
1. Introduction
The subsurface of the Earth's upper crust is extensively used by the exploitation of raw materials, disposal of 
waste or extraction and storage of energy. These man-made interventions impose alterations of the thermal 
(T), mechanical (M) and hydrological (H) conditions and THM-models are used to understand and assess the 
processes that induce these changes (Jacquey et al., 2016; Jeanne et al., 2016; Segall & Fitzgerald, 1998). Such 
forward simulations are used to derive mitigation strategies of unwanted side-effects such as the collapse of 
boreholes or caverns (Fuchs & Müller, 2001; Grigoli et al., 2018; McGarr, 2014; Ziegler et al., 2015), leakage of 
sealing lithological layers or faults (Altmann et al., 2014; van Wees et al., 2018; Yoon et al., 2016), and to lower 
the moment release of induced seismicity (Schoenball et al., 2014; Segall & Fitzgerald, 1998; Yoon et al., 2015). 
In particular, the latter became an increasing issue in the past decades due to the exploitation of unconventional 
hydrocarbon reservoirs (Ellsworth, 2013; Schoenball et al., 2018), the demand to increase geothermal energy 
supply (Deichmann & Ernst, 2009; Grigoli et al., 2018; Kim et al., 2018), and due to effects of long-term deple-
tion of reservoirs (Johnson et al., 2016; Segall et al., 1994; van Wees et al., 2018).

However, the onset of induced seismicity is often delayed by years with respect to the onset of pore pressure 
changes and seems to depend also on the individual tectonic setting (Shapiro et al., 2010; van Wees et al., 2014). 

Abstract The distance to failure of the upper crustal rock in the prevalent stress field is of importance 
to better understand fault reactivation by natural and induced processes as well as to plan and manage 
georeservoirs. In particular, the contemporary stress state is one of the key ingredients for this assessment. 
To provide a continuous description of the 3D absolute stress state geomechanical-numerical models are 
used. However, stress magnitude data for model calibration are sparse and incomplete and thus, the resulting 
model uncertainties are large. In order to reduce the uncertainties, we incorporate additional constraints on 
stress magnitudes to check the plausibility of different data-based stress states. We use formation integrity 
tests, borehole breakouts, drilling induced fractures, and observations of seismicity and distinct seismological 
quiescence. This information is weighted according to its confidence and the agreement with the different 
modeled stress states is assessed. The information is introduced to a Bayesian approach to estimate weights 
of the modeled stress states and thereby identify their plausibility. A case study in southern Germany shows 
the ability of the approach to identify from a wide range of stress states a small number of plausible ones and 
reject implausible stress states. This significantly reduces the number of stress states and thus lowers the model 
uncertainties.

Plain Language Summary The upper crust of the Earth (upper few kilometers) is subject to a kind 
of pressure, referred to as stress. When the stress becomes larger than the strength of the rock, the rock breaks. 
Sometimes this can be measured or even felt as a seismic event. It happens naturally but may also happen due to 
human activity. To prevent such induced seismic event, it is important to know the stress state. But there is only 
few information on the magnitude of the stress so we need computer models to predict the stress state. These 
models are often not very precise since there is only few information on the stress magnitudes and in addition 
they are often contradicting. We use all stress magnitude information individually to model various stress 
states. Then we look at other information that is related to the stress state but does not provide stress magnitude 
information on its own. We compare this information with the modeled stress states to find out whether a stress 
state agrees with the additional information or not. This allows us to identify a few realistic stress state models 
out of a wide range of possible ones. This reduces the uncertainties of the stress predictions.
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For example, in the gas field of Groningen in The Netherlands, induced seismicity increased significantly in the 
past years even though exploitation started decades earlier (van Wees et al., 2014). This reflects that induced 
seismicity and other unwanted failure processes depend also on the initial conditions of the reservoir. A key 
parameter regarding stability aspects is the undisturbed stress state before any anthropogenic interventions as it 
defines the distance to failure and quantifies how much stress changes a reservoir can sustain without reaching 
a critical stress state (Müller et al., 2018; Schoenball et al., 2018). The distance to failure is often expressed by 
means of the fracture potential of intact rock (Connolly & Cosgrove, 1999) or slip tendency (ST) for the reacti-
vation of pre-existing faults (Morris et al., 1996). The further the undisturbed stress state is away from failure the 
more stress changes it takes before a critical stress state is reached (Figure 1).

To quantify the 3D undisturbed stress state and its spatial variability 3D geomechanical-numerical modeling is 
used (Fischer & Henk, 2013; Lecampion & Lei, 2010; Roche & van der Baan, 2017; Ziegler et al., 2016). These 
models are based on static 3D geological models that provide the spatial distribution of rock properties, faults, 
and pore pressure. The stress state is modeled as a superposition of gravitational volume forces and surface forces 
due to plate tectonics that are imposed by means of lateral displacement boundary conditions. These bound-
ary conditions are either determined using model-independent stress magnitude data in an inversion scheme 
(Lecampion & Lei, 2010) or data-driven approaches to determine a best-fit model (Hergert et al., 2015; Reiter 
& Heidbach, 2014). This search for best-fit boundary conditions is referred to as model calibration using stress 
data records.

Ziegler and Heidbach (2020) showed that the stress data records that are used for the model calibration result 
in high uncertainties of the 3D stress tensor (Figure 1c). Their 3D model of the Bavarian Molasse Basin in the 
Northern Alpine Foreland addresses the geomechanics of the induced seismicity at some of the abundant geother-
mal projects using hot Jurassic water for district heating (Megies & Wassermann, 2014). In the model, the 1σ 
standard deviation is 5–10 MPa for the magnitude of the minimum horizontal stress Shmin and 25–45 MPa for the 
magnitude of the maximum horizontal stress SHmax. In the model approach of Ziegler and Heidbach (2020), it is 
assumed that the stress magnitude data that are used for the model calibration are free of errors, which is not the 
case. The two key sources for the resulting high standard deviation are the stress magnitude data records used 
for the model calibration. They are subject to individual and potentially large measurement errors. Furthermore, 
some of these data records are not representative for a larger rock volume, but instead represent a local deviation 
that is not resolved with the achieved model resolution. Outliers are the key drivers for the model uncertainties. 
They are either due to a priori unknown measurement errors or data that are not representative for a larger rock 
volume, but only a local deviation.

Thus, the paper addresses two open issues. First, the introduction of an individual error for each calibration data 
record of the Shmin and SHmax magnitude and second, an objective identification of data records that are not suitable 
for the model calibration. For the latter, we show that additional indirect stress information can be integrated to 
derive weights for the model calibration. This stress information comes from observations that provide upper or 
lower bounds of certain stress components. In particular, we use Formation Integrity Tests (FITs). In these, the 
lithological formation is subjected to a known pressure (White et al., 2002) and, provided the rock does not fail, 
the FIT pressure has to be smaller than the least principal stress. Thus, the FIT pressure provides a minimum 
lower boundary of all principal stress components. The second additional constraint results from seismological 

Figure 1. Mohr-Coulomb diagram of different undisturbed stress states (a, b, solid semicircles). With the same rock strength (failure envelope, black line) and the same 
stress changes (arrows) the resulting stress state (dashed semicircles) in (a) is stable and the one in (b) is critical. (c) Exemplified geomechanical model result following 
Ziegler and Heidbach (2020). Dotted line shows the best-fit model result w.r.t. the calibration data and the light and dark shaded areas show the 1σ and 2σ standard 
deviation, respectively.
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observation (Shen et al., 2019). If seismicity is observed, the stress state is at failure while no observed seismicity 
(in well instrumented areas) indicates a subcritical stress state. This observed criticality or stability of the stress 
state can be compared to the modeled criticality in combination with an assumed failure criterion (Figure 1). The 
agreement or disagreement of the model results with the observations provides a measure how reliable a modeled 
stress state is. The third additional constraint is the observation of borehole failures such as borehole breakouts 
(BOs) or drilling induced tensile fractures (DITFs). These failures occur if the maximum circumferential stress 
exceeds the rocks compressive strength (BOs) or if the rocks tensile strength exceeds the minimum circumfer-
ential stress (DITFs; Aadnoy, 1990; Amadei & Stephansson, 1997). In synthesis with an assumption on the rock 
strength, observations of BOs or DITFs thus provide indication on whether the modeled circumferential stress 
agrees with the observed borehole failures.

