
1.  Introduction
Lead (Pb) is a toxic element to humans (Carrington et al., 2019; Wani et al., 2015) and accumulation in marine 
biota a pathway of exposure (Burger et al., 2012; Zimmer et al., 2011). Lead emissions from coal combustion and 
the use of tetraethyllead as an additive to gasoline through the twentieth century (McConnell & Edwards, 2008; 
Pacyna & Pacyna, 2001) resulted in large scale atmospheric deposition of anthropogenic Pb across the surface 
ocean (Boyle et al., 2014). Whilst Pb concentrations across the North Atlantic are now declining, they remain 
above pre-industrial concentrations (Kelly et al., 2009; Noble et al., 2015). The ultimate fate of Pb in the marine 
environment is governed by its high affinity to particles (Dewey et al., 2021; Yang et al., 2015), which results in a 
dissolved Pb (dPb) distribution strongly affected by lateral transfer within sinking matter and burial in sediments 
(Bruland et al., 2013). However, a growing number of studies have shown intermittent release of dPb from shelf 
sediments (Cobelo-García & Prego, 2004; Kalnejais et al., 2007; Martino et al., 2002). This suggests that shelf 
sediments affected by a legacy of anthropogenic Pb deposition may continue to act as a dPb source to the water 
column (Rusiecka et al., 2018; Vieira et al., 2019).
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Whilst Pb distributions across the North Atlantic (Bacon et al., 1988; Rusiecka et al., 2018) and North Pacific 
(Chien et al., 2017; Sañudo-Wilhelmy & Flegal, 1994) are now well described, comparatively little is known 
about the biogeochemical cycling of Pb in the Arctic (Colombo, Rogalla, et al., 2019; de Vera et al., 2021) and 
high latitude (>65°N) North Atlantic shelf seas (Schlosser & Garbe-Schönberg, 2019). Rivers draining into the 
Arctic Ocean deliver large quantities of mostly natural Pb to shelf regions (Colombo, Brown, et al., 2019; Guay 
et  al.,  2010; Guieu et  al.,  1996). Whilst under some circumstances large fractions of freshwater dPb are lost 
from the water column during estuarine mixing (Dai & Martin, 1995; Tanguy et al., 2011), conversely, some 
conservative behavior of dPb has been observed (Guieu et al., 1996). This may be the result of a complex inter-
play between aggregation/scavenging and sedimentation of Pb (Balistrieri & Murray, 1984; Waeles et al., 2007; 
Yang et al., 2015), and dissolution of Pb from sediments and particles following resuspension (Cobelo-García 
& Prego, 2004; Kalnejais et al., 2007; Martino et al., 2002) or changes in sediment redox chemistry (Benoit & 
Hemond, 1990; Rivera-Duarte & Flegal, 1994). A similarly complex interplay may affect Pb dynamics from 
glacier-derived freshwater. A few studies investigating Pb cycling in the vicinity of small glaciers in Svalbard 
and the Canadian Arctic Archipelago have shown elevated suspended particulate or dissolved Pb concentrations 
(Bazzano et al., 2017; Colombo, Rogalla, et al., 2019) which could reflect a combination of Pb release from 
subglacial weathering (Hawkings et al., 2020; Kolb et al., 2016) and anthropogenic Pb contamination embedded 
in glacial ice and snow (Hong et al., 1994; Sherrell et al., 2000).

Given the potential for an enhanced Pb efflux under future scenarios of continued Greenland Ice Sheet discharge 
and glacier retreat (Aschwanden et al., 2019; Fahrner et al., 2021), here we present a survey investigating the effects 
of glacial discharge on downstream Pb distributions from Nioghalvfjerdsbræ (79N Glacier). Nioghalvfjerdsbræ is 
one of Greenland’s largest marine terminating glaciers (Rignot & Mouginot, 2012) accounting for ⁓2% of 2016 
Greenland Ice Sheet runoff and solid ice discharge (Bamber et al., 2018). By combining dissolved, total dissolva-
ble and labile particulate Pb data with helium (He) and neon (Ne) tracers of subglacial meltwater, we demonstrate 
a sustained release of freshwater and sediment-sourced dPb from Nioghalvfjerdsbræ to the NE Greenland Shelf, 
and the potential for future changes in Greenland dPb efflux.

2.  Methods
2.1.  Sampling

Polarstern expedition PS100 (GN05) sampled the NE Greenland Shelf (NEGS) in August 2016 (boreal summer) 
and was equipped with two CTD rosette systems for water column profiling; an ultraclean CTD system (ucCTD) 
for contamination-prone parameters, and a large CTD system for other parameters. Twelve ucCTD stations were 
sampled for trace elements (Pb, Fe, Mn, Co, Ni, Cu, and Zn) and macronutrients (NO3, PO4, and Si(OH)4) on 
the NEGS (>5°W), of which 6 stations were located on the inner shelf region (>15°W) in close proximity to the 
Nioghalvfjerdsbræ terminus (station 1) (Supplementary Figure S1). Additional stations were sampled for He and 
Ne with the large CTD system. For water column physical properties (salinity, temperature, pressure, light atten-
uation ("turbidity"), UV-light fluorescence), the data set from the ucCTD (SEA-BIRD SBE 911) was combined 
with the large CTD data (SEA-BIRD SBE 911plus). A total of 10 stations sampled the shelf for trace elements 
and He/Ne, within 1 hr at the same location, providing to our knowledge a unique data set for the investigation of 
subglacial Pb cycling from a retreating ice shelf.

