
1. Introduction
The onset of precipitation in a convective updraft is usually followed by the formation of a convective downdraft. 
If the downdraft cuts off the supply of buoyant air, it ends the original convective updraft (Byers & Braham, 1949). 
In addition to their central role in the life-cycle of precipitating convection, other important aspects of downdrafts 
are the injection of free tropospheric air into the boundary layer as well as the downdraft-induced outflow at 
the surface. The mass flux of free-tropospheric air into the boundary layer has been proposed to play a central 

Abstract One important component of precipitating convection is the formation of convective downdrafts. 
They can terminate the initial updraft, affect the mean properties of the boundary layer, and cause strong 
winds at the surface. While the basic forcing mechanisms for downdrafts are well understood, it is difficult 
to formulate general relationships between updrafts, environmental conditions, and downdrafts. To better 
understand what controls different downdraft properties, we analyze downdrafts over tropical oceans in a 
global storm resolving simulation. Using a global model allows us to examine a large number of downdrafts 
under naturally varying environmental conditions. We analyze the various factors affecting downdrafts using 
three alternative methods. First, hierarchical clustering is used to examine the correlation between different 
downdraft, updraft, and environmental variables. Then, either random forests or multiple linear regression are 
used to estimate the relationships between downdraft properties and the updraft and environmental predictors. 
We find that these approaches yield similar results. Around 75% of the variability in downdraft mass flux and 
37% of the variability in downdraft velocity are predictable. Analyzing the relative importance of our various 
predictors, we find that downdrafts are coupled to updrafts via the precipitation generation argument. In 
particular, updraft properties determine rain amount and rate, which then largely control the downdraft mass 
flux and, albeit to a lesser extent, the downdraft velocity. Among the environmental variables considered, 
only lapse rate is a valuable predictor: a more unstable environment favors a higher downdraft mass flux and a 
higher downdraft velocity.

Plain Language Summary Once a cloud begins to rain, the air inside or below the cloud can gain 
negative buoyancy and sink to the ground. This downward movement of air is called a downdraft. Downdrafts 
can end the life cycle of a cloud and also result in strong, sometimes destructive, wind gusts at the surface. The 
basic driving forces for downdrafts are well understood. For example, we know that evaporation of rain and the 
associated latent cooling of air is usually critical in causing the air to become negatively buoyant. Even though 
the basic driving forces are known, many interrelated processes contribute simultaneously to the strength 
of the downdraft, making it difficult to predict the strength of a downdraft under specific conditions. In this 
study, we use an atmospheric simulation whose model domain spans the globe and can explicitly resolve rain 
clouds. Compared to previous studies, the use of a global domain allows us to study a very large number of 
rain clouds, and their associated downdrafts, which form under very different, naturally varying environmental 
conditions. Machine learning techniques and traditional statistical methods agree on the result that the strength 
of the downdraft can be well predicted if we know the strength of the updraft that caused the downdraft or, even 
better, if we know the amount of rain that an updraft produced. Surprisingly, we have found that downdrafts 
can be predicted only slightly better if we also know other environmental conditions of the air surrounding the 
downdraft, such as the temperature and/or humidity profiles.
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role for the equilibrium state of the tropical boundary layer (Raymond, 1995), though the importance of down-
drafts compared to other processes, in particular entrainment at the boundary layer top, is still under discussion 
(Hansen et al., 2020; Thayer-Calder & Randall, 2015; Torri & Kuang, 2016). The downdraft-induced outflow 
at the surface has been shown to aid the development of new convection at its leading edge, see for example, 
Purdom (1976), Tompkins (2001), Schlemmer and Hohenegger (2014), Torri et al. (2015), and can cause severe 
damage due to strong winds (e.g., Fujita & Wakimoto, 1981). Therefore, to correctly parameterize convection 
it is crucial to represent the effects of downdrafts as well as the effects of updrafts. A simple way of showing 
the impact of downdraft parameterization is to analyze the effect of turning it off. For example, turning off the 
downdraft parameterization in the Zhang-McFarlane convection scheme (Zhang & McFarlane, 1995) in the setup 
of Fuchs et al. (2022), leads to significant changes in the distribution of precipitation as well as in the mechanism 
causing precipitation, see Figure 1. This also demonstrates the importance of predicting downdraft properties 
correctly.

The basic forcing mechanisms for downdrafts are given by the vertical momentum equation; the significance of 
the individual terms is summarized in the literature review by Wakimoto (2001). He notes that the vertical gradi-
ent of perturbation pressure and the perturbation pressure buoyancy term were, in most cases, less important than 
the precipitation induced changes in buoyancy. In particular, precipitation changes the buoyancy of downdrafts 
through evaporative cooling (i.e., the thermal buoyancy) and through condensate loading. Of the two effects, 
evaporative cooling is thought to make the larger contribution (see also Torri & Kuang, 2016). The negative 
buoyancy of a downdraft depends not only on the air inside the downdraft, but also on the surrounding air. The 
buoyancy is given by the density difference between the downdraft and the surrounding air, which is additionally 
influenced by the degree of mixing between the two air masses. Numerical calculations, investigating how down-
draft strength depends on varying environments (e.g., Proctor, 1989; Srivastava, 1985, 1987), show a sensitivity 
to ambient environmental stability as well as humidity. More unstable lapse rates favor stronger downdrafts as 
unstable conditions help accelerate negatively buoyant air downward in the same way they help accelerate posi-
tively buoyant air upward. Srivastava (1985) notes that in the extreme case of an environmental lapse rate close to 
a dry adiabatic lapse rate, even light precipitation can lead to significant downdrafts. The dependence on ambient 
environmental humidity is less clear (see also Wakimoto,  2001). While a moister environment increases the 
virtual temperature difference between downdraft and environment, thus strengthening the downdraft, this effect 
can be reversed when the effect of entrainment of environmental air is considered. In particular, entraining dry 
air can enhance downdrafts as it can increase the evaporation rate. While Srivastava (1985) finds stronger down-
drafts at higher environmental humidity, Proctor (1989) notes that this sensitivity is height dependent: stronger 
downdrafts are favored by drier environments near the melting level but moister environments near the surface.

What complicates the interpretation of these results from numerical calculations is that they exclude the effect 
of the environmental conditions on the preceding updraft, even though this might impact the amount of available 

Figure 1. Relative changes in global precipitation between a simulation with and without downdraft parameterization. The simulations are run under Atmospheric 
Modeling Intercomparison Project conditions with prescribed sea surface temperature. Panel (a) shows the change on total precipitation (PRECT) and panel (b) shows 
the corresponding change in the precipitation as produced by the convection scheme itself (PRECC).
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precipitation. Trapp and Woznicki (2017) and Marion and Trapp (2019) therefore used a “top-down” approach to 
link updraft strength to outflow strength. Using high-resolution and small-domain atmospheric simulations, they 
studied the evolution of supercell thunderstorms under different environmental conditions, focusing on the rela-
tionship between environment, updrafts, and downdrafts. They found that a change in environmental conditions 
led to changes in the updraft mass flux, which had a proportional effect on the downdraft mass flux. Trapp and 
Woznicki (2017) and Marion and Trapp (2019) argue that this coupling between the updraft and downdraft mass 
fluxes happens via the precipitation-generation argument (Trapp & Woznicki, 2017). In particular, large updraft 
areas lead to the formation of large precipitating areas and thus large areas over which evaporative cooling and 
condensate loading lead to the formation of downdrafts. While the “top-down” approach expressly includes the 
indirect effect of environment on the downdraft mass flux, that is, the effect of the environment on the downdraft 
strength via the changing updraft mass flux, this approach makes it difficult to distinguish between the direct and 
indirect effects of the environment on the downdraft strength.

