
1. Introduction
With the increase in flood related disaster damages and the availability of global data sets, the pace of development 
and application of meso- and macro-scale flood risk models has increased in the past decade (Ward et al., 2020). 
These flood risk models are often conceptualized as a chain of sub-models for the flood hazard, exposure of 
assets, and vulnerability modeling; with each step adding uncertainty (de Moel & Aerts, 2011). Vulnerability 
modeling, the last step in the chain where variables describing the assets-at-risk and their flood exposure are 
related to estimate some flood loss or damage, is generally found to be the most uncertain component in micro- 
and meso-scale models (de Moel & Aerts, 2011; Jongman et al., 2012). These findings are supported by work 
comparing modeled damages to those observed during flood events, where large discrepancies are regularly 
found between different models and against observations (Jongman et al., 2012; McGrath et al., 2015; Molinari 
et al., 2020). Further challenges are introduced when such models are applied at the macro-scale, where hazard, 
exposure, and vulnerability are treated with gridded data of resolutions from 100 to 1,000 m (Hall et al., 2005; 
Sairam et al., 2021; Ward et al., 2015). This process collapses heterogeneities within a grid-cell (like variable 
flood depth) and poses poorly understood challenges to calculating the exposure of sub-grid assets like buildings.

The terminology of model scaling varies between authors. Here, we use resolution of a fine (s1) or coarse (s2) 
grid, measured in distance units (where s1 < s2), to describe the ground length of a single square cell or pixel 
within a grid. We select this term to avoid confusion with the more generic scale, which may also refer to the 
domain extents (Bierkens et al., 2000; Degbelo & Kuhn, 2018). The term support is used by some authors to 
describe the number of pixels per unit of area (Bierkens et al., 2000) but is less well known in the flood literature. 
We exclusively use fine and coarse to describe relative differences in resolution to avoid the more ambiguous 
terms increase/decrease which are often confused with the number of pixels/unit rather than the dimension of a 
pixel.

Operations which transform data or model resolution between fine (s1) and coarse (s2) are commonly termed 
rescaling, with those that refine resolution called disaggregating and those that coarsen called aggregating. 
Alternate terms include downscaling and upscaling respectively (Bierkens et al., 2000); however, these are less 
common in the flood literature. Using the term aggregating highlights the underlying spatial computation: a new 
coarse (s2) grid is assembled from some sub-calculation (e.g., the mean statistic) applied to blocks or neighbors 
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of fine (s1) cells aggregated together (disaggregating is this same process in reverse) resulting in a new discreti-
zation of the domain. When an averaging statistic (e.g., the mean) is used for the sub-calculation, this aggregation 
has the effect of removing extreme values and producing a coarse (s2) grid with less variance—or a smoothed 
grid. While this manuscript exclusively uses averaging statistics that produce a smoothed grid, we apply the more 
generic term aggregation as this better aligns with literature and emphasizes the operation under study rather than 
the result. When the rescaling sub-calculation yields differences between the original fine (s1) and new coarse 
(s2) grids with a non-zero mean, the aggregation routine can be said to impart bias or distortion onto the coarse 
(s2) grid.

Flood hazards are increasingly modeled with 2D grid-based hydrodynamic models or 1D/2D hybrid models, both 
implementing some simplification of the shallow water equations (Apel et al., 2009; Dimitriadis et al., 2016). For 
example, Bellos and Tsakiris (2015) study the performance of three different methods for representing buildings 
in a high resolution model relative to water level measurements from a physical experiment of a flash flood. 
Because of the computational demands of such models, resolution has been extensively studied and found to be 
one of the parameters of most importance for accuracy (Alipour et al., 2022; Fewtrell et al., 2008; Papaioannou 
et al., 2016; Savage et al., 2016). Focusing on the relationship between model resolution and inundation area, 
many studies of fluvial floods find a positive inundation area and flood depth bias at coarser resolutions (Banks 
et al., 2015; Ghimire & Sharma, 2021; Mohanty et al., 2020; Muthusamy et al., 2021; Saksena & Merwade, 2015; 
Xafoulis et al., 2023) while studies of urban flooding are less conclusive (Fewtrell et al., 2008). For the under-
lying terrain model grids or digital elevation models (DEM), the resampling method used to generate the coarse 
analogs is often found to be of little significance (Muthusamy et al., 2021; Saksena & Merwade, 2015) except at 
high resolutions when buildings are present in the fine DEM (Fewtrell et al., 2008). Comparing fine and coarse 
models with identical roughness, Muthusamy et al. (2021) use separate resolutions for the channel and floodplain 
to show that positive bias can be explained by the coarse river channel being poorly defined and a subsequent 
reduction in conveyance. While these studies provide valuable insight into the behavior of coarse hydrodynamic 
models, their utility for practitioners is limited as the coarse models are uncalibrated in these studies (unlike 
models in practice). Further, the focus of such studies is on a coarse model's (in)ability to reproduce observed 
high water marks or match some reference model, not on the hazard variables (and their heterogeneity) at asset 
locations used in risk modeling. In other words, when such studies find high water marks are adequately repro-
duced by a model at some coarse resolution, this should not be interpreted as that same model adequately repro-
ducing the exposure which is sensitive to more than just water levels at high water marks.