2.2.  Trace Element and Macronutrient Analyses

Trace element samples were collected following GEOTRACES sampling protocols (Cutter et al., 2017) using the 
powder-coated aluminum ucCTD equipped with 24 × 12 L GoFlo bottles (Ocean Test Equipment) as per Krisch, 
Hopwood, et al. (2021). For the analyses of dissolved trace elements, samples were filtered (Acropak 0.8/0.2 μm) 
and acidified to pH 1.9 with HCl (UpA, ROMIL). Unfiltered samples were retained and acidified as above to 
determine total dissolvable trace elements after >6 months of storage. Particulate trace elements were collected 
onto pre-acid cleaned Polyethersulfone (PES) membrane filters (0.2 μm, Sartorius). Filters were stored in a deep 
freezer (−20°C) until analysis. The determination of labile particulate trace elements was conducted following 
the procedure of Berger et al. (2008), applying a weak acid leach (25% acetic acid, Optima grade, Fisher Scien-
tific) with a mild reducing agent (0.02 M hydroxylamine hydrochloride, Sigma TM grade).
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Trace elements in seawater samples were quantified by high-resolution inductively coupled plasma mass spec-
trometry (HR-ICP-MS, Element-XR, Thermo Fisher Scientific) after matrix-removal and pre-concentration using 
an automated SeaFAST system (SC-4 DX SeaFAST pico, ESI) as described by Rapp et al. (2017). The analyses 
of labile particulate trace elements were conducted via HR-ICP-MS (Element-XR, Thermo Fisher Scientific) 
without preconcentration. Validation of method accuracy for dissolved and total dissolvable trace element anal-
yses was through GEOTRACES SAFe S and GSC reference materials (Bruland Research Lab, 2009) (Tables S1 
and S2 in the Supporting Information S1). Particulate analyses and leach consistency between digestion batches 
were validated using BCR-414 reference material (Joint Research Centre, 2017).

Seawater for macronutrient analyses of NO3, PO4 and Si(OH)4 was also retained from each GoFlo rosette bottle 
and analyzed as described in Krisch et  al.  (2020). Details on measurement validation can be found with the 
macronutrient data report (Graeve et al., 2019).

2.3.  Noble Gas Measurements (Helium and Neon)

The procedure for sampling and analyses of He ( 3He,  4He) and Ne ( 20Ne,  22Ne) stable isotopes during PS100, 
and subsequent calculation of subglacial meltwater fractions (SMW) in the water column, is described by Huhn, 
Rhein, Kanzow, et al. (2021). Calculation of SMW follows the method of Rhein et al. (2018) and assumes that 
He/Ne enrichment in glacial ice is the result of atmospheric gases of constant composition being trapped in the 
ice matrix and fully dissolved when the glacial ice melts under enhanced hydrostatic pressure. Any additional 
He in glacial ice is attributed to radioactive α-decay of heavy nuclides in the bedrock ("crustal He") (Huhn 
et al., 2018; Jean-Baptiste et al., 2001). Please note that drainage of surface melt to the glacier’s grounding line 
and its contribution to freshwater budgets beneath the floating ice tongue is not included in SMW fractions due 
to equilibration with the atmosphere. The overall uncertainty in He- and Ne-based SMW fractions is 0.1% (Huhn, 
Rhein, Kanzow, et  al.,  2021). SMW fractions >0.1% are thus considered significant. Helium- and Ne-based 
calculations of SMW fractions are identical within 0.1% variance (1σ for all significant SMW fractions). Thus, 
for a conservative estimate of SMW influence on the shelf, we use the He- or Ne-based SMW fraction that is 
lowest. He/Ne ratios >2% above the atmospheric ratio are considered to be enriched in He from the bedrock 
(Huhn, Rhein, Kanzow, et al., 2021).

3.  Results and Discussion
3.1.  Study Region

Three water masses are present on the NEGS (Schaffer et al., 2017). Polar Surface Water (PSW, σΘ < 26.1 kg/m 3) 
is found across the NEGS and its depth range increases from the Greenland continental shelf break (0–20 m 
at station 8) toward Nioghalvfjerdsbræ and the Greenlandic coast (0–69 m at station 1) (Figure 1). Below the 
PSW layer, modified Atlantic Intermediate Water (mAIW, σΘ = 27.00 – 27.73 kg/m 3) forms the bottom water 
in shallow and central parts of the shelf (stations 3, 12 and 13) and its thickness increases from the outer NEGS 
(48–158 m at station 8) toward the Greenlandic coast (96–267 m at station 1). Atlantic Intermediate Water (AIW, 
σΘ > 27.73 kg/m 3) forms the bottom water in the deeper parts of the NEGS and is found in the C-shaped trough 
system consisting of Norske Trough (stations 8–10) in the southern parts of the shelf and Westwind Trough 
(stations 3, 5, and 6) in the northern parts of the shelf.