Formulating a dependence of downdraft properties on updraft and environmental properties has, therefore, long 
been a challenge for convective parameterization schemes. Tiedtke (1989), for example, assumes downdraft mass 
flux to be 20% of the updraft mass flux at cloud base (see their Equation 16) and constant with height (their Equa-
tion 17). This assumption makes the downdraft mass flux independent of any direct impact of the environment. 
This is different in Kain and Fritsch (1993), where the downdraft mass flux is again proportional to the updraft 
mass flux, but by a factor that depends on environmental conditions, in particular on the vertical shear of the 
horizontal wind and cloud-base height. In Zhang and McFarlane (1995), the proportionality constant between 
updraft and downdraft mass flux depends, among other factors, on ambient humidity. Based on the assump-
tion that downdrafts are kept in a saturated state by evaporation, the proportionality constant decreases in drier 
environments, where more evaporation is needed to keep downdrafts saturated (see their Equation 11). Thus, 
all else being equal, this parameterization leads to weaker downdrafts in drier environments. Finally, in a much 
more recently developed parameterization by Suselj et al. (2019), downdraft mass flux is, at the initialization 
level, equal in magnitude and opposite in direction to the corresponding updraft mass flux. The corresponding 
thermodynamic variables of the downdraft at the initialization level are set to the grid-mean values. This means, 
for example, that in a drier environment, downdrafts are, at least initially, drier. How much this environmental 
dependence at the initialization level impacts the downdraft at lower levels depends on their formulation of 
the entrainment and the evaporation rate. Downdrafts are, therefore, parameterized very differently in different 
convective parameterization schemes. Given the central role of downdrafts in the convective life cycle, and given 
that climate models rely on convective parameterization schemes, the goal of this study is to improve our under-
standing of how best to predict downdraft properties as a function of updraft and environmental properties.

The preceding discussion shows that it is difficult to formulate general relationships between updrafts, environ-
mental conditions and downdrafts even though the fundamental drivers for downdrafts are well understood. In 
this study, we therefore extend the “top-down” approach used by Trapp and Woznicki (2017) and Marion and 
Trapp (2019) to a more general setup by using a global atmospheric simulation to study precipitating downdrafts 
over tropical oceans. While a global simulation puts limits on the horizontal resolution as well as the output 
frequency, it provides three key advantages:

1.  A wide variety of different types of precipitating convection and environments is studied
2.  The variability in convection type and environment emerges “naturally,” that is, from the simulated 

cross-correlation functions instead of having to be fixed externally
3.  The large number of downdrafts allows us to explicitly address the question of how downdrafts depend on the 

environment in a direct and an indirect manner

This low-resolution, global-domain study therefore complements the high-resolution, small-domain studies and 
numerical calculations described above. In particular, it allows us to test the results of these studies under natu-
rally varying environmental conditions.

The structure of our paper is as follows. In Section 2, we introduce the atmospheric simulation, our method for 
detecting downdrafts as well as the three methods we use to analyze the resulting data set: hierarchical clustering, 
random forests, and multiple linear regression. In Section 3, we discuss the mean properties of the detected up- 
and downdrafts as well as the relationship we find between the updraft properties, environmental conditions and 
the downdraft properties. A possible explanation for the surprisingly small impact of environmental humidity on 
downdraft mass flux and velocity is given in Section 4. Our overall results are summarized in Section 5.
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2. Methods
2.1. Numerical Model Description

We use the ICON model version 2.1.02 (Icosahedral Nonhydrostatic Weather and Climate Model; Zängl 
et al., 2015) to perform a global atmospheric simulation for 20 days (1 August 2016 to 20 August 2016). To be 
able to simulate a global domain we use a quasi-uniform horizontal mesh of 5 km and 90 vertical levels with a 
grid spacing that increases from the surface to the top of the atmosphere at 75 km. While this is too coarse to 
fully resolve deep convection, the key advantage of a global domain is that convective events emerge naturally 
in a system where all scales from convective to global are modeled consistently. This allows us not only to 
obtain a large sample but, even more importantly, to sample convective systems in very different but realistically 
varying environments. In contrast, finer-scale simulations will better resolve convection but normally have unre-
alistic boundary, initial conditions or nudging, which could bias the results even though the convection is better 
resolved, and would provide a smaller sample size of independent drafts/storms.

In general, the setup of the simulation follows the protocol of the DYAMOND model intercomparison project 
(Stevens et al., 2019) and is identical to the setup used in Hohenegger et al. (2020) and the control setup in Bao 
and Windmiller (2021) but with an increased output frequency of 15 min (instantaneous fields) for the last 5 days 
of the simulation. Our main reason to increase the output frequency for only 5 days was to limit the size of the 
output data. Additional analysis shows that the model has not fully equilibrated after 15 days, but we expect 
that the characteristics of convection have reached a natural state by then. As in Hohenegger et al. (2020), the 
atmosphere in the simulation is initialized using the atmospheric state of the European Centre for Medium-Range 
Weather Forecasts on the 1 August 2016 at 00UTC and the bottom boundary is initialized based on the daily 
observed sea surface temperature and sea ice cover. The parameterizations used in the model are a microphys-
ics scheme (Baldauf et al., 2011), a radiation scheme (Rapid Radiative Transfer Model; Mlawer et al., 1997), a 
turbulent kinetic energy scheme for turbulent mixing (Raschendorfer, 2001), an interactive surface flux scheme 
as well as a soil model (Reick et al., 2013; Schrodin & Heise, 2002). The model does not use a parameterization 
scheme for gravity wave drag, nor one for convection, either shallow or deep. Note that the distribution of convec-
tive cloud heights in this setup has been shown to depend on horizontal resolution. In particular, Hohenegger 
et al. (2020) show that when systematically increasing the horizontal resolution from 80 to 2.5 km, the population 
of deep convective clouds increases at the expense of the population of shallow clouds. While this sensitivity is 
a limitation of our simulation that should be noted, the largest differences are found between simulations with a 
coarser or higher resolution than 20 km.

In the following, we use the model output from the days with increased output frequency, that is, the last 5 days 
of the simulation, and focus on tropical oceanic convection. We therefore exclude land and limit our analysis to 
23°S–23°N. The analysis domain is shown in Figure 2 along with the locations of the convective events, which 
are determined as described below. For simplicity, we have chosen a domain that is symmetric with respect to 
the equator, even though the position of the ITCZ is shifted significantly to the north in August. We obtain very 
similar results using only the northern half of this domain (not shown).

2.2. Extraction of Downdraft, Updraft, and Environmental Properties

In this study, we use the surface precipitation field to locate deep convection, the corresponding up- and 
downdrafts, and environmental conditions. In the following, we illustrate the details of our method for a small 

Figure 2. Location of convective events in the analysis domain. Each dot represents the geographic location of the center of mass of one of the 31,340 identified 
convective events. The black box indicates the outline of the sub-domain shown in Figure 3. Each event is considered as one instance in the machine-learning and 
multiple linear regression analyses.
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sub-domain in the Pacific Ocean (6° to 13° north and 162° to 169° east) during a period of 6 hr (00 UTC to 
06UTC 20 August 2016). The location of the sub-domain is indicated in Figure 2.

The basic idea of our method is to use the surface precipitation field to identify convective events and then, for 
each identified event, calculate the mean profiles of various properties of interest (e.g., updraft and downdraft 
velocities). We proceed in three steps to identify the relevant convective events:

•  Use the surface precipitation field to identify potential convective events
•  Split the vertical velocity field in a downdraft field and an updraft field
•  Restrict our analysis to convective events with coherent downdrafts

2.2.1. Precipitation

We start by applying a threshold to the 1-hourly averaged precipitation field and then use a cluster algorithm 
(four-neighborhood kernel) to detect connected areas. As wind shear may lead to a spatial displacement between 
updraft, downdraft, and surface precipitation, we use a small precipitation threshold (0.1 mm hr −1) to capture 

Figure 3. Illustration of the method to determine the convective events and the associated downdrafts (on 20 August 2016). (a) Mean surface precipitation in units 
of mm h −1 (time average calculated from 02:30 to 03:30 UTC), (b) areas of the identified convective events (colors) and the “environment” of the convective event at 
167.7°E and 10.35°N (gray box), (c) pressure vertical velocity at a height of 1 km at 03:30 UTC in units of Pa s −1, (d) the corresponding downdraft field, also in units of 
Pa s −1 and the sub-domain further analyzed in Figure 4 (green box). The areas of the convective events rejected due to our condition for coherent downdrafts are shown 
with dashed lines (see text for details).
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comparatively large “convective” areas. For our sample data set, the averaged precipitation field and the corre-
sponding identified events are shown in Figures 3a and 3b.