We show that this approach allows us a posteriori to identify the a priori unknown outliers of the stress data 
records that are either erroneous or not representative for a larger rock volume. Data-based weights for individual 
stress data records will be estimated which results in an improved significance of the modeled stress states. For 
such a task the Bayesian approach is common practice in other research fields (Gómez Zapata et al., 2022; Nawaz 
& Curtis, 2019). It allows a formal weighting, but to our knowledge, this has not been applied in forward geome-
chanical modeling of the 3D stress field.

To exemplify the approach, we use the 3D geomechanical-numerical model of the Bavarian Molasse Basin from 
Ziegler and Heidbach  (2020) that has been calibrated against nine Shmin and four SHmax stress magnitude data 
records. To lower the uncertainties of this model result we will use now in addition 53 FITs from geothermal 
boreholes and seismological observations from 20 geothermal projects. Furthermore, we also use 52 BO and 
five DITF data records from 57 wells taken from the World Stress Map database (Heidbach et al., 2018). This 
information is used as input for the described Bayesian workflow to estimate weights. We thereby show that we 
can improve the significance of the modeled absolute stress magnitudes significantly.

2. Modeling the Undisturbed Stress State
The contemporary undisturbed absolute stress field in the upper crust can be modeled through the superpo-
sition of body forces due to gravity and surface forces due to tectonic processes (Fischer & Henk, 2013; van 
Wees et al., 2003). The contribution of gravitational body forces is controlled by the 3D density distribution and 
tectonic processes by lateral displacement at the model boundary (Hergert et al., 2015; Reiter & Heidbach, 2014). 
We describe briefly the general approach of model calibration and estimation of its uncertainties.

2.1. Model Calibration

Mathematically, the stress state at a point is described with the Cauchy stress tensor:

𝜎𝜎ij =

⎛
⎜
⎜
⎜
⎜
⎝

𝜎𝜎11 𝜏𝜏21 𝜏𝜏31

𝜏𝜏12 𝜎𝜎22 𝜏𝜏32

𝜏𝜏13 𝜏𝜏23 𝜎𝜎33

⎞
⎟
⎟
⎟
⎟
⎠

 (1)

As it is common in geosciences, a compression-positive convention is used in contrast to engineering applica-
tions. Due to the stress tensors symmetry only six components (three normal components 𝐴𝐴 𝐴𝐴ij, 𝑖𝑖 = 𝑗𝑗 and three 
shear components 𝐴𝐴 𝐴𝐴ij, 𝑖𝑖 ≠ 𝑗𝑗 ) are independent from each other (Jaeger et al., 2007) and after transformation into a 
principal axis system the three perpendicular absolute principal stresses S1, S2, and S3 remain which reduces the 
stress tensor to:

𝜎𝜎ij =

⎛
⎜
⎜
⎜
⎜
⎝

𝑆𝑆1 0 0

0 𝑆𝑆2 0

0 0 𝑆𝑆3

⎞
⎟
⎟
⎟
⎟
⎠

 (2)
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By definition, S1 is the largest principal stress and S3 the smallest. In the upper crust, it is assumed that one of 
the principal stresses is the vertical stress Sv. This assumption reduces the independent components to four: 
The magnitudes of Sv and the two horizontal principal stresses SHmax and Shmin and the orientation of SHmax 
(Anderson, 1951).

To model the absolute 3D undisturbed stress state, a geological model that describes the distribution of the 
rock properties (Young's modulus, Poisson's ratio and density) is needed. The gravitational body forces are well 
constrained by the density distribution whereas surface forces due to tectonic processes are usually imposed with 
displacement boundary conditions (Hergert et al., 2015). Data of SHmax orientation is provided in the World Stress 
Map database (Heidbach et al., 2018), but this information is only helpful for a rough estimation of the criticality 
of a faults orientation in the prevailing stress field. In the context of the modeling approach, the orientation of 
SHmax helps to determine the orientation of the model boundaries and may be used as additional constraints to 
assess the quality of the stress state. For the calibration of the undisturbed stress state, however, stress magnitude 
data are essential. The task is to determine the displacement boundary conditions that satisfy the stress magnitude 
data records. This is the calibration procedure briefly described in the following or in more detail in Reiter and 
Heidbach (2014) or Ziegler and Heidbach (2021b).

Assuming linearity and a rectangular model where boundary conditions are applied perpendicular to the model 
boundaries, the displacement solution space is a line that fits the observed Shmin or SHmax magnitude, respectively 
(Figure 2a). In a linear system, there is only one pair of displacement boundary conditions that fit a pair of SHmax 
and Shmin magnitude data records (Figure 2b). The more data record pairs of Shmin or SHmax magnitudes are availa-
ble for the model calibration, the more lines defining possible combinations of displacement boundary conditions 
are generated (Figure 2c). This requires the usage of an average set of displacement boundary conditions (white 
circle in Figure 2c) for the computation of the displacement boundary condition that is the best approximation to 
all stress magnitude data records, that is, a model which minimizes the difference between the model stress state 
and all stress magnitude data (Ziegler & Heidbach, 2020). This entire process is referred to as model calibra-
tion  and is assisted by the tool FAST Calibration v2.0 (Ziegler & Heidbach, 2021).

Figure 2. Model calibration approach after Reiter and Heidbach (2014) and Ziegler and Heidbach (2020). Top row shows the usage of combination of displacements 
at the lateral model boundaries. Lower row shows the associated implementation in the model with stress magnitude data that are used for the model calibration. Red 
(SHmax) and blue (Shmin) indicate the horizontal stress magnitudes. Associated possible boundary conditions that fit their respective value are indicated at the model 
boundaries. Solid white dot indicates the pair of boundary conditions that satisfies a pair of SHmax and Shmin magnitude data. (a) For a single Shmin data record, the 
combinations of boundary conditions that satisfy the stress magnitude data record are a linear function. One possible set of boundary conditions is indicated here as 
an example. (b) A single Shmin and SHmax data record can be modeled individually again by boundary conditions providing two linear functions. However, if both SHmax 
and Shmin should be satisfied the intersection of these two lines is the only valid set of boundary conditions. (c) If several SHmax and Shmin data records are available, the 
averaged intersection of all lines is used as the valid set of boundary conditions that minimizes the differences between modeled and observed stress state. (d) Adding 
uncertainties to the stress data records increases the uncertainties in the averaged intersection of all lines.
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2.2. Definition of Model Scenarios

We use the term uncertainty following the common definition of for example, Begg (2014) in contrast to the 
term variability. Begg (2014) states that uncertainty refers to the likelihood of what the single, true value of the 
uncertain quality is and variability refers to the range of multiple instances of the quantity, derived from observed 
data. The model uncertainties are represented by the average of each of the six independent components of the 3D 
stress tensor and their standard deviations. Our approach to quantify model uncertainties is purely data driven. In 
contrast to this, Lecampion and Lei (2010) use data records of a defined reliability to invert for a stress state. To 
quantify the uncertainties due to the calibration of a model of the 3D undisturbed stress state we use the approach 
described in Ziegler and Heidbach (2020). We focus in this study on the epistemic uncertainties due to the stress 
magnitude data records and their uncertainties. Further epistemic model uncertainties that result for example, 
from rock property and its spatial variability (Ziegler, 2022), model geometry (Bjorge et al., 2022; Wellmann & 
Regenauer-Lieb, 2012), or the assumption of linear elasticity are not considered.

When using several data records to calibrate a model of the undisturbed stress state, the necessary averaging leads 
to a loss of information. We mitigate this by setting up a range of different model scenarios. The term model 
scenario here refers to the same geological model and distribution of rock properties but a different set of bound-
ary conditions. Each model scenario uses only one SHmax and one Shmin data record which can be perfectly fitted 
(Figure 2b). The number of individual model scenarios is thus the number of all possible combinations of SHmax 
and Shmin stress magnitude data pairs that can be used for model calibration.