Bathymetry governs water mass movement across the shelf (Bourke et al., 1987; Schaffer et al., 2017). The East 
Greenland Current forms the eastern limb of the anti-cyclonic NE Greenland Coastal Circulation and steers 
cold and low-salinity PSW over the shelf (Bourke et  al.,  1987). Warm and saline AIW is advected along a 
trough system toward the Greenlandic coast and the marine-terminating glaciers of the NE Greenland Ice Sheet 
(Schaffer et al., 2020; Wilson & Straneo, 2015). A sill near station 3 (at 237 m depth) restricts AIW exchange 
between Norske Trough from Westwind Trough. Only AIW derived via the southern route and Norske Trough 
may enter the glacial cavity underneath the Nioghalvfjerdsbræ floating ice-tongue through a ⁓2 km wide inflow 
depression near station 1 (Schaffer et al., 2017). Advection of PSW (<60 m depth at station 1) underneath the 
floating ice tongue is restricted by the glacier terminus base, located at ⁓90 m depth (Schaffer et  al., 2020). 
Following the addition of basal meltwater and subglacial runoff, mAIW exits the glacier cavity at intermediate 
depth after a residence time of ∼162 days (2016 data) (Huhn, Rhein, Kanzow, et al., 2021; Schaffer et al., 2020) 
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and is subsequently advected away from the Nioghalvfjerdsbræ terminus toward the NEGS break (Huhn, Rhein, 
Kanzow, et al., 2021; Laukert et al., 2017).

3.2.  Dissolved Pb Distributions

Concentrations of dPb in the water column on the NEGS (stations 1–6 and 8–13, Figure 1) ranged between 2.0 
and 15.9 pmol. L −1 (pM hereafter). Dissolved Pb concentrations increased with depth in the southern and outer 
parts of the shelf in Norske Trough (range: 3.6–10.3 pM at station 8), in contrast to stations on the inner NEGS 
(e.g., 3.5–15.9 pM at station 1) where pronounced mid-depth maxima were observed (Figures S2 and S3 in the 
Supporting Information S1). Surface dPb concentrations spanned a similar range on the NEGS (2.7–13.3 pM at 
10 m depth) but evidenced local maxima only near the glacier terminus of Nioghalvfjerdsbræ (11.2 pM at 5 m, 
station 1) and at the Dimphna Sund sill (13.3 pM at 10 m, station 4) (Figure S4 in the Supporting Information S1).

The concentrations of dPb in the water column on the NEGS followed a trend consistent with the general circu-
lation of the region. Surface dPb concentrations near the Greenland continental shelf break (3.5 ± 0.7 pM at 
<50 m, stations 6, 8 and 13) matched observations from the Transpolar Drift in the Central Arctic (3.5 ± 0.8 pM 
at <50 m depth (stations 81, 87, 96 and 99 as per Gerringa et al., 2021)) and suggest a strong influence of Arctic 
Ocean outflow on the distribution of dPb in surface waters of the outer NEGS. A similar trend is also evident 
in the distribution of many other dissolved trace elements including Fe (dFe), Mn (dMn) and Co (dCo) (Krisch 
et al., 2022). In contrast, advection of Atlantic Water, enriched in dPb (Schlosser & Garbe-Schönberg, 2019), into 

Figure 1.  Distribution of (a) subglacial meltwater content (SMW, %), (b) salinity (Sal) and (c) dissolved Pb (dPb, pmol·L −1, pM) overlain with contours of 0.5% 
SMW (black bold line) on the NE Greenland Shelf. The transect (indicated by red contours in the station map) follows the shelf’s C-shaped trough system from 
Norske Trough (stations 8–10) toward Nioghalvfjerdsbræ terminus (station 1), Westwind Trough (stations 3–6), and Fram Strait (station 7) (Figure S1 in the 
Supporting Information S1). Isopycnal surfaces (white contours) distinguish between Polar Surface Water (PSW, σΘ < 26.1 kg/m 3), Atlantic Intermediate Water (AIW, 
σΘ > 27.73 kg/m 3), and modified AIW (mAIW, σΘ = 27.00–27.73 kg/m 3). Black dots indicate depths of discrete CTD measurements and water sampling; vertical lines 
(bold gray) indicate ultraclean CTD measurements. Ultraclean CTD station numbers are indicated in ‘C’ and on the station map (bottom left). Depth profiles of dPb for 
each individual station are shown in Figure S3 in the Supporting Information S1.
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Norske Trough (Schaffer et al., 2017) is likely the main source contributing to elevated dPb concentrations in 
AIW near the southern shelf break (10.0 ± 0.2 pM at 200–303 m, station 8, Figure 1). There, dPb concentrations 
were 2-3-fold depleted compared to subsurface Atlantic Water of the Iceland Basin (26.7 ± 3.3 pM at 100–446 m 
(stations 32–36 as per Zurbrick et al., 2018)). Dissolved Pb concentrations decreased further toward the inner 
NEGS (6.3 ± 2.9 pM at 251–380 m, station 10) and the cavity inflow depression (5.0 ± 1.1 pM at 226–398 m, 
station 2), potentially caused by scavenging of dPb onto particles (Balistrieri & Murray, 1984) during AIW trans-
port. Modified AIW in close proximity to Nioghalvfjerdsbræ terminus was the most dPb-enriched water mass 
on the NEGS (10.4 ± 2.9 pM at stations 1, 2 and 11). Concentrations in mAIW exceeded observations in AIW 
(5.8 ± 1.7 pM at stations 1, 2 and 11) by a factor of ⁓2. This dPb enrichment in mAIW relative to AIW and the 
general trend of decreasing concentrations in mAIW with distance from Nioghalvfjerdsbræ terminus (station 1, 
12.2 ± 3.3 pM) toward Norske Trough (6.2 ± 2.0 pM at station 9) and Westwind Trough (5.0 ± 0.6 pM at station 
5) strongly suggests a local source of dPb originating underneath the floating ice tongue.