2.2.2. Vertical Velocity

Figure 3c shows the hourly averaged vertical velocity field as well as the outline of the areas of the convective 
events corresponding to Figures 3a and 3b. Note that the vertical velocity field is only an approximation of a 
true hourly average, as it is calculated from averaging the quarter-hourly instantaneous vertical velocity fields. In 
Figure 3c, strong absolute vertical winds, which we identify as downdrafts and updrafts, occur mainly within the 
areas of the convective events. Outside these areas, vertical winds are generally much weaker and probably due to 
gravity waves. Visual inspection suggests that by applying a threshold of 1.0 Pa s −1 or higher for downdrafts and 
−1.0 Pa s −1 or lower for updrafts to the instantaneous velocity field before calculating the temporal average, as 
indicated by 〈⋅〉, we can split the vertical velocity field in a downdraft and an updraft field and, at the same time, 
remove most of the background signal (see e.g., Figure 3d).

2.2.3. Coherent Downdrafts

Note that we limit our analysis to deep convective events with coherent downdrafts, thus not all the areas with 
high enough precipitation rate are actually identified as convective events of interest (the areas corresponding to 
the rejected events are marked with dashed lines in Figure 3). To identify coherent downdrafts, we require at least 
one horizontal grid location to have hourly averaged vertical velocity of at least 1.0 Pa s −1 on all model levels 
from 1 to 3 km. An illustration of this criterion is shown in Figure 4, where we visualized the downdraft velocity 
at different heights for the sub-domain shown in Figure 3d. Note that this criterion could lead to a rejection of 
tilted downdrafts in particular. To test the sensitivity of our results to this criterion, we repeated our analysis using 
an alternative criterion which is at same time stricter in identifying downdrafts and updrafts within one level but 
less strict concerning the vertical overlap. To this end, we increased the threshold for downdrafts and updrafts at 
a single level but only require the consistent downward motion to be larger or equal to 0.5 Pa s −1. While using 
this alternative criterion increased the number of detected downdrafts by almost 50%, it had otherwise almost no 
impact on the results (not shown).

2.2.4. Properties Extracted for Each Convective Event

After identifying the convective events of interest, the corresponding downdraft, updraft and environmental 
profiles can be calculated for each event. An overview of these properties and how we determine them is given 

Figure 4. Illustration of the criterion for coherent downdrafts. Time averaged downdraft fields (see text for details) at four different heights with events matching our 
criterion marked by solid lines while events not matching our criterion are marked by dashed lines.
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in Table 1. In particular, downdraft (updraft) profiles are calculated by horizontal averaging of the respective 
thresholded fields at each altitude level within the areas corresponding to the different convective events. As 
we consider the time evolution of updraft and downdraft velocity, we use the updraft and downdraft fields from 
2.5 hr before to 2.5 hr after the 1 hr time interval used for averaging the precipitation field. Note that we limit 
our analysis to the last 5 days of the simulation because the increased output frequency during this period allows 
us to calculate up- and downdraft profiles every 15 min. In addition to the updraft and downdraft profiles, we 
calculate profiles of the environmental conditions for each event. To this end, we calculate the center of mass 
of the area of each convective event and horizontally average the environmental fields at each height within a 
200 km × 200 km box centered around this point, for an example see Figure 3b. Note that the chosen size of the 
box represents a trade-off between a box that is too small, for which we would largely capture conditions within 
the convective clusters themselves, and a box that is too large, for which environmental conditions may not be 
representative of the environment experienced by the downdraft. To estimate the largest distance from the center 
of mass of a convective event within which the environmental conditions are consistent, we calculated the radi-
ally averaged auto-correlation function for the relative humidity (RH) as well as for the temperature field within 
the region shown in Figure 3. Based on this, we find that the humidity and temperature of two locations are, on 
average, uncorrelated when they are farther than about 100 km apart. We therefore chose a box size that extends 
±100 km around the center of mass.

We consider here downdraft (updraft) velocity, area and the resulting mass flux separately. Downdraft and updraft 
area are defined as the area of one grid cell (25.0 km 2) times the number of grid cells where the velocity is larger/
smaller than the corresponding threshold value. Downdraft and updraft velocity are averaged within the corre-
sponding areas and given in units of Pa s −1. Finally, the total mass flux is calculated by dividing either downdraft 
or updraft velocity by standard gravity (9.81 m s −2) and then multiplying it with the respective area. We define 
downdraft mass flux to be positive and updraft mass flux to be negative. For rain-water mixing ratio, we use the 
area of the convective event (Ac) to calculate the average rain-water mixing ratio, qr, within this area at each level. 

Table 1 
Properties Extracted for Each Convective Event and, if Applicable, the Location and Time at Which the Different Features Are Analyzed Using Hierarchical 
Clustering, Random Forests, and Multiple Linear Regression

Feature
Physical 
field(s) Horizontal Rep. time Rep. height Method

Downdraft area (m 2) ω ≥ 1.0 Pa s −1 (see Section 2) t.s. at which maximal 1 km Size of area where the vertical velocity is larger than the 
threshold

Downdraft velocity (Pa s −1) ω ≥ 1.0 Pa s −1 〈·〉updraft area t.s. at which maximal 1 km

Downdraft mass-flux (kg s −1) ω ≥ 1.0 Pa s −1 (see Section 2) t.s. at which maximal 1 km Downdraft area times downdraft velocity divided by 
standard gravity

Updraft area (m 2) ω ≤ 1.0 Pa s −1 (see Section 2) t.s. at which maximal 5 km Size of area where the vertical velocity is smaller than the 
threshold

Updraft velocity (Pa s −1) ω ≤ 1.0 Pa s −1 〈·〉downdraft area t.s. at which maximal 5 km

Updraft mass-flux (kg s −1) ω ≤ 1.0 Pa s −1 (see Section 2) t.s. at which maximal 5 km Updraft area times updraft velocity divided by standard 
gravity

qr (g kg −1) qr 〈·〉convective event t.s. at which maximal 3 km

𝐴𝐴 𝐴𝐴tot

𝑟𝑟  (g kg −1 m 2) qr ∫convective event⋅ t.s. at which maximal 3 km

CAPE/CIN (J kg −1) T, p, and RH 〈·〉environmental area 〈·〉−1 to −0.5 hr – Most unstable parcel found between the surface and 400 hPa

DCAPE (J kg −1) T, p, and RH 〈·〉environmental area 〈·〉−1 to −0.5 hr – Based on the min. 100 hPa layer averaged Θe found in the 
lowest 400 hPa

RH (–) RH 〈·〉environmental area 〈·〉−1 to −0.5 hr 〈·〉1 km–3 km

CWV (mm) CWV 〈·〉environmental area 〈·〉−1 to −0.5 hr –

Γv (K km −1) Tv 〈·〉environmental area 〈·〉−1 to −0.5 hr 〈·〉1 km–3 km Vertical gradient of Tv times minus one

Lat/lon (◦) c.o.m.

Note. The environmental area is set to a 200 km × 200 km box centered around the center of mass, and the reference time for averaging is the time where surface 
precipitation peaks. Note that the center of mass of the convective area is denoted as c.o.m and time-step as t.s.
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The total rain-water mixing ratio 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  is then given by qr ⋅ Ac. To characterize 
the environment, we focus on environmental RH, virtual temperature lapse 
rate (Γv = −∂zTv), column water vapor (CWV), convective available poten-
tial energy (CAPE), convective inhibition (CIN), and downdraft convective 
available potential energy (DCAPE). CAPE, CIN, and DCAPE are calculated 
from environmental temperature, pressure and humidity profiles using the 
SHARPpy module, version 1.4.0, from Blumberg et al. (2017). For the calcu-
lation of CAPE and CIN we use the most unstable parcel found between the 
surface and 400 hPa, that is, we set the argument flag in the parcel routine 
of SHARPpy equal to three. DCAPE in SHARPpy is calculated based on 
the minimum 100 hPa layer averaged Θe found in the lowest 400 hPa of the 
sounding. Finally, we also consider the geographic location of the center of 
mass of the event (lon and lat).