Many studies investigate flood risk model parameter sensitivity (Apel et al., 2009; Ghimire & Sharma, 2021; 
Jongman et al., 2012; Metin et al., 2018; Seifert, Thieken, et al., 2010), but few investigate sensitivity to resolution 
explicitly (Brussee et al., 2021; Komolafe et al., 2015; Pollack et al., 2022). However, by extracting results from 
this literature and comparing those candidate fine-coarse model pairs which differ only in the level of aggregation 
or resolution, a quantitative bias of flood damage from aggregation can be computed from a diverse set of flood 
risk model experiments. Table 1 provides such a comparison that includes all relevant studies (and study pairs) 
the authors are aware of. This shows a clear positive bias between aggregation and the reported total flood risk 
metric, albeit of different magnitudes; which is remarkable considering the diverse methods, data, and regions 
under study. While the positive bias of coarse hazard models is well studied (Muthusamy et al., 2021; Saksena & 
Merwade, 2015), the implications for risk models have not been explored systematically.

In one of the few studies to investigate risk model sensitivity to grid aggregation specifically, Komolafe 
et al. (2015) perform a simulation experiment with a model calibrated to the 1996 Ichinomiya river basin flood in 
Japan. Beginning with 50 m gridded asset and flood depth layers, eight additional coarse-resolution models were 
constructed by aggregating with an unspecified method. Their results show that aggregating or upscaling depth 
grids introduces a slight positive bias, that is, overestimating the water depth of the coarser grids. No mention 
of the aggregation routine is provided or explanation for the behavior observed. Investigating the sensitivity of 
a flood mortality model to hydrodynamic model resolution, Brussee et al. (2021) compare a 5, 25, and 100 m 
resolution 2D hydrodynamic model of a densely populated dike ring surrounded by three rivers in the Nether-
lands. Applying a constant breach width, they find higher discharge and associated mortality in the breach zone 
at the coarser resolutions and a mortality bias of +8%. Ghimire and Sharma (2021) provide a thorough sensitivity 
analysis of U.S. focused hazard and vulnerability modeling platforms. Along with testing a 1D and 2D hazard 
model framework and input data qualities, they investigated alternate DEM constructions with a LiDAR-derived 
3 m and two publicly available DEMs at 10 and 30 m resolution. They found the 1D model to be more sensitive 
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to the different DEMs than the 2D model, with a 25% and 75% increase in damages respectively at 30 m with 
comparable increases in flood footprint. In a recent large-scale study, Pollack et al. (2022) construct a benchmark 
and aggregated analog models from roughly 800,000 single family dwellings and eight 30 m resolution flood 
depth grids with return periods ranging from 2- to 500-year. When only building attributes were aggregated, a 
small negative bias was observed (−10%) while when hazard variables were also aggregated a large positive bias 
was found (+366%) for annualized damage. Given the spatial correlation of building values and flood exposure 
found in their study area, they conclude that bias would be difficult to predict ex-ante. They also find that errors 
arising from missing data and damage function uncertainties can be orders of magnitude greater than those aris-
ing from aggregation.

Leveraging a rich object-scale data set of 300 buildings damaged by a 2010 Italian flood, Molinari and 
Scorzini (2017) provide a non-grid based comparison to investigate the sensitivity of their multi-variate damage 
modeling framework to input data accuracy. For this, six models were built with different combinations of input 
data elements either at object-scale or averaged across the census-block (taking the mode or the mean). Results 
were mixed; however, the model where all inputs were aggregated had a 𝐴𝐴

𝑠𝑠2

𝑠𝑠1
 bias of 1.51. While this approach is 

suitable for investigating model sensitivity to input data accuracy, because exposure data was aggregated from 
object-scale data after hazard data sampling (rather than aggregating before sampling) these findings are less 
relevant to the broader issues of scaling challenging aggregated models used in practice.

Spatial resolution transfers within flood risk models are often implicit and can occur as part of data preparation, 
modeling, or post-processing for reasons ranging from efficiency to privacy protection. For example, a DEM 
might be aggregated as part of preprocessing for a hydrodynamic model to improve stability and efficiency (Bates 
et al., 2021; Sampson et al., 2015), or risk results might be aggregated to adhere to a licensing agreement (Wing 
et al., 2022). Focusing on the outputs of hazard models (e.g., flood depth grids) and excluding preprocessing (e.g., 
DEM resampling), most flood risk model studies maintain a single resolution throughout the analysis inherited 
from some base DEM (Bates et al., 2021; Hall et al., 2005; Sairam et al., 2021). However, some studies aggregate 
hazard model outputs to facilitate intersection with more coarse exposure data, either through simple averag-
ing (Seifert, Kreibich, et al., 2010; Sieg & Thieken, 2022) or some unspecified method (Jongman et al., 2012; 
Thieken et al., 2016). Hazard model outputs have also been aggregated to facilitate comparison with more coarse 
climate re-analysis data (Paprotny et al., 2020). These often forgotten model manipulations have so far not been 
investigated.

The goal of this paper is to partially explain the bias shown in Table 1 through generalizeable methods (i.e., not 
bound to the specifics of individual case studies) and thereby improve our understanding of the effects of spatial 
scale transfers on flood risk models. In this study, we focus on flood hazard data, composed of a set of grids, and 
their intersection with assets or buildings to calculate exposure—two initial stages of risk modeling. To explore 
scaling effects, we compare fine grids to their coarse analogs using metrics of interest to flood risk modelers. 
Rather than construct these coarse analogs through hydrodynamic modeling as has previously been done, we 
aggregate hazard grids through averaging routines. In this way, we provide the first guidance and explanation for 
practitioners aggregating or upscaling flood hazard grids, along with an easy-to-use QGIS script (https://github.
com/cefect/FloodRescaler). Further, we elucidate some endemic scaling effects and provide evidence and expla-
nation to the positive bias common among coarse flood risk models.