Dissolved Pb shows a strong linear correlation with salinity for PSW at the Nioghalvfjerdsbræ terminus (0.82 R 2 
at 5–60 m depth, Figure S5 in the Supporting Information S1), comparable to observations in estuaries elsewhere 
(Martino et al., 2002; Tanguy et al., 2011). This corroborates surface freshwater discharge from Nioghalvfjerds-
bræ as a likely source of dPb to the NEGS. A linear correlation between dPb and salinity was absent in the 
water column below the PSW layer (0.04 R 2 at 70–464 m). Yet, elevated dPb concentrations in cavity-exiting 
mAIW (14.8 ± 0.9 pM at 125–200 m) grouped at slightly lower salinities (34.463 ± 0.078) compared to dPb 
in cavity-entering AIW (7.5 ± 1.3 pM at salinity of 34.700 ± 0.062 and 300–464 m depth). This suggests that 
processes beneath the floating ice tongue are also a net source of dPb to the NEGS. Our findings of glacial dPb 
enrichment in surface and subglacial discharge from Nioghalvfjerdsbræ are in agreement with observations of 
⁓3-fold increases in dPb caused by the addition of glacial meltwater to shelf surface water in Marian Cove on 
the Antarctic Peninsula (Kim et al., 2015) and elevated dPb concentrations in the Amundsen Sea downstream 
to the Getz and Dotson Ice Shelfs (Ndungu et al., 2016). Elevated concentrations of dPb in mAIW at all stations 
on the inner NEGS (7.2 ± 1.4 pM at stations 1–3 and 10–11) (Figure 1) suggest substantial offshore transport of 
subglacial dPb from Nioghalvfjerdsbræ.

3.3.  Subglacial Pb Discharge

Subglacial meltwater discharge can be traced through the use of He and Ne isotopes (Loose & Jenkins, 2014; 
Rhein et al., 2018). Upon melting of glacial ice, He and Ne are fully dissolved resulting in oversaturation and 
providing an unambiguous tracer of subsurface water masses affected by subglacial discharge (Huhn et al., 2018; 
Rhein et al., 2018). The distribution of subglacial meltwater was remarkably similar to the distribution of dPb 
in the water column on the inner NEGS (Figure 1) and confirms dPb maxima in mAIW downstream of the 
Nioghalvfjerdsbræ terminus to be subglacial in origin. A weak linear correlation between subglacial meltwater 
content and dPb concentrations was observed in the water column on the shelf (0.48 R 2, p < 0.05, Supplementary 
Figure S6) which may suggest other factors, besides subglacial meltwater addition, moderate dPb discharge to 
the shelf. Given the high affinity of dPb for particle surfaces (Dewey et al., 2021; Yang et al., 2015), such factors 
likely include suspended sediment dynamics (Benoit & Rozan, 1999) underneath the ice tongue.

We conducted a Principal Component Analysis (PCA) to investigate regional relationships between dPb and other 
water column properties near Nioghalvfjerdsbræ (Figure 2a). The PCA included (a) dPb, dFe, dMn and dCo, 
(b) nitrate, phosphate and silicic acid, (c) excess He, excess Ne and subglacial meltwater contents, and (d) CTD 
measurements for depth, salinity and turbidity (i.e., light attenuation). We further included labile particulate and 
total dissolvable fractions of the trace elements Pb (LpPb, TdPb), Fe (LpFe, TdFe), Mn (LpMn, TdMn) and Co 
(LpCo, TdCo) in the PCA, referring to reactive particulate trace elements physically immobilized on particles 
(labile particulates, e.g., Berger et al., 2008), and dissolved and particulate trace elements released after stor-
age under acidic conditions (total dissolvable fraction, e.g., Edwards & Sedwick, 2001). The first two principal 
components reflect 44.5% (PC1) and 22.4% (PC2) of variance in parameters. In the PCA, dPb grouped with 
LpPb, TdPb, LpFe, and TdFe and clustered in opposition to light attenuation suggesting a strong influence from 
particles controlling the distribution of these elements on the inner NEGS. All Pb phases showed a correlation 
with depth, salinity, and the macronutrients nitrate, phosphate and silicic acid, indicative of influences from 
depth-dependent processes which may include particle release, scavenging and organic matter remineralization. 
In contrast, dFe, dMn and dCo grouped with excess He, excess Ne and subglacial meltwater content and showed 
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no correlation with respect to their labile and particulate forms and Pb phases. This suggests subglacial meltwater 
as a source of dFe, dMn and dCo to the inner shelf region and a different supply mechanism for Pb which does 
not resemble that of the other trace elements.