2.3. Methods to Analyze Different Controls on Downdraft Strength

Based on the literature review in Section 1, we have constructed a causal model 
for downdraft formation, shown in Figure 5. In this model environmental condi-
tions lead to the formation of updrafts, which then—again depending on envi-
ronmental conditions—lead to the formation of condensate. Finally, condensate 
and the given environmental conditions can cause the formation of downdrafts. 
We hereby refer to the effect of the environment through its effect on the updraft 
and condensate as an indirect environmen tal effect, and its effect directly on the 
downdraft as a direct environmental effect. Before discussing the physical prin-
ciples on which this model is based, it is important to note that this is already 
a simplification of the actual process that occurs in nature. For example, the 
model does not account for any changes in the environmental conditions caused 
by the updraft which then affect the environmental conditions for the downdraft.

A few causal relationships are suggested by past work (see Section 1). First, 
higher environmental instability, as measured for example, by the lapse 

rate, should clearly favor stronger updrafts and downdrafts. However, the influence of ambient humidity is less 
straightforward. It has been shown that deeper clouds and stronger updrafts tend to form in more humid envi-
ronments. A simple explanation is that entrainment of moist air has much less negative impact on updrafts than 
entrainment of dry air. However, two opposing processes have been suggested for a direct effect of humidity on 
downdrafts. On the one hand, drier environments reduce the density difference between the environment and the 
downdraft (leading to weaker downdrafts); on the other hand, entrainment of dry air promotes evaporation, which 
increases the density of the downdraft air (leading to stronger downdrafts). While we focus here only on these 
two environmental characteristics (measured in various quantities), this is not an exclusive list. For example, 
other studies have investigated the effect of wind shear (e.g., Marion & Trapp, 2019). In addition to these known 
unknowns, there is of course always the possibility of unknown unknowns. Here, we attempt to address the prob-
lem of unknown unknowns, at least in part, by also considering the spatial location of the convective events. If we 
found that the location of the convective event is an important predictor, this would indicate that we have missed 
an important environmental variable that varies with longitude and latitude.

In addition to the environmental effects we also briefly summarize the expected relationship between updraft 
and condensate on the one hand and downdraft on the other, based on the results of Trapp and Woznicki (2017) 
and Marion and Trapp  (2019). Following the precipitation formation argument presented in Trapp and 
Woznicki (2017), we expect that a crucial link between updraft, condensate, and precipitation is the updraft area. 
The reason is that a larger updraft area leads to a larger precipitation area, which in turn leads to a more extended 
downdraft. Since this explanation focuses only on the extent of the downdraft and not its velocity, we will exam-
ine the dependence on downdraft velocity separately. We expect that more condensate, that is, a higher rainwater 
mixing ratio, will lead to more evaporation and condensate loading and thus to stronger downdrafts.

In the following, we apply two different machine learning algorithms as well as multiple linear regression to 
analyze how the detected downdrafts depend on the respective updraft and the environment. In accordance with 
the parlance of machine-learning, we refer to each convective event as one instance of our data set and to the 

Figure 5. Conceptual model to illustrate the possible causal links investigated 
here for downdraft formation including direct and indirect environmental 
effects.
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properties of a given convective event as the features of this instance. We first use a method called Hierarchical 
Clustering to identify clusters of strongly correlated features. Next, using an alternative method called Random 
Forests, we derive a model that allows us to predict the features of the downdrafts (i.e., our target features) from 
the updraft and environmental features (i.e., our input features or predictors) and examine their relationship. We 
will briefly discuss each of these methods here; for more details see for example, Howard and Gugger (2020). 
Finally, we use multiple linear regression, that is, a well-known method from classical statistics, to test the 
machine learning results and derive a simple, linear model for predicting downdraft features. Feature hierar-
chy, random forests, and multiple linear regression are calculated using the scikit-learn library version 0.22.1 
(Pedregosa et al., 2011) in Python version 3.6.10 (e.g., Sanner, 1999).

Using the method described in Section 2.2, most features in Table 1 are available for a range of time and height 
values. To simplify the subsequent analysis, we represent each feature for each instance by a representative value 
as summarized in Table 1, where 𝐴𝐴 ⟨⋅⟩𝑡𝑡min to 𝑡𝑡max

 again denotes temporal averages for the time interval [tmin, tmax] 
and 𝐴𝐴 ⟨⋅⟩ℎmin to ℎmax

 denotes vertical averages for the height range [hmin, hmax]. For each downdraft, updraft, and 
condensate feature, we choose, for example, the maximum (absolute) value at a specified height level, that is, the 
value at the time step where the absolute value of the respective variable is maximum. We test the sensitivity of 
our results to the chosen height of the downdraft features in Section 3.2. The environmental and parcel variables 
are averaged in time and (if applicable) in height. In particular, we use time averages of the 30 min time interval 
before the interval considered for the precipitation field, to ensure that the environmental variables are not modi-
fied by the convection itself. To ensure that our results are not sensitive to the chosen averaging times and heights 
for the environmental and parcel features, we also used a range of different starting times (tmin in the range −3.0, 
−2.0, and −1.0 hr) and, if applicable, heights (hmin in the range 1.0, 2.0, and 3.0 km and hmax = hmin + 1.0 km). 
Including all the differently averaged environmental and parcel quantities as additional input features for predict-
ing the downdraft features, we found neither a significant increase in skill nor a change in the importance of the 
key type of input feature.

2.3.1. Hierarchical Clustering

The aim of hierarchical clustering is to create a ranking of how similar different features are to each other. In our 
case, the similarity of two features is given by the absolute value of the Spearman's rank correlation coefficient 
|rs|. The clustering is performed in a successive and agglomerative manner. First, the two features which have 
the highest correlation coefficient are combined in one cluster. Second, for all remaining features and the cluster 
created in the first step, the correlation coefficients are calculated for each possible pair and, again, the pair with 
the highest correlation is combined into one cluster. Note that the rs of a feature and a cluster is calculated as the 
average of the pairwise calculated rs between the single feature and the individual features in the cluster. This 
process is continued until all features have been combined into a single cluster. The key information provided by 
hierarchical clustering is usually in the highly correlated clusters, that is, the clusters that form at high |rs|. If we 
want to understand how a target feature (e.g., downdraft velocity) depends on a set of input features (e.g., updraft 
and environmental properties), it is useful to distinguish between highly correlated clusters with and without the 
target feature. If the target feature is part of a cluster, one can conclude that the input features in that cluster are 
important to the target feature. In contrast, if the target feature is not in a cluster, we can try to reduce the total 
number of input features (and thus the complexity of the problem) by selecting a representative feature from that 
cluster. Finally, it can also be interesting to test our expectations by noting whether the features we expect to be 
highly correlated actually end up in the same, highly correlated cluster. In the following, for instance, we use the 
results of hierarchical clustering to decide which downdraft properties need to be investigated separately and 
which are so closely correlated that they can be considered together.

2.3.2. Random Forest

A random forest is a model which is trained to predict a target feature (in our case downdraft properties) from a 
set of input features (updraft and environmental properties). To understand how a random forest is trained and 
how it makes its predictions, we first need to look at decision trees, as they are the key ingredient of the model. 
In a decision tree, a prediction is made by successively answering a set of yes and no questions with respect 
to the input features. Each question is referred to as a branch of the decision tree. This can best be illustrated 
using the example of a very small decision tree, see Figure 6, where we predict the downdraft velocity from the 
updraft velocity by asking two questions. The first question is always “Is the updraft velocity smaller or equal 
to −9.5 Pa s −1?” If the answer to this question is True, the second question is “Is the updraft velocity smaller or 
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equal to −13.0 Pa s −1?” If the answer to the first question is False, the second question is “Is the updraft velocity 
smaller or equal to −7.0 Pa s −1?” Depending on the updraft velocity, this tree will predict a downdraft velocity 
of either 3.4, 3.0, 2.7, or 2.5 Pa s −1. For example, a downdraft velocity equal to 2.7 Pa s −1 would be predicted for 
all convective events which have an updraft velocity larger than −9.5 Pa s −1 (answer to first question is False) 
and smaller than −7.0 Pa s −1 (answer to second question is True). This scenario has been highlighted in blue in 
Figure 6.