2. Flood Hazard Grids and Scales
There are three primary hazard grids included in most flood risk models: Water Depths (WSH), Water Surface 
Elevations (WSE), and the Ground Elevations (DEM) related by the following:

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐷𝐷𝑊𝑊𝐷𝐷 +𝑊𝑊𝑊𝑊𝑊𝑊 (1)

Combining Equation 1 with the assumption that the flood hazard grids are constrained to surface water flooding 
(i.e., ground water is irrelevant), yields the following expectations:

𝑊𝑊𝑊𝑊𝑊𝑊 ≥ 0 and 𝑊𝑊𝑊𝑊𝑊𝑊 𝑊 𝑊𝑊𝑊𝑊𝑊𝑊 (2)

Alternatively, it can be argued that a WSE grid is still valid when: WSE = DEM; however, this relaxation results 
in a WSE grid with less information as it is no longer possible to determine wet from dry cells without a second 

https://github.com/cefect/FloodRescaler
https://github.com/cefect/FloodRescaler
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companion grid like the DEM. Further, the information provided by the grid becomes less associated with the 
label “water surface” as many (or potentially all) of the values represent dry ground. For these reasons, we 
provide no further consideration for this paradigm.

From Equation 1 emerges an important distinction for the handling of dry cells:

���� or � = 0 ⟺ ���� or � = ���� ⟺ “dry" (3)

where i is the index of a fine (s1) and j a coarse (s2) grid cell. In other words, because WSE values are on some 
absolute vertical datum, the grid is undefined in dry regions, whereas WSH, being relative to ground (DEM), 
should have zero values in these same regions. Absent transformation or resampling, the application of Equa-
tions 1 and 3 is trivial and allows for simple conversion between WSE and WSH or vice versa using the DEM. 
However, in the presence of dry cells Equation 3 leads to inconsistencies when computing the denominator of 
averaging operations: local averages of DEM and WSH grids use the total count of s1 cells contributing to a coarse 
s2 cell (N12), while WSE grids must omit dry cells from the denominator (Nwet = N12 − Ndry) where Ndry is the 
count of s1 cells described in Equation 3. This can be expressed mathematically as:

𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠2,𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠1,𝑖𝑖 =
1

𝑁𝑁12

𝑁𝑁12
∑

𝑖𝑖=1

𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠1,𝑖𝑖 (4)

𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1,𝑖𝑖 =
1

𝑁𝑁12

𝑁𝑁12
∑

𝑖𝑖=1

𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1,𝑖𝑖 (5)

𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1,𝑖𝑖 =
1

𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤

𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤
∑

𝑖𝑖=1

𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1,𝑖𝑖 (6)

The remaining sections show how these inconsistencies can lead to bias of key metrics when applying aggrega-
tion routines.

3. Methods
To investigate any potential bias arising from aggregation of flood hazard grids, we introduce the novel resample 
case framework for classifying the flood hazard grid domain. With this, two typical grid aggregation routines are 
investigated first analytically, then computationally using data from a 2018 fluvial flood in Canada as an example. 
Finally, we evaluate regions with exposure (locations with buildings) to provide an analysis of bias particularly 
relevant to flood risk models.

3.1. Aggregation Routines

To demonstrate the application of our resample case framework, we consider two routines for yielding a set of s2 
analog grids from a set of s1 grids through averaging local groups with N12 cells. Both respect Equations 1 and 2, 
but differ in their strategy for preserving averages in the resulting s2 analogs: the first preserving water depths 
(WSH Averaging) and the second water elevations (WSE Averaging). In this way, each routine has a primary grid 
(WSH or WSE), which is computed through direct averaging, and a secondary grid (WSE or WSH) computed 
through addition or subtraction with the DEM. Both routines use Equation 4 to obtain DEMs2, as this is not 
affected by the dry cells in Equation 3. Further, both rely on Equation 1 to compute the secondary grid—rather 
than averaging which would yield a grid set in violation of Equation 1 (this can be seen by comparing the WSH 
grids in Figures 1d and 1e). Figures 1d and 1e provide a graphical summary and toy example of these routines, 
which are defined mathematically in Text S1 in Supporting Information  S1. Both routines are easily imple-
mented in a few steps using standard spatial software packages or the provided QGIS script (https://github.com/
cefect/FloodRescaler). While additional aggregation routines are possible, these two were selected as they are the 
simplest, are amenable to analytical treatment, and yield hydraulically reasonable grids.

3.2. Resample Case Framework

To understand and spatially attribute the effects of aggregation routines on flood hazard grids, we classify each 
cell in the s1 domain into one of four cases of potentially homogeneous aggregation behavior. We define each of 

https://github.com/cefect/FloodRescaler
https://github.com/cefect/FloodRescaler
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these resample cases using local relations of the DEMs1, WSHs1 and WSEs1 fine data grids within a block j of size 
N12 as shown graphically in Figure 2 and defined explicitly as:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷𝐷𝐷𝐷 if max(𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐1,𝑖𝑖) = 0

𝐷𝐷𝐷𝐷 if not𝐷𝐷𝐷𝐷 and𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐1,𝑖𝑖 ≥ 𝑊𝑊𝑊𝑊𝐷𝐷𝑐𝑐1,𝑖𝑖

𝑊𝑊 𝐷𝐷 if not𝑊𝑊𝑊𝑊 and𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐1,𝑖𝑖 < 𝑊𝑊 𝑊𝑊𝐷𝐷𝑐𝑐1,𝑖𝑖

𝑊𝑊 𝑊𝑊 if𝑚𝑚𝑖𝑖𝑚𝑚(𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐1,𝑖𝑖) > 0

 (7)

where 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠1,𝑖𝑖 is defined in Equation 6, the first letter of the casej label code is determined by the relative 
averages of WSHs1 and DEMs1, and the second letter by the overlap of extremes between WSEs1 and DEMs1 
grids as shown in Figure 2b. The quadrants in Figure 1a provide a simple example of four such i groups whose 
corresponding case labels are shown on Figure 1b. A simpler framework could employ only three cases (wet, 
partial, dry); however, we find sub-dividing the “partial” zone provides more spatial segregation and further 