The generated model scenarios provide a range of possible absolute stress states based on stress magnitude data. 
To account also for pore pressure, we estimate the effective stresses from the model results by assumption of 
hydrostatic pore pressure if not specified differently in distinct maps of pore pressure deviations. Thus, for each 
model scenario, the effective stress can be estimated. Initially, no information on the plausibility of an individual 
model scenario is available. This usually leads to a significant variety of stress states which inhibits an interpre-
tation. In order to reduce the variety, a weighting of the model scenarios is indicated. This is accomplished by 
using estimates on the quality of stress data records and additional constraints on the stress state in a Bayesian 
framework.

3. Weighting of Model Scenarios
3.1. Bayesian Framework

Bayes theorem is a way to estimate the probability of an event—here a model scenario—with the help of prior 
knowledge that may be related to the used stress data records (Figure 3). Translated to this geomechanical mode-
ling approach the Bayes theorem allows to estimate the probability P(S|C) of model scenario S in relation with 
the additional constraint C and it reads as:

𝑃𝑃 (𝑆𝑆|𝐶𝐶) =
𝑃𝑃 (𝐶𝐶|𝑆𝑆)𝑃𝑃 (𝑆𝑆)

𝑃𝑃 (𝐶𝐶)
 (3)

with P(C|S) the probability of the additional constraint in the model scenario, that is, does an individual additional 
constraint agree with the stress state of an individual model scenario (Figure 3 green). P(S) is the initial proba-
bility of this model scenario based on the data records qualities and therefore regarding the inherent uncertainties 
(see above, Figure 3 red). P(C) is the probability of the additional constraint used to check the consistency of the 
modeled stress state (Figure 3 blue).

First, a probability P(S|C) based on each individual additional constraint is estimated for each model scenario. 
Then, for each type of additional constraints a single probability that is based on all data from the group is 
computed for each model scenario. Finally, the probabilities of the types of constraints are combined to a single 
final weight for each model scenario. In this step, the impact of the individual constraints is modulated by using a 
weighted mean. The weights assigned to the different types of additional constraints take into consideration their 
possible uncertainties and the general degree of believe.
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3.2. Introduction of Calibration Data Uncertainties

In order to regard the assumed or measured uncertainties in the stress data records, we use the data quality assess-
ment based on a quality ranking scheme provided by Morawietz et al. (2020). Each stress data record is assigned 
a quality based on the type and circumstances of measurement as well as the quality of documentation and avail-
ability of metadata. We use these qualities to assign a probability density function (PDF) around the reported 
stress magnitude in the shape of a normal distribution to each data record. The better the quality is, the narrower 
is the distribution since it is assumed that the uncertainties in the estimation of the data record are smaller. The 
standard deviation σ, that is, the width of the distribution, is defined by the weight w of the data records following 
an inverse scheme that reads

𝜎𝜎 =
1

𝑤𝑤

𝑚𝑚

𝑐𝑐

 (4)

with the reported stress magnitude m and the scaling coefficient c. Herein, c is set to c = 30. For each original 
data record m four auxiliary stress magnitudes are extracted from the according distribution at m − 2σ, m − 1σ, 
m + 1σ, and m + 2σ. These are then used in the same way as an actually reported stress magnitude but are 
assigned a weight according to the given PDF. This consideration of the calibration data uncertainties results in a 
significant increase in model scenarios and an overall increase of the model uncertainties.

3.3. Additional Constraints

We integrate indirect stress information as additional constraints in order to identify less likely model scenar-
ios and thereby limit the range of possible stress states. This indirect information cannot be used in the model 
calibration procedure that determines the best-fit displacement boundary conditions. But the occurrence or 
non-occurrence of stress-controlled failure of the rock in terms of seismic events, information from FITs and the 
observation of borehole wall failures provide upper and/or lower boundaries of the undisturbed stress state. This 

Figure 3. Proposed Bayesian workflow to estimate the weight of a modeled stress state based on weighted stress data records and additional constraints. Red: stress 
data records are assigned to a distribution based on their uncertainties. From the distribution pairs of SHmax and Shmin data records are selected to setup model scenarios. 
An according weight is estimated for each model scenario (P(S)). Blue: additional constraints on the stress state from within the model volume are compiled. If 
required, further data to relate the constraints to the stress state are added. For each constraint, an individual weight is estimated (P(C)). Green: model scenarios are 
evaluated for their agreement or disagreement with the additional constraints (P(C|S)). Yellow: Bayesian weight (P(S|C)) for a model scenario is estimated.
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is used to assess the reasonability of each individual model scenario. We present in the following subsections the 
three different types of additional information that we use.

3.3.1. Formation Integrity Tests

An FIT is a test of the strength and integrity of a formation by subjecting it to a known pressure (White et al., 2002). 
If the rock does not fail, the FIT pressure has to be smaller than the S3 magnitude which is the intention of the test. 
Thus, all successful FITs provide a minimum lower boundary of the S3 magnitude.

In terms of the Bayesian weighting approach the stress state at the location of a known FIT is extracted from a 
model scenario. Then the observed FIT pressure and the modeled stress state are compared (Figure 4a). If the 
FIT pressure is smaller than the modeled S3 magnitude the individual model scenario agrees with this additional 
constraint, thus supporting this model scenario which is reflected in P(CFIT|S) = 1. On the contrary, if the FIT 
pressure is larger than the modeled S3 magnitude, the individual model scenario disagrees with the additional 
constraint which is reflected in P(CFIT|S) = 0. In the latter case, if the modeled stress state would be the real stress 
state the FIT should have resulted in fracturing the rock and fluid loss into the formation. An FIT measurement 
itself is also subject to uncertainties. The probability of each FIT that serves as an additional limit P(CFIT) can 
hence be individually defined.

For normal faulting (Sv > SHmax > Shmin) or strike slip (SHmax > Sv > Shmin) stress regimes the agreement or disa-
greement of the Shmin magnitude from an individual model scenario with respect to the FIT pressure provides 
information on the reliability of this model scenario. A disagreement indicates that the FIT data or/and the 
calibration data is not reliable. In a thrust faulting regime (SHmax > Shmin > Sv), the information provided by the 
assessment of FIT pressures is limited to the magnitude of Sv which is the least principal stress component S3 and 
mainly a result of the overburden. In case of a disagreement this may indicate that the density of the overburden 
is not correctly chosen. Thus, in a thrust faulting setting an evaluation of the reliability of the Shmin calibration is 
not possible using FIT pressure data.

3.3.2. Seismicity-Based Constraints

The observation of seismicity indicates that the stress state has reached the fault strength. On the other hand, if no 
seismicity occurs, the undisturbed stress state does not reach critical values with respect to the fault strength. On a 
first order, the fault strength is described by a failure envelope defined by cohesion and friction angle (Figure 4b). 
For a given fault orientation, the criticality of the stress state is often communicated with the normalized scalar 
value of the ST:

ST =
𝜏𝜏max − 𝐶𝐶

𝜎𝜎𝑛𝑛

𝜇𝜇
−1 (5)

where τmax and σn are the maximum shear stress and normal effective stress acting on the fault, respectively, 
and μ is the static friction coefficient of fault material (Morris et al., 1996). In addition, the cohesion C can be 

Figure 4. Additional constraints that can be used to evaluate the reliability of a modeled stress scenario. The green Mohr 
circles indicate stress states that agree with the additional information, the red ones indicate a disagreement. (a) Successful 
Formation Integrity Tests (FITs) provide a lower boundary for the minimum principal stress S3. Model scenarios that predict 
S3 < FIT at the location and depth of a successful FIT are thus not reliable. (b) Seismicity occurs if the stress state exceeds 
the strength of the rock. In a location and depth where seismicity is observed the modeled stress state from a scenario has to 
touch the failure envelope in order to be reliable. For locations with explicitly no observed seismicity the requirements of the 
stress state and in this representation the color of the Mohr circles is changed.
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considered which is assumed to be 0 for faults at failure (Ziegler et al., 2016a, 2016b). ST values range between 
0 and 1 with 1 being the critical stress at failure and 0 indicating that the differential stress is zero. The original 
estimation of ST does not include pore pressure (Morris et al., 1996) however, effective stresses are often used 
(Moeck et al., 2009; Vadacca et al., 2021).

In order to use the information of seismicity to assess the reliability of the modeled stress state, ST is computed 
for each model scenario at locations of observed seismicity and also explicitly observed seismic quiescence. If 
the fault orientation of an observed event is known (either from earthquake focal mechanism or inferred from 
structural geological information) ST can be computed for these distinct orientations. If the fault orientation is 
unknown, ST is computed for faults that are optimally oriented in the stress field of each model scenario and thus 
are the fault orientations that have the highest ST.