If we know what the true downdraft value is, we can test how well the downdraft was predicted by the model 
by comparing it to the true value, for example, by calculating the squared difference between the two. While 
the number of questions to ask, the so called depth of the tree dtree, is specified in advance, which questions to 
ask in which order is learned by the model during training. During training, we pass a subset of all instances, 
that is, convective events, to the model (the so called training data set). The resulting decision tree is the model 
where the mean squared error between all the predicted values of the target feature, that is, the values we obtain 
after answering all questions for each element in the training data set, and the actual values of the target feature 
is smallest. The mean squared error of the final model can, for example, be calculated by multiplying the mean 
squared error within each leaf with the fraction of instances in this leaf and then summing over all leaves. For the 
decision tree shown in Figure 6, for example, the mean squared error is approximately 0.6. The simple decision 
tree therefore reduced the mean squared error of the climatological forecast, here equal to 0.7, by about 15% 
(0.6/0.7 ≈ 85%). To finally assess the performance of the model, we use all instances not used during training, the 
so called validation data set. For each instance in the validation data set, we use the model to predict the value of 
the target feature and then compare the predicted values to the true values. Note that either in addition to, or even 
instead of, dtree we can also specify a minimum number of convective events (Nmin) which have to fall into each of 
the final categories or “leaves.” If only Nmin is specified, the maximum number of branches is reached when each 
new question would lead to a final leaf containing fewer than Nmin instances.

While a single decision tree can already predict the target feature from a set of input features, it has been shown 
by Breiman (2001) that a more robust model is obtained by training an ensemble of decision trees and using the 
mean outcome as prediction. A model made up of an ensemble of decision trees, trained on randomly chosen 
subsets of the data, is known as a random forest. Breiman (2001) showed that, in general, an ensemble approach 
can improve the accuracy of any prediction method, if this method is unstable, that is, when small changes in the 
training data set can lead to different predictions. In the case of decision trees, for example, this is the case when 
many trees fit the training data set about equally well. This problem is circumvented in the ensemble approach 
by training each of the decision trees in the ensemble (Ntrees) on a given number of instances from the training 
data set (Nsamples) using random sampling. As noted above, the prediction of a random forest is then given by the 
average prediction of all individual trees. As for a single decision tree, the performance of the model is assessed 
by calculating the total mean squared error between the predicted and the actual values of the target feature in 
the validation set.

Figure 6. A sample decision tree which predicts downdraft velocity from updraft velocity, where value is the predicted 
downdraft velocity, samples is the fraction of instances which fall into this category and mse stands for the total mean squared 
error of all instances in this sample.
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To train a random forest on a given data set one therefore has to make the following decisions. First, one has to 
specify the properties of the decision trees by choosing their depth dtree and/or minimum number of instances 
in each leaf (Nmin). Second, one has to decide on the number of decision trees in the random forest (Ntrees), the 
number of training instances used for the individual trees (Nsamples) and how these are chosen (e.g., random 
sampling with or without replacement). While this seems like a large set of choices, one key advantage of random 
forests is that they are very robust with respect to these choices (e.g., Howard & Gugger, 2020); in particular, 
increasing the number of trees does not lead to overfitting.

For our purpose, it is important to note that random forests can not only be used to make predictions but, by 
understanding how these predictions were made, we can try to learn something about how the target feature 
depends on the input features. To this end, we will assess the feature importance as well as the partial depend-
ence once we have trained our random forest. Feature importance can be used to assess which input features are 
important for predicting the target feature and which are not. In particular, feature importance quantifies how 
much improvement in the model results from decisions made regarding each of the input features separately. This 
is quantified by determining for each input feature, what fraction of the total reduction in the mean squared error 
of the model, compared to the climatological forecast, results from decisions made regarding this feature. While 
feature importance reveals which of the input features are most relevant for predicting the target feature, partial 
dependence quantifies how the target feature depends on the input features. The key idea is to measure how the 
mean value of the target feature, as predicted by the random forest, changes if we artificially change the values 
of one of the input features.

Specifically we use the trained model, keeping the values of all input features as they were, except for the values 
of the one input feature whose influence we want to discover. For this selected input feature, we replace the 
original values throughout the data sample by a fixed value stepped through a range. The resulting changes in 
prediction reveal the impact of that input feature with others held fixed.

2.3.3. Multiple Linear Regression

In multiple linear regression, the residual sum of squares between the input features, that is, the updraft and envi-
ronmental properties, and the target features, that is, the downdraft properties, is minimized by fitting a linear 
model. Whether linearity can be assumed between the input and target variables can be seen, at least to some 
degree, from the partial dependence plots described above.

How much of the variation in downdraft properties can be explained by the variation in input features is again 
indicated by the coefficient of determination. The contribution of the various updraft and environmental proper-
ties to the coefficient of determination is also a robust measure of their individual importance in predicting the 
downdraft properties. In particular, one can assess how much an individual feature contributes to the coefficient 
of determination by removing that feature from the set of input features and determining by how much the coef-
ficient of determination decreases as a result. Note, however, that the presence of highly correlated predictors 
makes it difficult to generalize these results. For example, removing a single input feature but keeping features 
that are highly correlated with that feature means that the contribution of the single input feature can be compen-
sated, at least to some extent, by the remaining features. In the following, we will therefore also remove entire 
sets of highly correlated input features as identified by hierarchical clustering in order to evaluate their relative 
importance.

3. Results
3.1. Mean Properties of Updrafts and Downdrafts

Applying the above described method to our data set, we detect more than 30,000 convective events. The location 
of the detected events is shown in Figure 2. As expected, the convective events are found in areas known to have 
strong deep convective activity/high precipitation rates.

The time evolution of surface precipitation rate, rain water mixing ratio, updraft mass flux, and downdraft mass 
flux during a composite event is shown in Figure 7. Note that for each detected convective event we define the 
time step of peak precipitation as time zero before averaging. By construction, peak precipitation rates there-
fore occur at time zero, which is also the time at which rain water mixing ratio maximizes at a height of about 
3.5 km (Figure 7a). As expected, updraft mass flux peaks before, and downdraft mass flux peaks after, surface 
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precipitation. In fact, maximum updraft mass flux most frequently peaks 15 min (corresponding to one output 
time-step) before and maximum downdraft mass flux 15 min after the time of peak precipitation. The updraft 
mass flux (Figure 7b) shows a single, pronounced maximum just above the freezing level at a height of about 
5 km. The vertical profile of the downdraft mass flux shows a two peaked structure (Figure 7c). One peak occurs 
close to a height of 3.7 km, about 1 km below the freezing level, and a second, more pronounced peak, closer to 
the surface at about 1.5 km.

3.2. Controls on Downdraft Strength

3.2.1. Hierarchical Clustering

The result of hierarchical clustering (see Section 2.3) applied to our data set can be seen in form of a dendrogram 
in Figure 8. The first thing we note is that the downdraft, updraft, and condensate variables are all contained in 
two, basically uncorrelated, clusters. In the following discussion we restrict ourselves to the discussion of these 
two clusters, highlighted in blue and orange. First, the blue cluster which contains total updraft mass flux, total 
amount of rain-water 𝐴𝐴

(
𝑞𝑞tot

𝑟𝑟

)
 , updraft area, downdraft mass flux, and downdraft area. We note that this cluster 

contains, of all the considered variables, the most strongly correlated variables with particularly strong correla-
tion between, on the one hand, the updraft and condensate variables, and, on the other hand, the downdraft vari-
ables. Second, the orange cluster which contains updraft velocity, mean rain-water mixing ratio and downdraft 
velocity. As in the blue cluster, updraft velocity is best correlated with the rain related variable, followed by the 
downdraft variable. Compared to the blue cluster, however, the correlation coefficients are smaller. Note that 
the blue cluster contains all updraft/downdraft variables which depend on the area of the convective event while 
the orange cluster contains all updraft/downdraft variables independent of the area. In analogy to thermodynam-
ics, we refer to the variables in the blue cluster as extensive variables and the variables in the orange cluster as 
intensive variables. Thus, Figure 8 shows that in our study the extensive and the intensive variables are almost 
uncorrelated to each other. We also note that within the two clusters the updraft variable(s) are most correlated 
to the precipitation variable and, together, they are then most correlated to the downdraft variable. The degree of 
correlation is, however, significantly higher for the extensive than the intensive variables.