The distribution of dPb in the water column at the glacier terminus correlated strongly with the distribution of 
LpPb and TdPb and showed an inverse relationship with light attenuation (Figure 2b) suggesting particles to 
be a source of particulate and dissolved phases of Pb. Pronounced Pb maxima in mAIW at 125–200 m depth 
(14.8 ± 0.9 pM dPb, 25.9 ± 21.6 pM LpPb, and 57.5 ± 41.3 pM TdPb) coincided with minima in light attenuation 
between 150 and 250 m. This is indicative of a particle-rich layer exiting the glacier cavity and speaks out for the 
importance of a subglacial particle pool in moderating dPb discharge. This is supported by increases in dPb, LpPb 
and TdPb, and light attenuation minima also near the sediment-bottom water interface. Similar observations have 
been made in temperate river estuaries (Cobelo-García & Prego, 2004; Waeles et al., 2007). For example, in the 
Mersey Estuary (United Kingdom) dPb concentration maxima in the upper parts of the estuary coincided with 
minima in light attenuation suggesting sediment resuspension may be an important factor contributing to water 
column dPb enrichment (Martino et al., 2002). Our observations of dPb enrichment from sediment Pb sources 
are in agreement with findings from South Georgia (Southern Ocean) where dPb maxima (46 pM) and LpPb 
maxima (320 pM, calculated by subtraction of dPb from TdPb) on the shelf were attributed to sediment supply 
from upstream glaciers (Schlosser & Garbe-Schönberg, 2019).

The strong correlation in the distributions of dPb, LpPb, and TdPb at Nioghalvfjerdsbræ terminus, which is 
also evident from the PCA analysis (Figure 2a), clearly indicates that subglacial dPb enrichment is caused by 
addition from a "reactive" pool of Pb underneath the floating ice tongue. Lead dissolution from a reactive, 
likely sediment-sourced, pool of Pb is also apparent at the entrance sill to Dijmphna Sund (station 4) that func-
tions as a side-exit for Nioghalvfjerdsbræ subglacial discharge into the northern parts of the shelf (Wilson & 
Straneo, 2015). There, increasing dPb concentrations were observed at enhanced levels of TdPb (0.95 R 2) and 
correlated with diminished light attenuation throughout the water column (Figures S7 and S8 in the Supporting 
Information S1). This distribution is similar to observations of dPb enrichment from LpPb and particulate Pb 
(pPb) on the Celtic Shelf Sea bordering the NE Atlantic Ocean (0.97 R 2 for dPb/LpPb and dPb/pPb at stations 
C03 and C04, Rusiecka et  al.,  2018). Such a distribution suggests that increases in reactive Pb (e.g., LpPb) 
supply underneath the Nioghalvfjerdsbræ ice tongue may result in elevated subglacial dPb export to the NEGS. 
However, near the Nioghalvfjerdsbræ terminus (stations 1 and 2), only a weak correlation was observed between 
dPb/LpPb (0.32 R 2) and dPb/TdPb (0.45 R 2) (Figure S9 in the Supporting Information S1) suggesting some 
degree of decoupling between dPb and LpPb/TdPb underneath the floating ice tongue. This could arise from a 

Figure 2.  Principal Component Analysis (PCA) and depth profiles of Pb near the Nioghalvfjerdsbræ terminus. (a) The 
PCA loading plot illustrates trends in the distribution of dissolved, total dissolvable and labile particulate trace elements, 
and macronutrients, relative to depth, salinity, light attenuation, excess He, excess Ne and subglacial meltwater content 
(SMW) in the water column on the inner NE Greenland Shelf (stations 1–3 and 10–11). (b) Depth profiles of Pb at the 
Nioghalvfjerdsbræ terminus (station 1). Dissolved Pb (dPb, black stars), labile particulate Pb (LpPb, blue-green upward 
triangles), total dissolvable Pb (TdPb, dark-yellow downward triangles) and light attenuation (i.e., turbidity, blue dots). 
Concentrations of all Pb fractions are in pmol·L −1 (pM).
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buffering effect whereby particles are a source of dPb but may also serve as nucleus for dPb scavenging, making 
net dPb release very sensitive to the suspended sediment load (Balls, 1989; Benoit, 1995). A similar phenome-
non affects the relationship between dissolved and particulate Fe phases in a broad range of contexts (Homoky 
et al., 2012; Wagener et al., 2010).