Then, it is evaluated whether the computed ST value from a model scenario agrees with the observations of 
seismicity. If ST ≥ 1 in an area where seismicity has been recorded or ST < 1 in an area of explicit seismic quies-
cence, the model scenario agrees with the constraints derived from seismological observations. This is reflected 
in an assignment of P(CSeismicity|S) = 1. If ST < 1 in an area where seismicity has been recorded or ST ≥ 1 in an 
area of explicit seismic quiescence, the model scenario does not agree with the constraints derived from seismo-
logical observations (P(CSeismicity|S) = 0).

In case of seismicity-based constraints that use induced seismicity, this approach is not necessarily justified. 
The modeled stress tensor used for estimation of ST provides an undisturbed stress state. The observed induced 
seismicity, however, was caused by a stress tensor that was disturbed by human activity such as fluid injection 
and production that alter the pore pressure an therefore the effective stress. In order to obtain this disturbed stress 
state, a modeling of the process that lead to the inducing of seismicity can be performed (Blöcher et al., 2010; 
Jeanne et al., 2014; Rutqvist et al., 2015; Ziegler et al., 2015). For a few important individual events, such a mode-
ling approach can be a viable solution. If multiple induced seismic events are considered, the effort to generate 
individual models and the required computation time is likely not feasible. Instead, an analytical solution can 
provide a rough estimation of the changes between the initial undisturbed stress state and the disturbed stress state 
which lead to the induced seismicity (Altmann et al., 2014, 2010; Müller et al., 2018; Rudnicki, 1986). Conse-
quently, the change in ST due to fluid injection or extraction operations is estimated as explained in the following.

The ST is available for an initial undisturbed stress state (STi) from the in situ stress model scenario and for an 
altered disturbed stress state (STd) from the analytical estimation of stress changes if needed. The estimation of 
P(CSeismicity|S) is thus altered. In case of observed induced seismicity, the desired model results are STi < 1 and 
STd > 1 which leads to an assignment of P(CSeismicity|S) = 1. In contrast, observation of STi > 1 and STd < 1 shows 
that the man-made processes actually stabilized the stress field which means induced seismicity became less 
likely and leads to an assignment of P(CSeismicity|S) = 0. The two additional combinations (STi < 1 and STd < 1, 
STi > 1 and STd > 1) are per se wrong. However, considering the associated uncertainties these cases can be 
considered as well as long as the stress state moves closer to failure, that is, STd – STi > 0. P(CSeismicity|S) is then 
assigned the inverse value of the number of times STd – STi has to be added or subtracted, respectively, before the 
desired outcome STi < 1 and STd > 1 is achieved.

The observation of seismicity requires a seismological network whose density determines the magnitude of 
completeness that may vary locally. In particular detection of small-magnitude events (Mw < 2.5) is challenging 
if the network is not purpose-built. Furthermore, the accuracy of the velocity model is variable. Thus, the loca-
tion, depth, and focal mechanism solution are subject to uncertainties. If various events in various locations are 
regarded, the uncertainties of the information are likely variable. A weighting of the individual events is indi-
cated. Factors such as the magnitude of completeness at the location, the azimuthal coverage, event magnitude, 
and number and density of stations should be considered.

3.3.3. Constraints From Borehole Failure Data

Compressive and tensile failures of the borehole wall are well known and used as an indicator for the orientation 
of the horizontal stress components (Aadnoy & Bell, 1998; Bell & Gough, 1979; Schmitt et al., 2012). Their 
occurrence is linked to the compressive or tensile strength of the rock, respectively, and the stress state at the 
borehole wall. If such borehole failures are observed in an image or caliper well-log and data on the rock strength 
is known, information on the in situ stress state can be derived (Figure 6).
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BOs occur if the maximum effective circumferential stress 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 is larger than the uniaxial compressive strength 

of the rock C0 expressed as

𝜎𝜎
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
> 𝐶𝐶0 − (𝑃𝑃𝑤𝑤 − 𝑃𝑃𝑝𝑝) (6)

with the mud pressure Pw and the pore pressure Pp. Usage of the uniaxial compressive strength is a simplification 
over more sophisticated strength data (Valley & Evans, 2019) that may be required due to limited data availability.

This circumferential stress in a plane normal to the vertical borehole orientation is estimated from the full stress 
tensor by using the Kirsch equation (Kirsch, 1898) as shown by for example, Scheidegger (1962). In case of a 
vertical borehole, the maximum circumferential stress immediately at the borehole wall can be estimated from the 
effective stresses Shmin and SHmax (Figure 5a, Hillis & Reynolds, 2000) by the following equation:

𝜎𝜎
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
= 3𝑆𝑆Hmax − 𝑆𝑆hmin − (𝑃𝑃𝑤𝑤 − 𝑃𝑃𝑝𝑝) (7)

Analogously, DITFs occur if the minimum circumferential stress 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 around the borehole wall is smaller than the 

tensile strength of the rock T0 expressed as:

𝜎𝜎
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
< 𝑇𝑇0 − (𝑃𝑃𝑤𝑤 − 𝑃𝑃𝑝𝑝) (8)

In case of a vertical borehole, the minimum circumferential stress immediately at the borehole wall can be esti-
mated from the effective stresses Shmin and SHmax by

𝜎𝜎
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
= 3𝑆𝑆hmin − 𝑆𝑆Hmax − (𝑃𝑃𝑤𝑤 − 𝑃𝑃𝑝𝑝) (9)

as shown in Figure 5b (Aadnoy & Bell, 1998).

If a BO is observed and the model scenario stress state indicates that the 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 at the location of the breakout 

is larger than C0 the model agrees with the observation and P(CBO|S) = 1. On the contrary, if breakouts are 
observed but the model indicates a 𝐴𝐴 𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 that is smaller than C0 the model does not agree with the observations 

(P(CBO|S) = 0). This works analogously for DITFs and T0. If 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 at the location of the DITF is smaller than T0 the 

model scenario agrees with the observation (P(CDITF|S) = 1). However, if 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝜑𝜑𝜑𝜑
 is larger than T0 at the location of 

an observed DITF the model scenarios stress state disagrees with the observations (P(CDITF|S) = 0).

To assign a confidence factor for each additional constraint based on borehole failure P(C) we cannot use the 
quality ranking of the World Stress Map project (Heidbach et al., 2018). This is designed to assess the reliability 
of the mean SHmax orientation along the entire borehole length and not directly related to the stress magnitudes that 
caused the borehole failure in individual sections of the borehole. Thus, the WSM weighting scheme is adapted 
in a way that only the length of the observed failures is considered. All breakouts with a total length of ≥300 m 
observed with a caliper log are assigned P(C) = 1 while less total length of the breakout zones is weighted based 
on their length. DITFs and BOs with a total length of ≥100 m that are observed in an image or televiewer log 
are assigned P(C) = 1 while <100 m of total length of the failure zones are weighted based on their lengths. The 
cap on the length-based weighting is introduced to prevent over-representation of extremely long failure zones.

Figure 5. Circumferential stress along the borehole wall modified after (Hillis & Reynolds, 2000). Red line shows a stress 
situation that is subcritical as neither the compressional (a) nor the tensile strength (b) are exceeded. Green line results from a 
stress state that is generating borehole breakouts (BOs) and drilling induced tensile fractures (DITFs), respectively.
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4. Case Study: 3D Geomechanical Model of the Bavarian Molasse Basin
4.1. Model Setup

To test the presented approach, we use the regional-scale 3D geomechanical-numerical model from Ziegler and 
Heidbach (2020). It is located in the Bavarian part of the Northern Alpine Molasse Basin (Figure 6) and based on 
a geologic model by Przybycin et al. (2015, 2017). Below the sedimentary Molasse units an Upper Jurassic karst 
lithology holds geothermal water that is locally extensively used for energy supply mainly in terms of district 
heating and a few electric power plants (Agemar et al., 2012). The 13 implemented lithological units with accord-
ing rock properties (Table S1 in Supporting Information S1) dip south toward the Alps reaching a maximum 
thickness of the sediments of approx. 5,000 m. The geometry is discretized with approximately three million 
hexahedrons to solve the problem numerically with the finite element method. The vertical and lateral resolution 
is 18 and 1,500 m, respectively. The high vertical resolution is to ensure a good numerical representation of the 
individual lithologies that requires at least three vertical elements.