This analysis suggests two things regarding our initial question of what determines downdraft mass flux. First, 
downdraft mass flux and area are most correlated with the variables updraft area, mass flux and the total amount of 
rain-water, 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  . This result agrees well with the precipitation generation argument by Trapp and Woznicki (2017). 
Second, downdraft mass flux and velocity (as well as updraft mass flux and velocity) are not strongly correlated 
to each other. As the total mass flux is the product of velocity and area, this result suggests that the coupling 
between updraft and downdraft happens via the area, again in agreement with Trapp and Woznicki (2017). To 
further analyze the respective importance of the downdraft area and velocity on the downdraft mass flux, we 
trained a random forest that predicts the downdraft mass flux from the downdraft area and the downdraft veloc-
ity. We find that the downdraft area has a feature importance of 87% and the downdraft velocity of 13%. This 
confirms that in our study the downdraft mass flux is mainly controlled by the area rather than the velocity. In the 

Figure 7. Composite average time evolution of the precipitation rate (solid white line) and (a) rain water mixing ratio, (b) updraft mass flux, and (c) downdraft mass 
flux (colors), with respect to the time of peak precipitation (0 hr) calculated over all detected events. The dotted white line is the average height of the freezing level 
(4.7 km).
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following, we will use a random forest approach to investigate what controls downdraft mass flux and velocity. 
Based on the results above, we will investigate what controls these two downdraft properties separately.

3.2.2. Random Forests

We train two random forests, as described in the previous section, one for downdraft mass flux and one for down-
draft velocity. Excepting the downdraft properties, all properties in Table 1 are used as input features. We start 
by randomly splitting the N = 31,340 convective events into a training data set, Ntrain = 21,938 events (70% of the 
data), and a validation data set, Nvalid = 9,402 events (30% of the data). The two random forests we train consist 
of 50 decision trees each, that is, Ntrees = 50. For the decision trees, we do not prescribe the depth of the tree but 
only require that each of the final categories contains at least Nmin = 50 instances from the training data set. For 
sampling, we use random sampling with replacement (i.e., bootstrap sampling) and the number of samples drawn 
from the training data set for each tree is Nsamples = Ntrain. This means that the estimated fraction of unique events 
used for each tree is about 63%, as the expected fraction of unique elements when drawn k times from a sample 
of size N is, following standard statistics, equal to 1 − (1 − 1/N) k with, in our case, N = Nsamples and k = Ntrain. 
Using the resulting random forests to predict the target feature in the validation data set we find that the random 
forests can predict downdraft mass flux with a coefficient of determination of 76% and downdraft velocity of 
37%. Thus, while there is only moderate predictability in downdraft velocity from the input features, there is high 
predictability for downdraft mass flux.

The feature importance factors of the individual input features for the two random forests are shown in Figure 9. 
By far the most important input feature for predicting downdraft mass flux is the total amount of rain water, and 
for downdraft velocity the average rain water mixing ratio. This result does not suggest that the mass flux or 
velocity of the updraft is irrelevant to the corresponding downdraft quantity, but rather shows that the essential 
role of the updraft is to determine how much rain water is available. One way of showing this more explicitly 
is by removing 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  as an input feature from the random forest predicting downdraft mass flux, after which we 
find that the value of R 2 decreases only by 3%. In contrast, if we train a random forest which has neither 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  , nor 
the updraft mass flux, nor the area as input feature, R 2 drops to 27% (−49%). Taken together, this indicates that 
when predicting downdraft mass flux it is better to know how much rain water is available than to know how 
strong the updraft was, but also, that much of the information about 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  is already contained in the updraft mass 
flux. A similar, though less pronounced, picture emerges when removing qr from the set of input features for the 

Figure 8. Dendrogram showing the hierarchy of clusters for the different features detected for each convective event and 
the corresponding absolute value of the Spearman's rank correlation coefficient |rs|. The cluster containing the extensive 
(intensive) updraft/downdraft properties is marked in blue (orange).
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random forest predicting downdraft velocity. Again, R 2 decreases but again only by a small fraction of 5%, while 
removing all updraft and precipitation related properties at the same time leads to a R 2 value of only 25%. Thus, 
the following picture emerges: downdrafts are mainly controlled by the availability of rain water, which, in turn, 
strongly depends on the preceding updraft. These results, therefore, support the precipitation generation argument 
from Trapp and Woznicki (2017). Considering the environmental properties, the lapse rate appears to play some 
role in controlling downdraft mass flux as well as velocity, while we find environmental RH to be of very little 
importance. Strikingly, there is also very little dependence on any of the parcel related properties. Finally, note 
that the weak dependence on the location of deep convection suggests that we do not miss any important environ-
mental property which systematically varies with geographic location.

To understand how downdraft mass flux and velocity depend on a set of input features, Figure 10 shows the 
partial dependence on the amount of rain water, environmental lapse rate, and environmental RH. To facilitate 
comparison of the results for downdraft mass flux and downdraft velocity, we normalize each of the two variables 
by first subtracting the mean value and then dividing by the corresponding standard deviation. As expected from 
the feature importance plot, the dominant relationship is between rain water and downdraft mass flux. In particu-
lar, more rain water present at a height of 3 km means stronger downdrafts at a height of 1 km. This relationship is 
much stronger for downdraft mass flux compared to downdraft velocity. The dependence on environmental lapse 
rate is shown in Figures 10b and 10e. While we do find that stronger downdrafts form in regions with higher lapse 
rates, that is, more unstable environments, the dependence is weak compared to the dependence on rain water. For 
environmental RH, no dependence of downdraft mass flux is visible in Figure 10c and only a very weak depend-
ence of downdraft velocity (faster downdrafts in drier environments) can be seen in Figure 10f.

3.2.3. Multiple Linear Regression

Next, we use multiple linear regression to fit two linear models, one for downdraft mass flux and one for downdraft 
velocity. Note that the base MLR assumption of linear relationships is supported by the partial dependence results 
in Figure 10, at least for the shown variables. The resulting R 2 values are 75% for downdraft mass flux and 36% for 
downdraft velocity (Figure 11). These values are, therefore, almost identical to the ones we found for the decision 
tree method above (76% for downdraft mass flux and 37% for downdraft velocity). The corresponding regression 
coefficients are shown in Table 2. Considering only the signs of the coefficients, we find that we again get stronger 
downdraft mass flux and velocities for more unstable and drier environments. Stronger downdraft mass flux for 
larger values of the extensive updraft variables and stronger downdraft velocities for the intensive updraft variables.

As described in Section 2.3, we determine the relative importance of the different variables by assessing how 
much they contribute to the coefficient of determination. Considering all variables individually, we find that 
the strongest reduction in R 2 for downdraft mass flux results from the removal of 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  (3.1%) and the strongest 

Figure 9. Feature importance factors for all input features for the random forest predicting (a) downdraft mass flux and (b) downdraft velocity.
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reduction in R 2 for downdraft velocity from the removal of qr (5.5%). As the results from hierarchical clustering 
show, some variables are so strongly correlated that we should really assess their combined effect on R 2. To this 
end, we have divided the dependent variables into four categories of strongly correlated variables. In particular, 
we divide our variables into extensive variables (updraft mass flux, updraft area, 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  ), intensive variables (qr, 
updraft velocity), parcel variables (CAPE, CIN, and DCAPE), humidity variables (RH, CWV), and the stability 
variable (Γv). This division is, of course, not unique but it is best suited to test the key results found above.