Figure 1. Flood hazard data scaling issues and two aggregation schemes demonstrated with a toy example. Panel (a) is an oblique view of a fine (s1) DEM and WSE 
while panel (b) shows an aggregated coarse (s2) analog and corresponding resample case (DD, WW, WP, DP) from Figure 2. Panel (c) shows an example set of s1 
values for the three grids described by Equation 1. Panel (d) and (e) show the two aggregation routines described in the text based on averaging the WSH and WSE grid 
respectively. Numbered arrows indicate phases within each scheme, the “Eq.” notes refer to equations from the text, “d” denotes dry or null WSE grid values, and light 
gray grids show intermediate calculations. Discrepancies between resulting s2 grids from the two routines are marked with “*.”
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discernment of aggregation artifacts (see results below for the WSE Averaging routine). Figure 3 shows a fully 
classified domain where WSHs1 has been simulated using a hydrodynamic model built on a 1  m fine DEM 
described below. This example shows how partial cases (DP and WP) represent regions of marginal flooding or 
partial inundation of coarse (j) blocks by the fine source (i) cells.

Figure 2. Framework for classification of flood hazard resample case. Panel (a) shows class label acronyms. Panel (b) 
provides a conceptual diagram showing a hypothetical distribution of WSEs1 and four possible DEMs1 groups and their 
resulting resample case. D, W, and P stand for “dry,” “wet,” and “partial” respectively.

Figure 3. Simulated May 2018 Saint John River flood in Canada. Panel (a) shows DEMs1 and WSHs1 at 1 m resolution and 
building footprints from Microsoft (2019). Panel (b) shows corresponding resample case (see Figure 2) for a 1:64 aggregation 
(DD is transparent for clarity).
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Such a resample case map is independent of any coarse (s2) aggregate grids or the routine used to compute them 
as it is purely a function of the fine source (s1) grids and the target coarse resolution (i.e., N12). However, by 
treating each region independently, certain behaviors of aggregation routines may be generalized. For example, 
we expect all aggregation routines to yield fully dry and fully wet grids in DD and WW regions respectively. The 
partial regions (DP and WP) on the other hand are ambiguous, and we expect s2 grids generated by different 
aggregation routines may differ in these regions.

This resample case framework provides a reproducible approach to advance our understanding of flood grid 
aggregation in three ways. First, by classifying the resample case of each cell in the domain, bias or artifacts 
emerging through aggregation can more clearly be communicated. Second, this classification facilitates the study 
of spatially heterogeneous mechanisms (e.g., inundation area under aggregation may have bias in opposite direc-
tions in different regions that cancel absent such classification). Third, and most importantly, this framework 
facilitates an analytical examination by allowing the problem to be separated into four simpler ones which may 
yield closed-form solutions of the bias introduced by an aggregation routine—independent of any case study or 
region.

3.3. Analytical Approach

In the first phase of this study, we investigate the two aggregation routines analytically in the pursuit of general-
ized expressions of bias that would apply to any case study region. To accomplish this, each of the four resample 
cases is investigated separately, which provides the simplifying assumptions that allow closed-form solutions to 
the bias imparted on each metric of interest. To investigate the behavior of an aggregation routine as a function 
of target resolution (s2), we define true values as those represented in the fine (s1) grid used as an input to the 
aggregation routine. This allows us to investigate the error introduced solely through aggregation by computing, 
and then comparing, metrics between the fine (s1) and coarse (s2) grids. From this, an important distinction is 
made between non-systematic errors—differences in s1 and the corresponding s2 values with a zero-mean—and 
systematic errors which have a non-zero mean. In flood grid aggregation, these non-systematic errors are an 
obvious or even intentional product—generally thought to cancel in larger models (Merz et al., 2004). Systematic 
errors on the other hand, which we call “bias,” are an undesirable artifact of aggregation and the focus of this 
analysis.

Four metrics, typically of interest to flood-related analysis, are considered: two primary metrics, water depth 
(WSH) and water surface elevation (WSE), and two derivative metrics, inundation area (A), and volume (V). 
Primary metrics are computed as grid-wide global averages similar to Equations 5 and 6, but evaluated against 
all cells in a region of interest (rather than local groups). For example, 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠1,𝑊𝑊 𝑊𝑊  is the sum of all WSHs1 cells 
classified as resample case WW per Equation 7 divided by the count. The derivative metrics are computed as 
grid-wide totals: inundation area (As) is the count of all non-dry grid cells multiplied by the area of each cell (s 2) 
and volume (Vs) is the sum of all WSHs values multiplied by the area of each cell.

To better attribute bias spatially, we also compute a local bias for the primary metrics WSH and WSE. This 
allows us to separate errors owing to the increase in flood footprint, from those attributable to changes in 
local values. For this, we first calculate the error of each s2 cell versus s1 group, before computing the mean 
of these error values to obtain a single bias metric. For the WSE metric, this local bias can of course only be 
computed in regions inundated by both s1 and s2 grids (see Equation 2), as the grid is undefined in other 
regions. For consistency, we apply this same constraint to the WSH metric even though it could be resolved on 
the full domain. While this obscures the performance of a routine in dry regions, it provides a consistent way 
to separate the reporting of bias in local variables from bias in inundation area (which is reported as a separate 
metric).