The comparatively constant dPb concentrations at the glacier terminus between 125 and 200 m depth (14.8 ± 0.9 
pM), even at 200 m where pronounced peaks in LpPb, TdPb and turbidity were observed (Figure 2b), together 
with only weak correlations between dPb and LpPb/TdPb near the glacier terminus (Figure S9 in the Support-
ing Information S1), does suggest a near-steady state between dPb dissolution, and (re-)adsorption/scavenging 
in cavity-exiting mAIW. The extended cavity residence time of waters underneath the floating ice tongue of 
several months to a year (Schaffer et al., 2020; Wilson & Straneo, 2015) may have aided the establishment of 
such a steady state system. A similar mechanism has been proposed to moderate subglacial dFe discharge from 
Nioghalvfjerdsbræ (Krisch, Hopwood, et al., 2021) and several studies in a global context have suggested the 
existence of a "dynamic equilibrium" between dissolution and (re-)adsorption/scavenging of dPb onto particles 
(Rusiecka et al., 2018; Schlosser & Garbe-Schönberg, 2019; Sherrell et al., 1992). This raises questions concern-
ing how ongoing ice shelf retreat may affect net-dPb release. The subsurface lateral export of dPb in mAIW might 
be diminished if lateral transport occurred in surface waters (instead of subsurface waters) where particle scav-
enging and biological dPb uptake (Fisher et al., 1987; Santana-Casiano et al., 1995; Tanaka et al., 1983) is likely 
more severe. On the other hand, shifts in circulation and suspended sediment load dynamics may be the major 
control on local dPb concentrations, and more rapid discharge of cavity waters including entrained sediments may 
overall increase subglacial dPb export.

3.4.  Is Glacial Bedrock a Source of dPb?

Pb-rich minerals in cavity sediments and overridden bedrock are likely contributing to the ⁓3-fold increase in 
dPb between cavity-entering AIW (5.0 ± 1.1 pM at station 2) and subglacial mAIW discharge (14.8 ± 0.9 pM 
between 125 and 200 m depth, station 1) to the NEGS. Extensive Pb-rich deposits have been found in Western 
and Northern Greenland (Kolb et al., 2016) including Citronen Fjord ∼200 km north of Nioghalvfjerdsfjorden 
where the content of Pb in minerals reaches ⁓1% (Kragh et al., 1997). The widespread nature of Pb-rich deposits 
in Northern Greenland suggests that the NE Greenland Ice Sheet may be eroding bedrock with an enhanced Pb 
content relative to the crustal mean. Weathering of polymetallic deposits, including galena (PbS), would increase 
the solubility of Pb (Lara et al., 2011) underneath the ice sheet and thus may result in enrichment of glacial melt-
water with dPb.

On the NEGS, excluding observations between 75 and 125 m near Nioghalvfjerdsbræ and Zachariæ Isstrøm 
(stations 1, 2 and 11), a strong correlation between crustal He and water column dPb concentrations was observed 
(0.89 R 2, Figure S6 in the Supporting Information S1) suggesting that dPb enrichment in shelf water may stem 
from dissolution of bedrock. A similar trend, however off-set to elevated crustal He concentrations, at 75–125 m 
downstream to Nioghalvfjerdsbræ and Zachariæ Isstrøm (0.95 R 2 at stations 1, 2 and 11) is potentially caused 
by crustal He diffusion into upper layers of glacial ice (Jean-Baptiste et al., 2001) and subsequent enrichment of 
meltwater with crustal He but comparatively minor quantities of dPb. Alternatively, more efficient scavenging of 
dPb in sub-surface waters may explain this deviating trend downstream to the glacier termini of Nioghalvfjerds-
bræ and Zachariæ Isstrøm.

Dissolution of Pb from bedrock and shelf sediments, and scavenging of dPb downstream to Nioghalvfjerdsbræ, 
seems to be coupled to the cycling of Fe which is present at much higher concentrations in dissolved and partic-
ulate phases (Krisch, Hopwood, et al., 2021). Dissolution of Fe carrier phases, for example, under sub- or anoxic 
conditions (Dewey et  al.,  2021; Herbert et  al.,  2020), can liberate dPb into sediment poor waters (Kalnejais 
et  al.,  2015; Rivera-Duarte & Flegal,  1994) and, aided by resuspension, may enhance dPb concentrations in 
shelf bottom waters (Ferrari & Ferrario, 1989; Rusiecka et al., 2018). Conversely, Fe-oxide formation can be 
important for Pb scavenging (Filipek et al., 1981; Waeles et al., 2007) and thus, may be efficient shuttles for Pb 
sedimentation (Wei & Murray, 1994; Yang et al., 2015). Downstream to the Nioghalvfjerdsbræ terminus, a strong 
correlation was observed for dPb and dFe in cavity-exiting mAIW on the inner shelf region (0.70 R 2 for stations 
1–3 and 10–11, Figure S10 in the Supporting Information S1) suggesting a dependency of subglacial dPb enrich-
ment on the dissolution of Fe carrier phases similar to temperate estuaries such as the Penzé estuary (France, 
0.87 R 2, Tanguy et al., 2011). The strong correlation of dPb with dFe also suggests that pronounced decreases 
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during offshore dPb transport in mAIW from the Nioghalvfjerdsbræ terminus (12.2 ± 3.3 pM at station 1) toward 
Westwind Trough (5.0 ± 0.6 pM at station 5) may be linked to scavenging with dFe, although there is likely also 
dilution with dPb- and dFe-depleted waters from upstream to the anticyclonic coastal circulation. The absence 
of a correlation between dPb and dMn in mAIW on the inner NEGS (0.15 R 2) is indicative of limited influence 
from Mn phases on the distribution of dPb downstream to Nioghalvfjerdsbræ which is in agreement with the 
observations of Filipek et al. (1981) suggesting comparatively weak competition of Mn-oxides in the scavenging 
of Pb relative to Fe-oxides. Unfortunately, there are no other glacial systems, to our knowledge, where outflow of 
modified cavity waters and it’s Pb and Fe concentrations have been constrained at a similar resolution and thus 
it is unclear to what extent these processes are representative of other systems on a global scale. The similarities 
with temperate estuaries do however at least suggest that glacier outflows exhibit similar mechanistic processes 
as lower latitude systems.