The results are shown in Figure  11. In agreement with our results above, we find that the extensive updraft 
variables are the most important variables for downdraft mass flux, the intensive updraft variables the most 

Figure 10. Partial dependence plots for the dependence of normalized downdraft mass flux on (a) total amount of rain water, (b) environmental lapse rate, (c) 
environmental humidity. The same for normalized downdraft velocity on (d) rain water mixing ratio, panels (e and f) same as panel (b and c).

Figure 11. Reduction of R 2 caused by excluding different categories of input features in the multiple linear regression model for (a) downdraft mass flow and (b) 
downdraft velocity.
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important variables for downdraft velocity, and the environmental stability is 
again the most important environmental variable. This confirms the robust-
ness of the results from the random forest approach, but also suggests that the 
key dependencies of downdraft mass flux and downdraft velocity can be well 
approximated by linear models.

We therefore derived a set of strongly simplified linear models for downdraft 
mass flux

𝑚𝑚down = −0.3𝑚𝑚up + 1.7 × 10
7kg s

−1 with𝑅𝑅2
= 0.59 (1)

�down = −0.3�up + 9.4 × 107kg km K−1 s−1Γ�

−51.6 × 107kg s−1 with�2 = 0.62
 (2)

and downdraft velocity

𝜔𝜔down = −0.1𝜔𝜔up + 1.9Pa s
−1 with𝑅𝑅2

= 0.13 (3)

�down = −0.1�up + 1.5Pa km K−1 s−1Γ�

−6.6Pa s−1 with�2 = 0.25.
 (4)

Starting with a simple linear regression on a small subset of the considered input features to model the relation-
ship between downdraft mass flux and updraft mass flux, we can already explain nearly 60% of the variability 
in downdraft mass flux, see Equation 1. Using multiple linear regression, we calculate a model which includes 
environmental stability in addition to updraft mass flux, see Equation 2. The corresponding minimal model for 
the dependence of downdraft velocity on updraft velocity is given by Equation 3 and the minimal model for the 
dependence of downdraft velocity on both, updraft velocity and environmental stability, is given by Equation 4.

3.2.4. Downdraft Properties at Different Heights

So far, we have restricted our discussion on the prediction of downdraft mass flux and velocity at z = 1 km. We 
now partly repeat the analysis above for downdraft properties at heights of 1.5, 2.0, and 2.5 km. The results, 
including the respective values of R 2, are shown in Figure 12. Note that, apart from the considered height of the 
downdraft properties, we use the same settings for the random forests and also use the same convective events for 
the training and the validation data set.

The most striking feature comparing Figures 9–12 is that the relative importance of rainwater and updraft mass 
flux for predicting downdraft mass flux changes dramatically with downdraft height. For downdrafts above 
1.5 km, the most important predictor for downdraft mass flux becomes the updraft mass flux, with 𝐴𝐴 𝐴𝐴tot

𝑟𝑟  showing 
relatively little importance by 2.5 km, whereas it was quite dominant at 1.0 km. Strangely however, for downdraft 
velocity, qr dominates at all levels with almost no height-dependence. These results imply that downdraft area is 
less predictable at high levels, potentially because mechanical forcing of downward motion outside of updrafts 
is important at higher levels but difficult to predict. At lower levels the limiting role of rain water may become 
more important as the effect of evaporation has had time to accumulate, leading to an increase in predictability 
for downdraft mass flux as it becomes more and more closely linked to the available rain water 𝐴𝐴

(
𝑞𝑞tot

𝑟𝑟

)
 . It is not 

clear why the downdraft velocity does not also become more predictable; it may depend on unmeasured factors 
that vary much less with height.

For the downdraft velocity, although qr is equally dominant at all heights, we note that the relative importance 
of the (secondary) environmental properties does change with height. While the importance of the atmos-
pheric lapse rate decreases with height, the importance of both CAPE and DCAPE increases with height. 
One explanation for the decreased importance of the environmental lapse rate is that, for consistency, we still 
average Γv between hmin = 1 km and hmax = 3 km. We expect, however, that it is the environmental stability 
above the level of the downdraft that is most important for downdraft velocity. As Γv does not necessarily 
represent the conditions above 3 km, in particular as the variability in Γv is expected to be greatest at low 
levels, this might increase the relative importance of the more general measures of environmental stability, 
CAPE and DCAPE.

Table 2 
Multiple Linear Regression Coefficients

Unit Downdraft mass flux Downdraft velocity

Γv K km −1 1.23 1.08

𝐴𝐴 𝐴𝐴tot

𝑟𝑟  g kg −1 m 2 1.52 × 10 −9 −6.42 × 10 −10

qr g kg −1 −5.75 × 10 −1 9.81 × 10 −1

CAPE J kg −1 −7.11 × 10 −5 4.45 × 10 −4

CIN J kg −1 −3.59 × 10 −3 −9.47 × 10 −3

CWV mm 2.57 × 10 −2 −2.42 × 10 −3

DCAPE J kg −1 −7.66 × 10 −5 6.19 × 10 −5

RH – −1.65 −1.54

Updraft area m 2 7.15 × 10 −10 −3.99 × 10 −10

Updraft mass flux kg s −1 2.50 × 10 −10 −1.46 × 10 −9

Updraft velocity Pa s −1 −2.20 × 10 −2 3.50 × 10 −3
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4. Discussion
Considering the above result that the mass flux and velocity of the downdraft strongly depend on the availabil-
ity of rain water, it is surprising that the RH of the environment has such a small influence on the properties of 
the downdraft. As explained in the introduction, the influence of environmental humidity on the strength of the 

Figure 12. As in Figure 9 but for downdraft mass flux and velocity measured at a height of 1.5, 2.0 and 2.5 km (top row, middle row, and bottom row). Limited to the 
10 most important input features. The numbers in brackets indicate how the rank of each variable changed compared to the rank at height level 1 km.
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downdraft is unclear. In particular, we noted that two opposing mechanisms have been discussed in the litera-
ture: more humid air entrained into the parcel means less evaporation and latent cooling, but also reduces the 
environmental air density relative to the downdraft. While in the cited studies the initial downdraft conditions 
were set independently of the environmental humidity, we note that the environmental humidity could also affect 
the initial downdraft properties. Specifically, for a given rainfall rate, one would expect higher environmental 
humidity to result in a higher initial moisture content or size of the downdraft and thus enhance the downdraft 
properties. There are, therefore, at least three mechanisms by which environmental humidity affects downdraft 
properties: one mechanism through which higher environmental humidity reduces downdraft properties, and two 
mechanisms through which environmental humidity enhances downdraft properties, one more relevant near the 
formation point and one more relevant in the boundary layer. As these different effects are of different importance 
at different altitudes, one could argue that they cancel each other out when averaging over a certain layer. In this 
case, however, we would expect a stronger (and opposite) signal when considering environmental humidity at 
different heights, which is not the case (not shown).

One possible explanation is simply that the humidity through which the raindrops fall is not well captured by 
the ambient humidity measure used above. In particular, the local moisture content relevant for the downdraft 
could be strongly influenced by the preceding updraft rather than the large-scale RH prior to the formation of that 
updraft. This should be different for the virtual temperature (or virtual lapse rate), as gravity waves can efficiently 
remove density differences. To test this hypothesis, Figure 13 shows the time evolution of local and environmen-
tal RH and lapse-rate from the numerical simulations. The environmental properties are calculated as previously 
described in Table 1 and the local properties are calculated by averaging over the area of the respective convective 
event. To test how the difference between the environmental and local properties compares to the overall varia-
bility of the considered variable, we scale the y-axis in both plots in Figure 13 such that it ranges from the 3rd to 
the 97th percentile of the environmental variable.