3.4. Computational Approach

In the second phase of the study, we further demonstrate the utility of the novel resample case framework by 
applying it to the May 2018 Saint John River flood in Canada. To elucidate aggregation bias, we aggregate 
using the two routines on a set of 1 m resolution grids before applying the resample case framework to quan-
tify bias arising from the aggregation. The DEMs1 grid was downloaded from GeoNB who constructed the 
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bare earth terrain model from six aerial LiDAR points per m 2 flown in the 
summer of 2015 (Government of New Brunswick, 2016). The WSEs1 grid 
was simulated by GeoNB using a hydrodynamic model (on the aforemen-
tioned DEMs1) calibrated to field surveyed high water marks and is further 
described in Bryant et al. (2022) and provided by GeoNB (2019). This model 
did not remove building footprints from the DEM; however, given the width 
and low-density of houses in the flood plain this simplification likely has 
a negligible influence on the model. The WSHs1 grid was computed with 
Equation 1 yielding the grids shown in Figure 3a. From these fine (s1) grids, 
a set of five (s2 = 2 nm for n = 3, 6, 7, 8, 9) aggregated retrograde s2 analog 
grids and the corresponding resample classification maps (e.g., Figure 3b) 
are computed for the WSE Averaging and WSH Averaging routines for a total 
of 40 grids (4 grid types × 5 coarse resolutions × 2 routines). Komolafe 
et al. (2015) take a similar approach, but only for the WSH grid and they do 
not specify the aggregation routine or report the metrics discussed here.

While bias in aggregated flood grids is of general interest, flood risk models 
are particularly concerned with those regions where assets or buildings are 
present. To explore the significance of this exposed domain (in contrast to 
the full domain), building locations within the study area were obtained from 
Microsoft  (2019) (see Figure  3a). From the centroids of footprints in this 
layer, each of the aforementioned 40 retrograde grids is sampled to produce 
a parallel data set from which the same metrics of interest can be computed 
for the exposed domain.

4. Analytical Results and Discussion
To investigate the six metrics of interest (A, V, and local and global WSH and 
WSE bias), we apply the resample case framework to the two aggregation 
routines. The analysis and algebra are detailed in Text S1 in Supporting Infor-
mation S1 while the results are summarized in Table 2.

Focusing on the non-partial regions (DD and WW), Table  2 shows that 
aggregation preserves all metrics of interest here. This is intuitive consider-
ing our aggregation routines and the selected metrics are commutative and 
cumulative in the absence of dry cells. Put simply, this is the naive expecta-

tion for the aggregation of a continuous grid: averages are preserved. Outside of this—in the partial regions (WP 
and DP)—flood hazard grid behavior deviates from that of continuous grids owing to the presence of dry cells 
and the inter-grid relations (see Equations 3 and 1). Examining the bias in these partial regions (WP and DP), 
Table 2 shows some bias for all metrics except the respective primary grids on the global metric (i.e., WSE Aver-
aging has no 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 bias and WSH Averaging has no 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 bias—or 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
[
∑

𝑉𝑉
]

 , which 
is discussed below). This suggests that a single aggregation routine which employs averaging will always carry 
bias on some metric in partial regions; another artifact that follows from Equations 1 and 3.

Metric Equation

Resample case

DD DP WP WW

WSH Averaging

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 0 0 0 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 0 − − 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 n/a + + 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 n/a + + 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
[
∑

𝐴𝐴
]

 ∑As2 − ∑As1 0 + + 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
[
∑

𝑉𝑉
]

 ∑Vs2 − ∑Vs1 0 0 0 0

WSE Averaging

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 0 − − 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 0 n/a − 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 n/a n/a 0 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 −𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠1 n/a n/a 0 0

  𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
[
∑

𝐴𝐴
]

 ∑As2 − ∑As1 0 − + 0

 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
[
∑

𝑉𝑉
]

 ∑Vs2 − ∑Vs1 0 − − 0

Note. For metrics computed from the WSE grid, which has no value for dry 
cells, “n/a” denotes dry regions. Similarly, the aggregation routine WSE 
Averaging, which resolves dry cells for both DD and DP cases, shows “n/a” 
for 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 as our definition of local requires wet cells on both the 
s1 and s2 grids. The remaining “+”/“−” symbols indicate cases where we 
found the metric calculated with the s2 grid to be systematically higher/lower 
than the s1 grid, while “0” indicates the metrics are equivalent.

Table 2 
Biases in Two Aggregation Routines Evaluated Analytically for Each 
Resample Case

Figure 4. Conceptual diagram showing a cross-section of local bias for three target resolutions generated through two types of averaging: (a) zero-inclusion (as in 
Equation 5) and (b) zero-exclusion (as in Equation 6). All series within a panel have the same global mean. Black arrow shows the progression of local bias.
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Contrary to global bias, the analysis shows the WSH Averaging routine has a negative 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑙𝑙

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 in partial 
regions (WP and DP). A simple explanation for this is illustrated in Figure 4a, where we see the aggregated values 
have a progressively lower local value (measured at the center), while the global average remains constant. In 
other words, given a wet s1 cell with some dry neighbors, aggregating depths through averaging will produce 
progressively smaller (i.e., shallower) depth values. WSE Averaging on the other hand does not suffer from this 
as dry cells are omitted from the denominator during averaging (see Figure 4b). This has important implications 
for model scaling. For example, WSH Averaging, arguably the simplest aggregation routine, appears to preserve 
WSH when viewed globally—but in fact imparts a negative bias in partial regions.