For the model calibration, nine Shmin and four SHmax magnitudes are available (Table B1, Figure S1 in Supporting 
Information S1). The data records are assigned a quality between A (high confidence) and E (data not suitable for 
calibration) using the quality assignment of Morawietz et al. (2020). The encountered data records have qualities 
C and D. According to data records qualities in the World Stress Map are commonly assigned weights of 0.6 and 
0.375, respectively (Heidbach et al., 2018). To allow for continuity, the same weights are used herein, even though 
applied to stress magnitude data. According to the previously described approach, the expected uncertainties in 
the stress magnitude data records is estimated by construction of a probability distribution around the reported 
stress magnitude. This is done to represent possible uncertainties in the reported stress magnitude data records 
resulting in five individual values for each data record. Each possible combination of SHmax and Shmin magnitudes 
results in (4 SHmax data records × 5) × (9 Shmin data records × 5) = 900 combinations. For each of these pairs the 
best-fit displacement is solved in 900 individual model scenarios for the absolute stress state. Furthermore, each 
model scenario is assigned a weight P(S) based on the probability of the utilized data records and the position in 
the distribution.

Figure 6. Model location (black rectangle, 145 × 70 km 2) in the Bavarian Molasse Basin and distribution of stress data. The 
star indicates the geothermal project Aschheim/Feldkirchen/Kirchheim. A color code Indicates geothermal projects (usually 
two, sometimes three or four boreholes per project) with observed induced seismicity or explicitly no seismicity. Availability 
of Formation Integrity Test (FIT) pressure data is indicated by the black circles. Interpreted SHmax orientations from borehole 
breakouts and drilling induced tensile fractures (Heidbach et al., 2018; data in Heidbach et al., 2016) are indicated by 
lines with the quality represented by the length of the respective lines and the type of indicator by the symbol. Sites with 
data mentioned in Tables B1 and B2 are indicate by G, Geretsried; F, Freiham; K, Kirchweidach; P, Poing; Pu, Pullach; 
S, Sauerlach; U, Unterhaching; Uf, Unterföhring. A lithological profile shows the southward dipping units of the Molasse 
Basin. The map is prepared with the Generic Mapping Tool GMT (Wessel et al., 2013) using SRTM topographic data (Farr 
et al., 2007).
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4.2. Introduction of Additional Limits

To evaluate the predictive value of each model scenario indirect stress obser-
vations are used (Figure 3 blue). In the Bavarian Molasse, we have access 
to 53 FIT pressure recordings from 24 boreholes at 10 geothermal sites 
(Figure 6). The disclosed 20 FIT data records from three sites are presented 
in Table B2 and Figure S1 in Supporting Information S1 while the other 33 
FITs from seven additional sites are confidential, but were used in the same 
way as the disclosed ones. Since no additional information on the FIT record-
ings are available, they are weighted equally with P(C) = 1.

However, the evaluation of P(C|S) (Figure 3 green) has to consider the litho-
logical unit since the stress state can be highly variable even in neighboring 

units (Hergert et al., 2015; Warpinski & Teufel, 1991). Due to this effect, a mismatch between the model lithology 
and in situ lithology may lead to a wrongly assumed stress state which in turn impedes interpretation of the data. If 
the lithology in the model agrees with the data from the FIT recording, P(C|S) = 1 for an agreement of the model 
with the observation and P(C|S) = 0 for a disagreement. On the other hand, if the lithology in the model deviates 
from the lithology according to the FIT data, P(C|S) = 0.5 for an agreement of the model with the observation and 
P(C|S) = 0.25 for a disagreement. The latter is to ensure the possibility that either the model geometry is wrong at 
the location of the FIT or that the lithology in the FIT report is erroneous. Analogously, if no data on the lithology 
is available from the FIT report, P(C|S) = 0.75 for an agreement and P(C|S) = 0.25 for a disagreement.

Seismological observations from regional and local networks are used to assess the agreement with the criti-
cality of a model scenario. While no natural seismicity has been recorded in the model area, since the onset of 
geothermal exploitation induced seismic events of up to Ml 2.4 have been recorded in close association with some 
geothermal projects (Grünthal, 2014; Megies & Wassermann, 2014, 2017). Thus herein, we use recorded induced 
seismic events in the immediate vicinity of eight geothermal projects (Table S2 in Supporting Information S1, 
red in Figure 6). As of 2022 the other 12 geothermal projects, however, remained seismologically quiet (Table S3 
in Supporting Information S1, green in Figure 6) and are introduced as such to our Bayesian tree. For both types 
of site, we subtract a hydrostatic pore pressure from the normal components of the modeled stress tensor. Where 
indicated, we correct for a natural local overpressure (Drews et al., 2018, 2020). Then we analytically estimate the 
stress changes due to operations and use the accordingly changed stress state for estimation of ST (Section 3.3.2).

Seismic events are known to lead to stress changes in their vicinity (Hardebeck et al., 1998; King et al., 1994). 
However, given that the moment magnitude of induced events is generally low (Blöcher et al., 2018; Grünthal, 2014) 
the resulting stress changes are small in comparison to the uncertainties considered in Figure 1c. Thus at least for 
this study, the effect of static stress changes due to induced events can be neglected.

The localization and estimation of magnitude for seismic events is highly dependent on the quality and azimuthal 
coverage of the seismological network. Therefore, P(CSeismicity) is used to provide an individual weighting to each 
recorded event. The larger the magnitude and the denser and more local the network, the higher is the expected 
quality (Table 1). Thus, a small seismic event which has been recorded by a global network only is assumed to 
have a larger uncertainty, for example, in terms of localization. Thus, it is assigned a smaller weight compared 
to a large event that has been recorded by a local network. The presented weights are a first order approach that 
demonstrates the applicability of the weighting and could be refined in future studies.

Explicitly observed seismological quiescence is prone to misinterpretation due to not detectable seismic events 
with magnitudes that are below the resolution of the installed observation network. This would result in an 
erroneous assessment of a model's stress state. Therefore, a strict weighting has to be applied. Here, the general 
rule applies, that quiescence in an area covered by a local network is assigned P(CNo Seismicity) = 1, for a regional 
network P(CNo seismicity) = 0.5, and for a global network P(CNo seismicity) = 0.25.

We use 54 BO and five DITF data records (Figure 6) taken from the World Stress Map database release 2016 
(Heidbach et al., 2016). This borehole failure information is used to identify model scenarios in which the stress 
state agrees with the observations. P(CBO/DITF) is derived according to the previously mentioned scheme. We also 
account for the effect of the pore pressure, a hydrostatic pore pressure is added to the normal components of the 
stress tensor. Where necessary, an overpressure according to Drews et al. (2018, 2020) is realized. The estimation 
of P(CBO/DITF|S), however, requires to regard the large uncertainties in the compressive or tensile strength of the 

Network magnitude Global Regional Local

M > 2 1 1 1

2 > M > 1 0.75 1 1

1 > M > 0 0.5 0.75 1

M < 0 0.25 0.5 0.75

Table 1 
Scheme for Estimation of P(CSeismicity) Dependent on the Network Type and 
Coverage and the Magnitude of the Seismic Event
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rock, respectively. Therefore, it is not simply the agreement or disagreement of the modeled stress state with the 
observation. Instead, a representative range of possible rock strength values are compiled from various sources 
and a range is defined (Tables S4 and S5 in Supporting Information S1, Bär et al., 2020; Bohnsack et al., 2021; 
Ortiz Rojas et al., 2017; Potten, 2020; Potten et al., 2022). The agreement rate of the range of rock strength values 
to the stress state is reflected in P(CBO/DITF|S) accordingly.

4.3. Bayesian Quantification of Model Uncertainties

The first step to estimate a weight P(S|C) for the 900 model scenario is based on each individual additional 
constraint, for example, based on a single FIT pressure recording (Figure 3 green, Figure 7). This may be helpful 
information for a local application, however, the aim of this study is an integrated weighting of model scenarios. 
In a second step, the median of the weights of each type of additional constraints is computed for each model 
scenario. Now, each model scenario is weighted based on all BOs, all DITFs, all FIT pressure recordings, all 
observed seismicity, and all explicitly seismically quiet locations.