3.5.  Dissolved Pb Flux Calculations

Nioghalvfjerdsbræ is an ideal location for investigations into glacial trace element cycling. Nioghalvfjerdsbræ 
is one of Greenland’s largest marine-terminating glaciers and drains ∼6% of the Greenland Ice Sheet by area 
(Rignot & Mouginot, 2012). The circulation on the NEGS is well constrained (Bourke et  al.,  1987; Schaffer 
et al., 2017) and so are the processes controlling water exchange between the shelf and the subglacial cavity 
(Schaffer et al., 2020; Wilson & Straneo, 2015). While surface runoff around Greenland follows a seasonal cycle 
with maximum discharge expected to occur in late summer (e.g., Mortensen et al., 2013), basal melting which 
contributes ∼80% to the non-calving mass loss from Nioghalvfjerdsbræ (Wilson et al., 2017) occurs throughout 
the year and shows minor seasonal variability (Schaffer et al., 2020).

For the calculation of subglacial dPb export from Nioghalvfjerdsbræ, we apply the approach outlined in Krisch, 
Hopwood, et al. (2021) contrasting the dPb concentration in AIW inflow with mAIW outflow and using the 
cavity overturning rate derived in the same year as trace metal observations (Schaffer et al., 2020). Contrasting 
properties of dPb in cavity-exiting mAIW (12.2 ± 3.3 pM at station 1) relative to cavity-entering AIW (5.0 ± 1.1 
pM at station 2) suggests enrichment of 7.2 ± 4.4 pM dPb from freshwater and sediments. Using this difference 
in dPb load multiplied by the mean cavity volume overturning rate (46 ± 11 mSv, Schaffer et al., 2020) produces 
a subglacial dPb export flux of 2.2 ± 1.4 Mg·yr −1 from Nioghalvfjerdsbræ to the adjacent shelf region.

The total freshwater flux underneath the floating ice tongue from basal melt including subglacial runoff to 
the grounding line is 0.63  ±  0.21  mSv and contributes 1.4% to the cavity overturning circulation (Schaffer 
et al., 2020). Melting of pre-industrial ice at the glacier’s base (Andersen et al., 2006) and intrusion of surface 
meltwater to the glacier’s base (Das et al., 2008; Young et al., 2022) are likely major contributors to this cavity 
freshwater flux. To estimate the contribution from the cavity freshwater flux to subglacial dPb discharge, we 
extrapolate from the dPb-salinity relationship in PSW at the glacier terminus (station 1) to a glacial freshwater 
endmember of 54 ± 7 pM dPb (at salinity of 0, Figure S5 in the Supporting Information S1). Although the 
dPb-salinity relationship is not necessarily linear below salinities of 25 (Martino et al., 2002; Waeles et al., 2008) 
because of non-conservative addition of dPb (e.g., Ferrari & Ferrario, 1989) or non-conservative removal of dPb 
(e.g., Tanguy et al., 2011) during estuarine mixing, our glacial freshwater endmember is within the broad range 
of measured pre-industrial Pb levels in Central Greenlandic ice (3.4–73.9 pmol·kg −1 for ice core dates of 1236 
BC–800 AD, McConnell et al., 2018) and comparable to dPb concentrations in recent Arctic snow deposition 
sampled in 2015 (48 ± 38 pM as per Marsay, Aguilar-Islas, et al., 2018). The cavity freshwater flux multiplied by 
the glacial dPb endmember suggests that 0.22 ± 0.08 Mg·yr −1, or ∼10% of the subglacial dPb export flux, may 
stem from the addition of Pb from subglacial runoff and basal melt. In other words, the sedimentary source of 
dPb is by far the major contribution to dPb exiting the cavity.

The same approach is applied to estimate surface dPb discharge from the Nioghalvfjerdsbræ terminus. The 
surface meltwater flux from Nioghalvfjerdsbræ has been modeled as 2.3 ± 1.3 km 3·yr −1 (Wilson et al., 2017). 
We assume this surface meltwater flux to be entirely discharged into the adjacent PSW to obtain an upper limit 
estimate on surface dPb discharge from the terminus. The surface meltwater flux, multiplied by our glacial dPb 
endmember, produces an estimate of surface dPb discharge of 0.03 ± 0.01 Mg·yr −1 and is thus likely a very minor 
component (∼1%) in Nioghalvfjerdsbræ dPb export.
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Combined, surface meltwater discharge and subglacial freshwater addition may contribute ∼11% to the 
Nioghalvfjerdsbræ dPb export flux of 2.2 ± 1.4 Mg·yr −1 with the remaining fraction likely originating from glacial 
bedrock and cavity sediments. In total, Nioghalvfjerdsbræ dPb export is roughly comparable to dPb discharge 
from small Arctic rivers such as the Onega River (1.1 ± 0.6 Mg·yr −1) and the Mezen River (1.1 ± 0.6 Mg·yr −1) – 
though for comparative purposes it should be noted that these fluxes exclude estuarine loss or addition processes 
(Table S3 in the Supporting Information S1).