For inundation area (A), the analysis shows a positive bias for WSH Averaging and a mixed bias for WSE Aver-
aging in partial regions. This is consequential for flood risk models, considering changes to flood footprints are 
expected to lead to changes in flood exposure, a sensitive component in risk calculations (Jongman et al., 2012; 
Metin et al., 2018). With this in mind, the WSE Averaging routine seems preferable considering it at least has the 
potential to preserve ∑A; however, obviously some disparity in local inundation is expected with any routine—
this phenomena is explored further below. Finally, Table  2 shows 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

[
∑

𝑉𝑉
]

 follows the same behavior as 
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔

[

𝑊𝑊𝑊𝑊𝑊𝑊

]

 (see Text S1 in Supporting Information  S1 for derivation), meaning WSH Averaging also 
preserves ∑V. This suggests a paradox for hydrodynamic modelers: aggregating outputs biases either V, which 
violates mass conservation, or WSE, which may violate calibration.

This analysis has shown mathematically whether or not a metric will be biased by a given aggregation routine. By 
employing the resample case framework, these bias inequalities become closed-form, independent of grid values, 
and ubiquitous within their respective regions. In other words, they apply to all grids aggregated with a given 
routine and all cells within that region. These provide definitive, albeit limited, statements about the behavior of 
the two aggregation routines applied to any case (assuming segregation into resample cases). However, this does 
not provide any indication of the magnitude of bias, which is case specific, and provides conditional evidence on 
the relative magnitude between resample cases (e.g., whether Bias [WD] > Bias [DP]). For example, so far we 
have not provided an evaluation about the prevalence or proportion of each resample case (e.g., a grid set could 
conceivably have only one resample case, rendering most of the analysis here irrelevant). With this in mind, the 
following section applies the same resample case framework to a case study of a 2018 flood.

Figure 5. Resample case classification progression for May 2018 Saint John River flood hazard data showing (a) illustrative maps at five target resolutions (s2); (b) full 
domain fraction; and (c) exposed domain (i.e., values sampled at buildings) fraction for each case. See Figure 2 for description of legend.
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5. Computational Results and Discussion
While the analytical approach is the main contribution of our work as it is independent of any case study region, 
here we demonstrate the application of the novel resample case framework on a 2018 flood, and show how it 
can be used to explain aggregation bias. For this, two domains are considered: first, the complete rectangular or 
full domain shown in Figure 3; and second, the exposed domain, a sub-set of the full domain including only cells 
intersecting building centroids. To attribute bias to specific regions, and to compare with the results of the analyt-
ical approach, both these domains are further sub-set by the four resample cases defined in Figure 2.

5.1. Full Domain

Figure 5 shows the resulting change in composition or classification of the domain, computed from the classi-
fication map obtained at each s2 scale. This shows that the portion of partial regions (WP and DP), we call ρs2/

s1, increases with aggregation: ranging from ρ32 = 5% to ρ512 = 40% for our case (Figure 5b). This is intuitive 
considering these partial regions as transition zones between wet and dry cells —– and that these zones must 
cover an increasing portion of the domain to be resolved as the resolution coarsens. This has significant implica-
tions for flood risk models considering the previous section showed these partial regions are those subject to bias 
of key metrics during aggregation: this suggests ρs2/s1 is positively correlated with aggregation bias sensitivity 
or magnitude. In other words, the portion of the domain containing errors of aggregation, ρs2/s1, increases with 
coarser resolutions or higher s2/s1 values. Extending these observations to other study regions, we hypothesize 
that ρs2/s1 is also sensitive to hydraulic regime: with broad-flat floodplains having a higher inundation-area-to-pe-
rimeter ratio, and therefore lower ρs2/s1 values with less sensitivity to aggregation bias; while narrow-steep flood-
plains would have higher ρs2/s1 values and greater sensitivity to aggregation bias. Further, these transition zones, 
or shorelines, often have a higher density of assets—a phenomena explored in Figure 5c and discussed below.

To demonstrate how these dynamic regions interact with the grid values calculated by each aggregation routine, 
the six aforementioned metrics are computed by comparing the analog s2 grids to the original 1 m resolution s1 
grids. These calculations are performed on the full domain and each resample case as independent regions of 
interest to develop five magnitude versus resolution series for each metric and routine. Results for four of the key 
metrics are shown in Figures 6a and 6b while the remaining two metrics are provided in Figure S1.

Comparing Figure 6 and Figure S1 in Supporting Information S1 to Table 2 shows all computations agree with the 
directional bias derived analytically in the previous section. For the WSH Averaging routine, Figure 6a suggests 
the bias in the DP case is always more severe than the WP case. This is also shown analytically in Text S1 in 
Supporting Information S1 for certain conditions (e.g., Nwet,DP < Ndry,WP). However, while the conditions favoring 
a more severe DP bias are intuitively more common, these conditions are not ubiquitous.

When aggregating, both the analytical and computational results show either decreasing or stable 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 
(Table 2, Figures 6a0 and 6b0); opposite of what Muthusamy et al. (2021) find when comparing increasingly 
coarse hydrodynamic models without adjusting the calibration. Saksena and Merwade  (2015) take a similar 
approach to Muthusamy et al. (2021) but only report 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊 , which they also find increasing. This contradic-
tion can be explained if we consider the uncalibrated hydrodynamic models are forced by boundary conditions 
(namely a hydrograph), while the aggregation routines are forced by the fine (s1) grid values. To make up for the 
loss of the deepest cells (i.e., the thalweg), the former achieves balance through increasing depths (and convey-
ance) while the latter increases volume or area. A more appropriate comparison between aggregation and coarse 
hydrodynamic modeling would need to re-calibrate each hydrodynamic model to some observations; an example 
of which is provided in Text S3 in Supporting Information S1 which shows a stable 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 .