Eventually, these weights are merged in order to estimate a final weight for each model scenario. There are 
significant differences between the constraints concerning their reliability. These differences origin in associated 
uncertainties due to measurements methods or documentation, required assumptions or additional variables, 
or leverage in interpretation. While an FIT pressure is quite robust being only a pressure value readout, bore-
hole observations not only require an interpretation of caliper or image logs but also the knowledge of the rock 
compressional and tensile strength which is subject to large uncertainties. Seismological observations and even 
more explicitly quiescence require a dense seismological network with a good azimuthal coverage and a signifi-
cant magnitude of completeness, as well as a velocity model of the subsurface.

This illustrates the need to define a confidence in each type of constraint in addition to a potentially previously 
defined confidence in the individual data record (Figure 7). The final weight is the weighted median of the groups 
of constraints. FITs with the least uncertainties are assigned a weight of 1. Observed seismicity is recorded by 
a regional and partly local network and has a relatively high confidence and as such a weight of 0.75. Borehole 
failure related constraints are heavily influenced by the uncertain and sparse data on rock strength and are thus 
assigned a weight of 0.5. Non-observed seismicity is based on the same network as seismicity but is also subject 
to municipal noise and the possibility of a non-detection of small events. Thus, a weight of 0.25 is assigned.

The final weight for each of the 900 model scenarios are shown scaled to 1 in Figure 8. Only a few model 
scenarios are in really good agreement with the additional constraints. Five model scenarios have a weight ≥0.75 
and only 22 model scenarios have a weight ≥0.5. Thus, most of the other model scenarios show only a partial 
(0.25 < weight < 0.5, 70 model scenarios) or almost no agreement with the additional constraints.

Figure 7. Bayesian tree indicates the weighting (in circle) of additional data records individually and based on their classes 
(class or data record in box). The amount of expert elicitation required for a weighting is indicated by the color of the circle 
line. Dark colors indicate a weight that can be largely based on data (e.g., total length of observed borehole indicators in a 
well) and light colors indicate a large amount of expert elicitation required (e.g., informative value of individual Formation 
Integrity Tests (FITs) can only be judged based on drilling reports and expertise).
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4.4. Results and Discussion of the Case Study

In order to display the results, the stress state is extracted from all model scenarios at the reservoir depth of 
2,625 m TVD at a geothermal project that provides district heating to Aschheim/Feldkirchen/Kirchheim (AFK), 
an eastern suburb of Munich (star in Figure 6). The according pore pressure changes as a result of 12 yr of 
production and reinjection of 75 l/s have been accounted for in the analysis. Therefore, the pore pressure diffu-
sion was estimated analytically (Altmann et al., 2010, 2014). As of 2022, the location has not been subject to 
recorded (induced) seismicity. Each model scenario stress state is displayed in a Mohr-Coulomb diagram with 
the Mohr circles transparency and linewidth based on the weight for each of the 900 model scenarios (Figure 9). 
The weights based on the individual additional constraints are displayed (Figure 9) as well as the combined final 
weight (Figure 10a). The resulting Mohr circles and their weights indicate that an intermediate magnitude differ-
ential stress state is preferred even though a stress state with a very small differential stress seems also possible.

The example AFK shows that the prediction of the stress state in the model generally agrees well with the obser-
vation of an uncritical stress state at this particular location (Figure 10a). In contrast, the neighboring geothermal 

Figure 8. The final weight of all 900 model scenarios color-coded displayed (a) in the domain of the displacement boundary conditions (x- and y-axis) and the final 
weight, (b) with the displacement in x-direction on the x-axis.

Figure 9. Results of the 900 model scenarios according to the Bayesian weighting at the geothermal project Aschheim/Feldkirchen/Kirchheim (AFK) at 2,625 m 
TVD displayed in a Mohr-Coulomb diagram that shows the disturbed stress state after 12 yr of production and reinjection with a rate of 75 l/s. x-axis shows the normal 
effective stress, y-axis the shear stress. A representative failure criterion for the target lithology in Aschheim/Feldkirchen/Kirchheim (Hedtmann & Alber, 2017) is 
indicated by the solid line. Probability of a model scenario is indicated by the transparency and linewidth of the respective Mohr circles (see the colorscale). Five 
diagrams show the resulting probabilities based on individual methods (a–e).



Journal of Geophysical Research: Solid Earth

ZIEGLER AND HEIDBACH

10.1029/2022JB024855

14 of 23

site Poing where seismicity of up to Mw 2.1 was recorded (Seithel et al., 2019) is also for many model scenarios 
critical (Figure 10b). This is a valuable information for future operations and induced seismic hazard assess-
ments in the area since the model also provides information on the stress state at other possible sites. The assign-
ment of weights to the model scenarios allows to estimate the probability of occurrence for a given stress state.

There is generally a good agreement between the weighting based on the different additional constraints 
(Figure  9). The only exception is the non-observation of seismicity which behaves as expected in preferring 
model scenarios with small differential stresses that are far away from the failure envelope. This may also be a 
result of the possible inconsistencies associated with non-observations since for the presented study no distinct 
seismological networks were set up. This is reflected in the low overall impact of no seismicity on the final weight 
(Figure 7). Furthermore, it is noteworthy that the DITFs are preferring large differential stress scenarios over the 
model scenarios with a small differential stress which is supported in particular by FITs and seismicity-based 
weights. We assume that the deviating behavior of the DITFs is due to their low occurrence in the model volume. 
In the presented case study, only in five boreholes DITFs were interpreted which is a small number compared to 
the BOs (54) and FITs (55). This shows that it is not necessarily a systematic deviating behavior but could be a 
site-effect. Another source of the deviation is that we do not consider additional factors that control their creation 
which is the dependency on the drilling procedure and variables such as the mud pressure, the rotation of the 
drill-bit, and the borehole width. However, these effects are small in magnitude and would not have a significant 
effect and  thus we think that the distribution and lower number of DITFs is not sufficient to constrain the model 
scenarios. In summary, there is generally no major contradiction between the constraints which shows their 
applicability.

With the exception of the no-seismicity based weighting (Figure 9e) and to a lesser extend the DITF based weight-
ing (Figure 9b), the bi-modal distribution of model scenario weights (Figure 8) is also significantly reflected in 
the stress states. Roughly two prevailing possibilities are indicated. Either a high differential stress of approx. 
100 MPa or a smaller differential stress of approx. 40 MPa are predicted. This bi-modal characteristic of the 
stress states is not solely due to the additional constraints. It is rather a result of the stress magnitude data records 
used for calibration. They provide the basic stress states which are then evaluated with respect to the additional 
constraints. In particular, the SHmax magnitudes can be separated into two clusters—with a large or small SHmax 
magnitude (Table B1). The model scenarios based on these data records are evaluated and accordingly weighted. 
The resulting weights of model scenarios with an intermediate SHmax magnitude (which is not supported by data 
records) cannot be predicted but should be the subject of future research.

5. Discussion
We present an approach to geomechanical-numerical modeling that uses Bayes theorem as a formalized way to 
estimate the uncertainties of the model results due to uncertainties in the stress magnitude data records that are 
used for model calibration. The importance of further uncertainties such as those in the geological model (Bjorge 

Figure 10. Results of the 900 model scenarios according to the Bayesian weighting at the geothermal project (a) Aschheim/Feldkirchen/Kirchheim (AFK) where no 
seismicity has been observed and (b) Poing where seismicity up to Mw 2.1 has been observed (Seithel et al., 2019). For Poing, a different target depth results in another 
failure criterion (C = 10 MPa, μ = 0.6 or μ = 0.8) compared to AFK (C = 11.9 MPa, μ = 1.3 and C = 13 MPa, μ = 1.4, Hedtmann & Alber, 2017). For a detailed 
explanation refer to Figure 9.
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et al., 2022; Wellmann & Regenauer-Lieb, 2012) which is in close relation 
to the rock properties systematic lateral distribution and stochastic hetero-
geneity (Ziegler, 2022) is indicated but not considered herein. The available 
stress magnitude data records are combined in pairs of one SHmax and one 
Shmin data record each. Each pair is used to setup a model scenario that repre-
sents one possible stress state. BOs, DITFs, FITs, observed seismicity, and 
explicitly observed seismic quiescence are used as additional constraints on 
these model scenarios. This way, a data-driven weighting is able to single 
out reliable model scenarios that are favorable for interpretation. The appli-
cability of the approach to identify realistic stress states and reject unrealistic 
ones is shown in a generic truth model (Appendix A). The approach was able 
to identify the correct boundary conditions even though the input data was 
subject to noise.