4.  Conclusion and Future Perspectives
This study demonstrates that Greenland Ice Sheet discharge is a previously unrecognized but important source 
of dPb to the NEGS. By defining a flux gateway at the glacier terminus, our estimate of Nioghalvfjerdsbræ dPb 
export (2.2 ± 1.4 Mg·yr −1) is comparable to dPb discharge from small Arctic rivers. The distribution of dPb at 
Nioghalvfjerdsbræ and the flux calculations suggest that the vast majority of this net dPb export to the shelf, 
∼90%, is sedimentary in origin. This finding, in the light of widespread occurance of Pb-rich deposits (Kolb 
et al., 2016; Kragh et al., 1997) and legacy Pb stored in Greenlandic glacial ice and snow (Hong et al., 1994; 
McConnell & Edwards, 2008; Sherrell et al., 2000), in combination with evidence of glacial Pb supply elsewhere 
in the Arctic (Bazzano et al., 2017; Hawkings et al., 2020) suggests that most Greenlandic shelf regions are likely 
receiving dPb inputs from surface and subglacial discharge.

For large marine-terminating glaciers, surface discharge from legacy dPb in glacial ice and snow may only be a 
minor fraction compared to subglacial dPb discharge which can include larger contributions from sediments and 
the glacial bedrock. Our calculations suggest that the vast majority of dPb export from Nioghalvfjerdsbræ (∼99%) 
is through subglacial discharge from underneath the floating ice tongue of which only a minor fraction (∼10%) 
stems from the addition of dPb with basal meltwater and subglacial runoff. A long cavity residence time of 
waters underneath large floating ice tongues or ice shelfs likely results in an equilibration state being approached 
between dissolved and particulate fractions of Pb. Consequently, the retreat of large marine-terminating glaciers 
and more rapid release of cavity waters to the shelf may drive more dynamic and variable subglacial dPb export 
to coastal regions.

Our observations suggest that sediment dynamics are likely the most important factor controlling glacial dPb 
release into the marine environment. In the context of glacier retreat, increasing sediment delivery to the marine 
environment (Chu et  al.,  2012; Hudson et  al.,  2014) has the potential to increase dPb export into near-shore 
surface waters. However, rapid scavenging of dPb and onto particles (Marani et al., 1995; Tanguy et al., 2011; 
Yang et al., 2015) as indicated by the succinct decline in dPb concentrations with distance from Nioghalvfjerds-
bræ terminus (Figure 1, Figure S9 in the Supporting Information S1) is likely to limit long-distance dPb transport. 
Future increases in surface and subglacial dPb export may thus predominantly affect inner shelf regions with 
rapidly decreasing glacial dPb fluxes with distance from the terminus. Nevertheless, the existence of a dynamic 
equilibrium between dPb scavenging and release (Rusiecka et  al.,  2018; Sherrell et  al.,  1992) in conjunction 
with net dissolution of dPb following resuspension of sediments (Figure 2, Figure S8 in the Supporting Informa-
tion S1) suggests that scavenged and particle-bound labile Pb may continue to function as a source of dPb beyond 
coastal NE Greenland.
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https://doi.pangaea.de/10.1594/PANGAEA.879197 (large CTD, Graeve & Ludwichowski,  2017), and https://
doi.pangaea.de/10.1594/PANGAEA.905347 (ucCTD, Graeve et al., 2019). Trace element data can be obtained 
from: https://doi.pangaea.de/10.1594/PANGAEA.933431 (dissolved trace elements, Krisch, Roig, et al., 2021), 
and from the source data file of Krisch, Hopwood, et al. (2021) (labile particulate and total dissolvable trace 

https://doi.pangaea.de/10.1594/PANGAEA.871028
https://doi.pangaea.de/10.1594/PANGAEA.871030
https://doi.pangaea.de/10.1594/PANGAEA.871030
https://doi.pangaea.de/10.1594/PANGAEA.879197
https://doi.pangaea.de/10.1594/PANGAEA.905347
https://doi.pangaea.de/10.1594/PANGAEA.905347
https://doi.pangaea.de/10.1594/PANGAEA.933431


Geophysical Research Letters

KRISCH ET AL.

10.1029/2022GL100296

10 of 13

elements). Helium and Neon data can be obtained from: https://doi.pangaea.de/10.1594/PANGAEA.931336 
(Huhn, Rhein, Bulsiewicz, et al., 2021). The section plots (Figure 1) were made using Ocean Data View software 
with DIVA gridding calculations (Schlitzer, 2022) and RTopo-2.0.1 bedrock topography (30-arc s resolution) 
(Schaffer et al., 2016). The Principal Component Analysis (Figure 2a) was conducted using Minitab statistical 
software version 21.1 (Minitab Inc., State College, PA, USA). The depth profiles (Figure 2b) were plotted using 
OriginPro version 9.1.0. (OriginLab Corporation, Northampton, MA, USA).
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