For all partial zones, WSH Averaging shows a doubling (100% increase) of the inundated area (A) for the 
s2 = 512 m grids in this case study (Figure 6a2). WSE Averaging showed less bias, with the WP and DP global 
bias nearly balancing, leading to a meager 10% increase for s2 = 512 m (Figure 6b2). However, the reader should 
note that our selected ∑A metric is global, and that while the total areas may nearly balance, a substantial number 
of falsely inundated cells may be generated in the aggregated grids.

In practice, we recognize scale transfers in flood risk models through grid aggregation generally involve only small 
changes in resolution. More prevalent is the use of scale transfers via coarse hydrodynamic models, where the fric-
tion term is calibrated to observations yielding coarse WSH grids directly from aggregated or coarse DEM grids. 
Such scaling issues in coarse hydrodynamic models have been studied extensively (Banks et al., 2015; Ghimire & 
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Sharma, 2021; Mohanty et al., 2020; Muthusamy et al., 2021; Saksena & Merwade, 2015; Xafoulis et al., 2023). 
To evaluate the transferability between the aggregation routines considered here and hydrodynamic modeling (i.e., 
whether aggregation behavior might serve as an analog for coarse hydrodynamic modeling behavior) Text S3 in 
Supporting Information S1 presents a brief comparison of the aggregation routines against a depth calibrated hydro-
dynamic model built on a DEM resampled to the coarse resolution (s2 = 32 m) for a separate case study where more 
data is available. While this comparison is limited to the specifics of this study region and a single target resolution 
(s2 = 32 m), the results provide an example of the magnitudes of bias for the two routines on a smaller floodplain. 
However, the differences in depths and bias metrics between the coarse model and the aggregation routines suggests 

Figure 6. Bias from aggregation of four metrics for two routines sub-sampled by resample case (see Figure 2) for the full domain and the exposed domain. The “all” 
series uses the complete region of interest, without sub-setting by resample case. Panels (a2) and (b2) show the non-dry or inundated area of the full domain while 
panels (c2) and (d2) show the count of non-dry or exposed buildings.
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that some artifacts arrived at through coarse modeling are not present in aggregated grids. This is intuitive if we 
consider that the fine hydrodynamic model (which serves as an input to the aggregation routines) is capable of 
resolving more flow paths than its coarse twin—leading to frequent disparities between the two results which propa-
gate into disparities between the aggregation routines and the coarse model. In other words, the findings on bias and 
artifacts in hazard grid aggregation reported thus far do not necessarily extend to coarse hydrodynamic model results.

Finally, given our focus on artifacts introduced through averaging, we treat the high-resolution input grids as true, 
rather than some direct observations (e.g., high water marks). From this, it follows that some artifact or error from 
aggregation described here may actually provide a more accurate representation of a flood event (e.g., due to 
errors in the high-resolution input grids); however, any such phenomenon is independent from the computational 
artifacts we investigate here.

5.2. Exposed Domain

Having now demonstrated the character of bias on the full domain, we turn our focus to those regions of particular 
interest to flood risk modelers: developed areas or the exposed domain. Figure 5c shows that WW regions are 
insignificant for building exposure. This can be explained by: first, that the four cases form roughly concentric 
rings (WW > WP > DP > DD), radiating out from regions of continuous flooding (i.e., the river channel for 
fluvial floods) as demonstrated by Figure 3b; and second, that buildings are less prevalent within the river chan-
nel. Further, Figure 5b shows that DP regions are more than twice as prevalent for building exposure, leading to 
roughly 30% of buildings classified as either WP or DP at a resolution of 512 m, compared to 20% on the full 
domain for this case study. Recalling from the previous section that these partial regions (WP and DP) are those 
subject to bias suggests that the exposed domain is more sensitive to aggregation bias than the full domain.

The magnitude of increased sensitivity, or relevance, of the exposed domain to aggregation bias for this case study 
is shown in Figures 6c, 6d and Figure S2 in Supporting Information S1. Comparing the elements in Figure 6 row 
2 shows that the exposed building count is an order of magnitude more sensitive to aggregation bias than inunda-
tion area (note the vertical axis). For example, at s2 = 512 m the full domain shows an increase in inundation area 
of 110% and 8%, while the exposed domain shows an increase of 1800% and 400% for WSH and WSE Averaging 
respectively. This is intuitive if we consider the distribution of buildings: few in regions flooded by the base grids 
and many immediately adjacent (see Figure 5c). In other words, a small increase in flood footprint leads to a large 
increase in the number of exposed buildings. In their comparison of 3 and 30 m hydrodynamic models, Ghimire 
and Sharma (2021) find a comparable factor of two increase in building exposure.

For water surface elevations (WSE), bias generated in the full and exposed domain have the same direction and 
relative ranking of resample cases (Figure 6 row 1); however, the values show a muted bias in the exposed domain 
relative to the full domain. In other words, grid cells with the most severe WSE errors tend to have fewer build-
ings, but this may be specific to our case study. Counter to this, Figure 6 row 0 shows a significant difference in 
the sensitivity to water depth (WSH) errors between the full and exposed domain: with the full domain having a 
negative (or no) bias and the exposed domain having a positive bias for all but the DP case. This can be explained 
if we consider that the aggregation routines (and the full domain metrics) include all s1 cells in a group, while the 
exposed domain sampling (and therefore the metrics) ignore those cells without exposure. Figure 7 shows a clear 

Figure 7. WSH difference maps for an example 512 m square region at five resolutions aggregated with the WSH Averaging routine showing building centroid 
locations in black. To compute local errors, WSHs2 grids are downscaled to s1 then WSHs1 is subtracted, yielding the WSHs2 − WSHs1 values shown in meters on a 
red-blue color scale.
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example where each tile has the same 𝐴𝐴 𝑊𝑊 𝑊𝑊𝑊𝑊𝑠𝑠2 on the full domain, but within s2 cells the buildings occupy drier 
ground. In other words, assets exhibit a dry bias, so the artifacts leading to systematic grid errors may cease to be 
systematic when only the exposed subset is considered. Pollack et al. (2022) discuss a mechanism with the oppo-
site bias, where high-value assets tend to be closer to the shoreline and therefore have disproportionately higher 
risk, imparting a negative bias in the damage estimates for some aggregate blocks. These mechanisms are not 
contradictory however, as they operate at different scales (Pollack et al. (2022)'s base scenario is 30 m resolution 
and they aggregate assets to counties which can be on the order of 1–100 km) and on different elements of risk 
modeling (exposure vs. damage). In other words, both may be present in a large model like Pollack et al. (2022)'s.

