
(m)

RPE % F1 F2 RMSE-
Water depth 
(m)

2019 0.72 0.19 0.7 0.55 0.37 0.96
2017 0.30 0.94 − 2.13 – – –
2013 0.80 0.36 0.48 – – –
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one before applying the proposed approach. We believe that estimating inundation depths 
from an inundation map derived from satellite imageries with an associated digital eleva-
tion model will support the model calibration and verification processes in data-scarce and 
ungauged river basins. However, major limitations include obtaining accurate high-reso-
lution DEMs and dealing with fragmented flood inundation domains (Cohen et al. 2019).

4.4  Probability analysis and flood hazards

4.4.1  Rainfall probability analysis

The maximum daily rainfall at the Tra Bong gauging station was chosen instead of using 
flood discharge peaks for probability analysis. To analyze the rainfall frequency character-
istics, the GEV distribution (Coles 2001), which popularly uses the method of block max-
ima, was applied to fit the annual maximum rainfall and then to estimate the 10-, 20-, 50-, 
and 100-year return periods. The method of Maximum Likelihood Estimation, which has 
the ability for accounting for the non-stationary model fitting the analysis of the extreme 
values, was used to obtain the GEV parameters. Figure 9 shows the maxima values (bar 
plot) and the results of the GEV distribution fitted (solid curve) and the 95% confidence 
interval (dashed curves). Based on these curves, the return levels and their corresponding 
estimations can be determined easily.

For flood hazard mapping, different sub-daily rainfall patterns were selected based on 
the sub-daily rainfall observed by the remote sensing technique. To select a sub-daily rain-
fall pattern for each return period, the maximum 1-day rainfall volumes of the return period 
and  the satellite data were compared to identify the most equivalent ones. After that, a 
ratio factor was computed based on the two rainfall volumes and then multiplied with the 
selected rainfall pattern for creating the design rainfall hyetograph.

4.4.2  Flood hazard mapping

Flood hazard is normally considered according to local conditions of a certain area or 
region. In different regions with various natural characteristics such as topographies, flood 
behaviors, and/or people gathering, flood intensity is classified differently (Mani et  al. 
2014; Luu et al. 2018). The flood hazard map guidelines typically established for Germany 
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by the German working group of the Federal States on Water Issues were applied as a 
reference for mapping flood hazards in the study area. According to LAWA (2006), flood 
hazard maps provide information in terms of the relationship between the flood probabil-
ity and the flood inundation intensity, whereby water depth is the most important damage 
parameter because it potentially impacts animals, humans, and infrastructure. However, 
high flow velocity combined with high water depth will increase risks as well. The dura-
tion of flooding is a third important parameter due to its potential impacts on dike fail-
ure or crops. Flood intensity classifications are referred by three main categories including 
Low, Medium, and High. Table 4 gives an example of the three categories corresponding 
to three main flood components (depth, velocity, and duration), in which, particularly, flood 
inundation duration is not mentioned in the guideline. However, we classified that flood 
component into the same categories based on the flood periods and expert opinions.

Figure 10 shows the flood hazard maps for a 10-, 20-, 50-, and 100-year return period. It 
can be seen that the flood inundation areas and hazard levels become larger when the flood 
return periods increase. The maps also illustrate that the flooded areas on the left bank are 
clearly larger than on the right bank for all return periods. For further studies, these maps 
can be used as useful references for flood hazard assessments or flood risk assessments.

5  Conclusions

The flood modeling system (MIKE11 NAM, MIKE11 HD, MIKE21 FM, and MIKE 
Flood) in combination with the satellite-based precipitation product (CMORPH_CRT) and 
the synthetic aperture radar imagery (Sentinel-1A) was successfully set up and employed 
to simulate the complex process from rainfall–runoff to flow dynamic in the river and 
floodplains of the Tra Bong river basin located in central Vietnam. The integrated approach 
with many distinct methods applied in this study enables us to have a better understanding 
of flooding and inundation regimes in data-scarce and ungauged coastal river basins.

Satellite precipitation datasets will be crucial to numerical modeling applications in the 
future. In our study, we also focused on comparing the satellite precipitation products with 
ground-measured data. According to the obtained results, it is highly recommended that 
satellite precipitation may be examined and validated with ground-measured stations to 
detect and adjust errors as well as to choose an appropriate product for model applications. 
Moreover, it is important to know that rainfall data are the main factor that strongly affects 
model outputs in this approach. In this study, CMORPH_CRT was employed because it 
showed better performances compared to the other product when we examined at 1-day and 
1-h temporal resolutions at each station. Therefore, applying the rainfall temporal downs-
caling technique and using the adjusted satellite rainfall indicated that the flood model can 
adequately simulate the flood peaks in terms of values and time of occurrence. This rainfall 
data, together with the new generation of SAR imageries, which was just opened for free 

Table 4  Flood inundation 
intensity classification 
corresponding to hazard 
categories

Categories Water depth Water velocity Water duration

High > 2.0 m > 2.0 m/s > 24 h
Medium 0.5–2.0 m 0.5–2.0 m/s 6–24 h
Low < 0.5 m < 0.5 m/s < 6 h
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access in Southeast Asia, will be very helpful for studying flood inundation, particularly in 
ungauged river basins.

The study introduced the four main steps of transforming a lumped model to a semi-dis-
tributed model. The results illustrated that the drawbacks of this kind of model are partly 
handled and the number of potential model parameter sets is increased for the application 
of the regionalization techniques. However, it is noted that this approach is mostly suit-
able for small- and medium-sized river basins where measured data are not available or 
limited. In addition, the simulation results of the other models also demonstrated that the 

Fig. 10  Flood hazard maps of flood depth, flood velocity, and flood duration corresponding to return peri-
ods of 10 (a), 20 (b), 50 (c), and 100 (d) years
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entire flood modeling system performed fairly well the flood hydrographs and inundation 
in the Tra Bong basin. The flood hazard maps were then created for the Tra Bong river 
basin based on the flood probability (10-, 20-, 50- and 100-year return period) and the 
flood intensity (depths, velocity, and duration). We found that the inundated areas and haz-
ard levels have a linear relationship with the flood return periods, and the floodplain on the 
left bank is heavily affected by flooding and inundation. We can conclude that the methods 
and the proposed approach applied in this study did bring up a feasible solution for map-
ping flood hazards in data-scarce and ungauged river basins.

Uncertainties in this work are visible and cannot be avoided. Sources of uncertainties 
may come from the models themselves (model parameters and structures), input data (e.g., 
data errors or accuracy of satellite precipitation datasets), quality and revisit time of satel-
lite imageries. Although the model performances in this work need to be improved and 
conducted with further validation to evaluate the efficiency of the approach, it illustrated 
that advanced hydrological and hydraulic models in combination with satellite products 
play an essential role in assessing flood hazards or flood risks for not only gauged river 
basins but also for data-scarce or ungauged river basins to obtain an overview picture of 
flooding and inundation.
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