5.1. Input Data

Additional observations and data that cannot be used for model calibration 
still carry valuable information that can be used to separate reliable from 
less reliable model scenarios. Their integration to the approach increases the 
predictive value of the model results by the integration of constraints that can 
judge the modeled stress states.

However, the additional observations are subject to uncertainties themselves. 
For example, a ST value larger than 1 does not necessarily lead to recorded 
seismicity. The affected area may not be large enough to induce an event that 

can be recorded or an event at all. Alternatively, the stress relief can be accommodated in aseismic creep which 
does not emit a signal that is recognized as seismicity.

This illustrates that the reliability of the additional constraints themselves cannot always be guaranteed. There-
fore, their impact on the weighting approach is moderated by the assignment of weights. These weights of the 
additional constraints are based on a “degree of believe” or expert elicitation which is possible source for subjec-
tivity. Still, even with a minimum weighting of the additional data, the case study indicated that the usage of addi-
tional constraints indeed identifies distinguished model scenarios that are an exceptionally good representation 
of  the stress state and at the same time discards unreliable ones.

Such a clear identification of favorable model scenarios is not necessarily always the case. It depends on the 
amount and quality of the additional constraints. This is in turn dependent on the specific setting and area. The 
available data is likely unevenly distributed throughout the model area. Furthermore, local characteristics may be 
variable, such as the seismological network density, and therefore the weighting needs to be flexibly designed. 
Accordingly, the desired impact of the different types of constraints within the Bayesian framework needs to be 
assigned specifically for each model.

The possibility of disagreement or even contradictions between the additional constraints exists. At least a devi-
ation of the weights based on no seismicity and DITFs compared to the other additional constraints is indicated 
in the case study (Figures 8 and 9). Therefore, we investigate if the various types of constraint are allowed to be 
used in conjunction. A correlation between the model scenarios weights based on the different constraints was 
computed for the case study (Figure 11). Generally, there is a good agreement between the different constraints 
with correlation coefficients of >0.90. However, the slightly deviating behavior of the DITFs-based weights 
already observed in the model scenarios is also reflected in the correlation table. The slightly smaller correlation 
coefficient of >0.83 is still sufficiently high in order to allow an interpretation.

The deviating behavior of no-seismicity based weights to only allow modeled stress states with a small differential 
stress is also reflected in the correlation table (Figure 11). The most significantly reduced correlation coefficient 
is 0.33 with the DITFs. While the latter have a slight preference for large differential stress, no-seismicity based 
constraints do not allow such a stress state. Furthermore, the other additional constraints (FITs, BOs, seismic-

Figure 11. Correlation between the model scenario weights based on the 
different additional constraints. The correlation coefficient is color-coded and 
written in the figure.
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ity) are in a better correlation with no-seismicity (0.51–0.69) even though clearly less correlated than the other 
constraints amongst themselves.

If such a clear disagreement is observed, it is required to scrutinize the affected data. Even more, if an 
anti-correlation should emerge. On the one hand this may identify errors or incorrect assumptions in the addi-
tional data that shows a deviating behavior. On the other hand, a deviation could indicate local anomalies which 
are not reflected sufficiently well in the model's lithology. Therefore, particular attention should be paid whether 
a clustering of deviating data is observed either laterally or in a particular lithology.

5.2. Bayesian Approach

The Bayesian approach assists in providing a technical framework for the weighting of model scenarios. It calls 
for a weighting or estimation of the probability of all the associated data, that is, the model scenarios and the 
additional constraints. The main benefit of using a Bayesian approach is the objectiveness and formal way to 
estimate the predictive value of model scenarios and the simplicity of introduction of large amounts of data. 
The general framework is fixed and as such provides objective results. The assignment of weights, however, is 
highly flexible as it needs to adapt to the characteristics of the model. Thus, the weighting is a major source for 
subjective decisions.

The model scenarios weighting P(S) is realized following the stress magnitude data quality ranking by Morawietz 
et al. (2020). This approach results in a rather objective estimate of the confidence in a data record. However, the 
stress magnitude quality ranking does not provide an estimate of the uncertainty that is associated with a certain 
quality. The translation of qualities to uncertainties needs to be estimated individually for data records or more 
in general for each modeling approach. It can be partly based on the absolute stress magnitude and therefore the 
depth of the data record. Furthermore, it needs to be ensured that the data records are representative for the model 
area in terms of the tectonic unit and its lithological origin.

The estimation of the weight of an additional data record P(C) allows a detailed assessment of the individual 
quality. Generally speaking, the more information is available, the more detailed the weighting can be. In a 
comprehensive approach, the individual data records should be evaluated and rated by according experts which 
then provide a founded estimate on the confidence. The quality of FIT pressure recordings and seismicity obser-
vations largely can be objectively assessed. In contrast, the interpretation of well-logs for BOs and DITFs requires 
proficiency and experience and thus involves a certain degree of subjectivity. Furthermore, additional data on 
the compressive or tensile strength are required. Due to challenges in data availability, an uniaxial compressive 
strength was assumed, which is a simplification (Valley & Evans, 2019).

In particular, challenging is the usage of non-observations that add significant value to the approach. Poten-
tially a large amount of additional information can be compiled which help to further narrow down the possible 
model scenarios. Of particular value is the back-to-back usage of observations and non-observations that together 
provide lower and upper constraints to the stress state. Furthermore, if a lateral or lithology-dependent clustering 
of disagreements can be observed this can be an indicator for inaccuracies in the model. Future research should 
aim to use this to generate maps of reliability of model scenarios that identify areas and lithologies that are 
particularly well represented in the model. It is likely that such areas exist since the availability of data is often 
limited to certain areas and lithologies while others are almost completely disregarded. Such a reliability mapping 
would help to further increase the interpretative value of the resulting modelled stress states. At the same time, 
areas and lithologies that may need more data are identified.

However, the case study indicated that even a simple weighting provides additional legitimacy to the 
approach. If applied correctly and objectively weighted, the Bayesian approach contributes to a significant 
modelled stress state. Furthermore, it helps in identification of additional constraints that are not repre-
sentative in that they disagree with most or all model scenarios. Such an observation is not necessarily an 
indication for an erroneous constraint but can also indicate areas or locations that are not well represented 
in the model. This kind of feedback can then be used to identify the importance for the stress state of lateral 
deviations in rock properties or other features that are not included in the model. This highlights the fact that 
the Bayesian approach also provides valuable information for all parts of the modeling workflow. A detailed 
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analysis of the data records and weights serves as a control mechanism to consolidate the value of an entire 
model.

6. Conclusion
We present an approach to geomechanical modeling with quantified uncertainties that uses stress magnitude 
data to setup a range of possible model scenarios and additional constraints to evaluate the scenarios plausibility. 
We integrate the individual calibration data uncertainties and additional indirect stress information that provide 
upper and lower bounds of differential stress into a Bayesian framework. This results in individual weights of 
model scenarios and an identification of calibration data that area either erroneous or not suitable for the model 
calibration. Our Bayesian approach clearly manages in a formalized way the weights of the stress magnitudes 
and additional constraints and provides a final weight to the different model scenarios that describe the stress 
state. This allows an evidence-based interpretation of the model results in terms of its probability. Our case study 
shows that the presented approach positively identifies a small cluster of reliable model scenarios and discards 
less reliable ones through assignment of a very low weight. This results in a significant lower uncertainty of the 
modeled stress state.

Appendix A: Truth Model
The presented Bayesian approach aims to improve a stress model's significance by a weighting of model scenar-
ios. In the weighting approach, a range of model scenarios is setup and various indirect stress information are 
used to assess whether a model scenario is realistic or not. The applicability of the approach to correctly identify 
the correct stress state is verified by the application of a so-called truth model.