For our analysis, building centroids were sampled from each flood grid as a simple representation of flood exposure. 
At grid resolutions near building scale (5–50 m), this simple approach may introduce additional artifacts as many 
pixels are used to represent the building location in the hazard grid but only one is sampled for the exposure value. 
Further, this problem becomes intractable when buildings are incorporated as obstructions within hydrodynamic 
models or flood grids. Given the coarse resolutions considered in our case study, we assume the centroid approach is 
adequate to demonstrate bias from aggregation; however, the challenge of exposure sampling deserves further study.

6. Conclusions
In this study, we developed the novel resample case framework and used it to analytically demonstrate that aggre-
gation through averaging will always lead to the bias of some metric in regions of marginal inundation. While the 
direction of this bias will depend on the aggregation routine employed and the metric of interest, we show that 
inundation extents for example, will always increase in marginal regions when simple averaging of water depth 
grids (WSH) is employed, while flood volume will always decrease when water surface elevation (WSE) grids are 
averaged. We then applied this framework to a 2018 Canadian flood to spatially attribute and quantify bias from 
aggregation and showed that inundation area doubled when grids were aggregated from a resolution of 1–512 m. 
Finally, this case study was extended to show how those regions with assets or buildings are particularly sensitive 
to this bias. For example, the number of exposed assets increased by 1800% (when aggregating from 1 to 512 m) 
while water depth decreased—both would have severe implications on the accuracy of a flood risk model.

Our results provide a framework for evaluating, and a basis for selecting routines to aggregate flood hazard grids 
while managing distortion or bias. For hazard focused studies where unbiased flood volumes are of primary 
importance, WSH Averaging should be pursued. On the other hand, exposure focused studies where unbiased 
inundation area is more important should employ the WSE Averaging routine. Regardless, some trade-offs will 
always be required as no routine can preserve all metrics of interest. Practitioners should be aware of such biases 
introduced by their selected aggregation scheme and work to minimize their effect on conclusions drawn from 
modeling. For example, in cases where large aggregations are required, practitioners should incorporate alter-
nate aggregation routines as part of a sensitivity analysis to understand the significance and acceptability of the 
aggregation. For studies where high resolution grids are available and aggregation is still desired, a resample case 
map can be constructed and used to identify marginal regions more sensitive to error and evaluate the acceptable 
level of aggregation for the study objectives. Regardless, studies wishing to minimize bias or artifacts should 
similarly minimize the scale or extent of aggregation, as our results show bias from aggregation can be severe. To 
support technical implementation of flood hazard grid aggregation and evaluation, an open-source QGIS script 
was developed as part of this study (https://github.com/cefect/FloodRescaler).

The results presented here for the exposed domain show a positive or neutral bias of the six metrics of interest 
overall, similar to flood risk model comparison studies (Table 1) and a growing body of work on hydrodynamic 
models (Banks et al., 2015; Ghimire & Sharma, 2021; Mohanty et al., 2020; Muthusamy et al., 2021; Saksena 
& Merwade, 2015). While our work stops short of computing risk or impact metrics, the remarkable four-fold 
increase in exposed assets we find provides a logical, albeit partial, explanation for the bias reported by these 
studies. Further, we show how the affinity of assets for high ground leads to a systematic over prediction of 
exposure at coarse scales. Counter to this, we can imagine how hydrodynamic models may miss small channels 
completely at coarse scales, underestimating flood extent in some areas. Considering this, our findings, and those 
of similar studies, are likely somewhat sensitive to the study area and the flooding mechanism, but especially 
sensitive to the magnitude of the scale or resolution transfer. Regardless, a more comprehensive understanding of 
these competing biases is needed to fully explain the positive bias of coarse flood risk models found by numerous 
studies (Table 1).

https://github.com/cefect/FloodRescaler
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Of equal importance, but not addressed here, is work to understand the role of asset aggregation on flood risk 
model bias. This longstanding and common practice (Hall et al., 2005; Jongman et al., 2012; Sairam et al., 2021) 
involves aggregating assets and their attributes, intersecting with hazard grids, then applying these as inputs to 
damage functions developed for single assets. To attribute and correct for bias which may emerge through such 
scale transfers, the frameworks and findings developed here could be extended. By studying issues of scale, 
the accuracy and applicability of large or global flood risk models can be improved—allowing society to better 
prepare and plan for disasters.

Data Availability Statement
The python scripts used to construct the aggregated grids, sample the grids at building locations, compute the 
metrics, and generate the plots is provided in Bryant (2023b). An easy-to-use QGIS script with similar tools for 
aggregating flood hazard grids is provided in Bryant (2023a). The DEMs1 grid used in the computation approach 
is provided by Government of New Brunswick (2016) and the Saint John River 2018 maximum WSHs1 data is 
provided by GeoNB (2019). Building locations are provided by Microsoft (2019).
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