Figure 13a shows that the environmental RH remains approximately constant over time, while the RH in the area 
of the convective event increases around the time of maximum precipitation. While it is not surprising that the 
formation of a convective cloud is accompanied by an increase in RH, it highlights how different the local humid-
ity content, that is, the humidity “seen” by the downdraft, is from the environmental humidity. This pronounced 
local increase in humidity associated with convective clouds also raises the question of how the presence of 
other convective clouds affects the humidity encountered by the downdraft. Although beyond the scope of this 
study, it would be interesting to investigate how the characteristics of the surrounding convective events impact 
the downdraft properties. Compared to the time evolution of the two RH variables, the difference  between envi-
ronmental and local lapse rates is much weaker (see Figure 13b), that is, the lapse rate relevant to the downdraft 
is well captured by the environmental variable. To further test this result, we used a random forest to predict the 

Figure 13. Time evolution of the average (a) relative humidity and (b) lapse rate calculated over all detected events. The blue lines indicate “environmental” properties 
averaged over a 200 km × 200 km box, the orange lines indicate environmental properties averaged within the area of the respective convective event.
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local humidity from the environmental humidity and a random forest to predict the local lapse rate from the envi-
ronmental lapse rate, where local humidity and lapse rate are averaged over the same layer as the environmental 
variable but within the time interval 0–0.5 hr. We find that the random forest for local humidity content only 
explains 36% of the variability from environmental RH. In contrast, the corresponding random forest for local 
lapse rate explains 63% of the variability if based soley on the environmental lapse rate.

Being aware that the local RH variable may still not be a good predictor of the RH relevant to the downdraft, 
we question whether the inclusion of this variable (together with the local lapse rate variable) leads to increased 
predictability of the downdraft properties. We therefore repeat the analysis shown in Section 3 and find that only 
the downdraft velocity can be explained to a slightly larger extent (see Figure 14). It is, however, interesting to 
note that local RH is now the second most important feature in predicting downdraft velocity. Together, these 
results seem to imply that the local humidity's influence can be predicted indirectly by the larger-scale environ-
mental predictors, though not by the larger-scale humidity alone.

While the discussion above has focused on the effect of evaporative cooling due to entrainment of environmental 
air, we also note that environmental air could play an important role for the initial characteristics of a down-
draft. In particular, if downdrafts originate from mixtures that contain a significant fraction of environmental 
air rather than detrained air (whose properties might be more independent from environmental conditions), the 
environmental humidity could influence the strength of the initial temperature anomaly by enhancing evaporative 
cooling, but could also reduce the amount of available rainwater through the same process. Testing a number 
of cases in a parcel-based downdraft model (https://github.com/climate-enigma/dparcel, version 0.1), we found 
that downdrafts become either stronger or weaker with increasing environmental humidity, depending on how 
the initial properties of the downdraft parcel were linked to environmental humidity. This result is particularly 
interesting in light of modern convective parameterization schemes (e.g., D’Andrea et al., 2014; Gerard, 2007; 
Suselj et al., 2019; Wu et al., 2020), which explicitly represent many of the downdraft-environment interactions 
but make comparatively crude assumptions about the initial thermodynamic variables of the downdrafts.

Figure 14. (Left) Feature importance (as in Figure 9) of the 10 most important predictors and (right) partial dependence (as in Figure 10c), but now including local 
relative humidity (RH cl) and local lapse rate 𝐴𝐴

(
Γ
𝑐𝑐𝑐𝑐
𝑣𝑣

)
 as additional input features for (a) downdraft mass flux and (b) downdraft velocity.

https://github.com/climate-enigma/dparcel
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In summary, therefore, there exist at least three ways in which environmental humidity can impact downdraft 
strength. In a drier environment:

•  the virtual temperature difference between the downdraft and the environment is smaller leading to weaker 
downdrafts

•  the entrainment of environmental air enhances evaporation leading to stronger downdrafts
•  more rainwater can evaporate during downdraft formation, causing an initially more negative temperature 

perturbation but also a depletion of rainwater which, taken together, can lead to either stronger or weaker 
downdrafts

This collection of partly competing effects might explain why the random forest approach above does not show 
a clearer dependence of downdraft strength on environmental humidity, either because the effects differ, for 
example, between different types of convection, or because these effects tend to approximately balance in general.

5. Conclusion
Using a global storm-resolving model, we address the question of what determines the properties of convective 
downdrafts over tropical oceans. In particular, we investigate how the properties of downdrafts are related to the 
properties of the preceding updrafts as well as to the environmental conditions. To this end, we use hierarchical 
clustering to examine the degree of correlation between different properties, and random forests as well as multi-
ple linear regression to determine how well downdraft properties can be predicted from updraft properties and 
environmental conditions.

The downdraft properties we focus on are the downdraft area, the downdraft velocity, and the resulting downdraft 
mass flux. Analyzing the relationship between these three properties, we find that the variability of the down-
draft mass flux is largely determined by the variability of the downdraft area rather than the downdraft velocity. 
Because both downdraft mass flux and downdraft velocity are properties of interest, we examine their relation-
ship to the preceding updraft and environmental conditions separately.

Using two random forests to predict downdraft velocity and downdraft mass flux, respectively, we find that in 
both cases the updraft properties are far more important than the environmental properties. In particular, we find 
that the most important predictors of downdraft mass flux are the extensive updraft properties, that is, updraft 
properties that scale with area: updraft area, updraft mass flux, and total amount of available rain water. Of all 
these variables, the amount of available rain water is the best predictor of downdraft mass flux. For downdraft 
velocity, the best predictors are the intensive updraft properties, that is, updraft velocity and rainfall amount. 
Again, the rainfall dependent variable is the best predictor for downdraft velocity. A schematic summary of these 
results is shown in Figure 15. These results suggest that downdrafts are mainly controlled by the availability of 
rain water, which in turn is strongly dependent on the preceding updraft.

While the properties of the preceding updraft are critical for the downdraft properties, additional knowledge of 
environmental conditions is not as important. Considering environmental humidity, environmental stability, and 
several parcel-related variables (CAPE, CIN, and DCAPE), we find that only environmental lapse rate is a valu-
able predictor, with a more unstable environment favoring higher downdraft mass flux and velocity. The small 

Figure 15. Schematic representation of key results, showing the coefficient of determination, the key predictors and the corresponding feature importance factors for 
(a) downdraft mass flux and (b) downdraft velocity as determined by the random forests.
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importance of environmental humidity may be surprising, since entrainment of dry air increases evaporation, 
which should increase the strength of the downdraft. One possible explanation for this result is that the mean 
humidity on larger scales is not a good indicator of the RH of the air entrained into the downdraft. An other expla-
nation is that, also considering the impact of environmental humidity on the starting properties of convective 
downdraft, a number of competing effects exist which might work in opposite direction for different convective 
events or tend to balance in general.

Interestingly, all the important dependencies of downdraft mass flux and downdraft velocity are well approxi-
mated by linear relationships. Repeating the analysis by fitting two linear models to downdraft mass flux and 
downdraft velocity, respectively, we confirm the results from the random forest approach. In particular, multiple 
linear regression yields very similar coefficients of determination and identify the same key input features for 
predicting downdraft properties. Based on these results, we additionally computed two highly simplified linear 
models for each downdraft variable. For each variable, we calculated one model based solely on the key updraft 
variable, and one that also accounts for the influence of the environmental lapse rate. These models provide a 
simple way to parameterize the downdraft mass flux based on the results of our simulations.

One limitation of our approach is that we are constrained in both horizontal and temporal resolution by the use of 
a global storm resolution model. The horizontal resolution of 5 km used here is much coarser than the resolutions 
commonly used to study downdrafts, since neither updrafts nor downdrafts are well resolved at this resolution. 
Also, the temporal resolution of 15 min is comparatively low, especially considering that the lifetime of a deep 
convective cloud in the tropics is usually on the order of an hour. While it is reasonable to expect that a higher 
resolution simulation would result in quantitative differences, we expect that the dependence on environmen-
tal conditions will still be qualitatively similar. Thus, this study does not replace higher resolution studies, but 
complements them in one important aspect: global simulations correctly reproduce cross-correlation functions 
observed in nature and therefore allow us to test predictions based on higher resolution simulations in as natural 
an environment as possible.

Data Availability Statement
The model source code is available on https://mpimet.mpg.de/en/science/modeling-with-icon/code-availa-
bility. The simulation run scripts and code for reproducing the plots are available through http://hdl.handle.
net/21.11116/0000-0009-A854-B.
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