Therefore, a generic 5 × 5 × 5 km 3 model with three distinct units is setup. It is populated with realistic elas-
tic rock properties (Table A1). The model is subjected to displacement boundary conditions (x: −5.87 m, y: 
6.11 m) that result in an arbitrary, yet realistic stress state throughout the model. This stress state is defined as 
the “truth” and used as a reference to test the ability of the presented Bayesian approach to identify the correct 
stress state.

Two magnitudes of each Shmin and SHmax are extracted from the reference truth model. Noise and errors are 
added to these data in order to mimic a realistic pool of available stress magnitude data records that can be 
used for calibration (Table A2). Furthermore, the stress magnitude data are assigned a confidence that is 
based on expert elicitation. The described approach is applied which assigns a distribution to each of the 
stress data records. From each distribution new magnitudes are extracted at +/−2σ, +/−1σ and the mean 
value (Table A2). The total number of stress scenarios is the number of possible permutations of derived 
SHmax and Shmin stress data records. From each initial data record five individual data records are derived to 
account for measurement errors. From initially two SHmax data records 2 × 5 = 10 data points are derived. 
The same is for initially two Shmin data records. Eventually 10 SHmax and 10 Shmin data points are available. 
The possible number of combinations is 10 × 10 = 100 which is the number of stress scenarios that are 
solved.

Unit Young's modulus Poisson ratio Density UCS Tensile strength

Sediments 20 GPa 0.25 2,350 kg/m³ - -

Clay 10 GPa 0.29 2,500 kg/m³ 18 MPa 9 MPa

Basement 30 GPa 0.23 2,600 kg/m³ 250 MPa 12 MPa

Note. Uniaxial compressive strength (UCS) and tensile strength are only required for the analysis of borehole breakouts and 
drilling induced tensile fractures.

Table A1 
The Rock Properties of the Three Distinct Units Present in the Model
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Indirect additional data on the stress state is available in terms of FIT pressures, expected BOs and DITFs and 
on the stability of the lithological units are available (Table A3). Each of the additional information is assigned 
a confidence which for the borehole features is based on the proposed weighting schemes. Both BOs and DITFs 
feature a correct observation and an incorrect identification of natural fractures as a BO or DITF, respectively. 
The FITs are assumed to be very reliable and thus have a high confidence. The same is for the observation of 
seismicity and no seismicity where a high-quality broadband network is assumed to be in place for a long time 
already.

All the available information and weights are introduced in the Bayesian weighting approach. The final weights 
are shown in Figure A1 and are in good agreement with the true stress state, here identified by the boundary 
conditions that lead to the true stress state. The method is thus able to identify the optimal stress state even with 
noise added to the input data, which is expected to be the case for real data as well. Due to the generic nature of 
the truth model, the results in this test are exceptionally good. In the realistic case study with heterogeneities, 
anomalies, and additional sources of uncertainties the result of the Bayesian weighting approach cannot be 
assumed to be the single true stress state.

Furthermore, the truth model allows exploration of the individual contribution of the different additional data on 
the final result. This is indicated in Figure A2 where the final weight can be compared to the individual methods 
weights. In particular for the FIT based weights a significant deviation can be identified. For the rest of the meth-
ods, a general agreement with only slight deviations is observed. These findings indicate the necessity to apply 
more than one method in the weighting approach.

Method Depth Observation Confidence

FIT −1,750 25 MPa 1

−3,500 50 MPa 1

Borehole breakouts −3,500 Breakouts 0.85

−1,750 Natural fractures 0.1

Drilling induced tensile fractures −1,900 DITFs 0.91

−2,800 Natural fractures 0.15

Seismicity −4,000 Unit unstable 1

No seismicity −1,750 Unit stable 1

Table A3 
Compilation of the Indirect Information on the Stress State That Are Used in the Bayesian Weighting Approach

Component Depth Magnitude [MPa] Confidence Magnitudes for calibration derived from distribution [MPa]

SHmax −4,000 m 123 0.6 108.9 116.0 123 130.0 137.1

−1,300 m 55* 0.4 45.5 50.3 55 59.7 64.4

Shmin −4,000 m 69* 0.5 59.1 64.1 69 73.9 78.9

−1,300 m 10 0.7 9.1 9.8 10 10.4 10.9

Note. The true magnitudes are extracted from the truth model and noise is added where indicated by *. The distributions are 
created with a width according to the confidence. From these distributions data points for calibration are extracted at +/−2σ, 
+/−1σ and the mean value.

Table A2 
The Stress Data Records Available for the Calibration of the Model
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Figure A1. Bayesian weights for the 100 different modeled stress scenarios in (a) a 3D view, (b) a map view, and (c and d) side views. Each scenario is indicated by a 
dot and the Bayesian weight by its color and vertical position. The truth boundary conditions are indicated by the vertical lines in the two bottom plots.

Figure A2. Weights of the 100 modeled stress scenarios based on the individual methods that are used (a–e) and the final weight (f) considering all methods. The 
individual dots location along the y-axis indicate the weight according to a certain method, their color indicates the final weight. A deviation is in particular noteworthy 
for the Formation Integrity Test (FIT) data in (c). The truth models boundary conditions in x-direction are indicated by the vertical line.
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Appendix B: Data
The disclosed direct data for model calibration (Table B1) and indirect data (Table B2) are listed.

Stress comp. Type Magnitude [MPa] Quality TVD [m] Location Latitude Longitude Stratigraphic unit Reference

Shmin LOT Undiscl. C Undiscl. Sauerlach 47.972 11.668 Undisclosed Pers. comm. T. Fritzer

12.8 C 564 Unterhaching 48.057 11.598 Foreland Molasse (Drews et al., 2019)

21.8 C 1,372 Unterhaching 48.057 11.598 Foreland Molasse (Drews et al., 2019)

10.6 C 673 Unterföhring 48.057 11.598 Foreland Molasse Geovol Unterföhring GmbH

N/A 45.07 D 2,907 Kirchweidach 48.099 12.645 Jurassic (Backers et al., 2017)

Frict. Equil. 60.4 C 4,001 Sauerlach 47.972 11.668 Jurassic (Seithel et al., 2015)

62.0* D 3,300 Unterhaching 48.057 11.598 Jurassic (Budach et al., 2018)

47* D 2,500 Freiham 48.140 11.407 Jurassic (Backers et al., 2017)

83.1* D 4,375 Geretsried 47.872 11.435 Jurassic (Backers et al., 2017)

SHmax Frict. Equil. 116.3 D 4,001 Sauerlach 47.972 11.668 Jurassic (Seithel et al., 2015)

171.9* D 3,300 Unterhaching 48.057 11.598 Jurassic (Budach et al., 2018)

131* D 2,500 Freiham 48.140 11.407 Jurassic (Backers et al., 2017)

228.8* D 4,375 Geretsried 47.872 11.435 Jurassic (Backers et al., 2017)

Note. The qualities are assigned according to Morawietz et al. (2020). The asterisk signifies that the magnitudes are assumed for a strike slip regime. The corresponding 
magnitudes for a transtensional stress regime are documented in the according to references. The locations of the data records are displayed in Figure 6.

Table B1 
Disclosed Stress Magnitude Data From the Model Area

Location Latitude Longitude Well TVD [m] FIT pressure [MPa] Source

Pullach 48.068 11.527 Th1 719 12.32 Innovative 
Energie 
für Pullach 
GmbH (IEP 
GmbH)

1,802 29.14

Th2 770 12.83

1,915 32.56

48.041 11.501 Th3 837 10.62

2,108 31.24

Unterföhring 48.193 11.659 Th1 645 9.06 Geovol 
Unterföhring 
GmbH

1,462 20.56

Th2 619 8.66

1,434 19.85

Th3 673 9.59

1,698 22.65

Th4 753 10.58

1,604 24.78

Poing 48.186 11.793 Th1 207 3.33 Converted from 
effective 
stresses 
from Drews 
et al. (2019)

652 9.74

1,638 24.84

48.167 11.792 Th2 205 3.57

652 8.76

1,638 32.31

Note. The locations are displayed in Figure 6.

Table B2 
List of the Disclosed Formation Integrity Test (FIT) Data Records Used as Additional Constraints
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