
1.  Introduction
The exploration of terrestrial planets in the Solar System was and still is performed mainly on data that cover 
almost all the electromagnetic spectrum, acquired over the last century by several types of orbiters, rovers, and 
landers. Planetary data volumes are constantly increasing both in quality and quantity, with the contribution of 
both public and private entities.

Imagery has always been the primary resource for researchers in planetary sciences, especially for geologists 
and geomorphologists. In the last two decades, the progress in the development of very high-resolution image 
sensors gave the community access to images with a spatial resolution on the order of centimeters. Data collected 
by High Resolution Imaging Science Experiment (HiRISE) instrument, on board of the Mars Reconnaissance 
Orbiter (MRO) (McEwen et al., 2007) or by the Narrow Angle Camera experiment, on board of Lunar Recon-
naissance Orbiter (Robinson et al., 2010), have been used in several works to constrain the surface properties of 
respectively, Mars and the Moon.

For instance, several publications investigate specific surface features morphometry, such as impact of mega-
breccia (Grant et al., 2008), crater counting (Benedix et al., 2020; Chen et al., 2017; Robbins & Hynek, 2014; 

Abstract  Thematic map creation is a meticulous process that requires several steps to be accomplished 
regardless of the type of map to be produced, from data collection, through data exploitation and map 
publication in print, image, and GIS format. Examples are geolithological, and geomorphological maps in 
which most of the highest time-consuming tasks are those related to the discretization of single objects. 
Introducing also interpretative biases because of the different experience of the mappers in identifying a set of 
unique characteristics that describe those objects. In this setting, Deep Learning Computer Vision techniques 
could play a key role but lack the availability of a complete set of tools specific for planetary mapping. The aim 
of this work is to develop a comprehensive set of ready-to-use tools for landforms mapping based on validated 
Deep Learning methodologies and open-source libraries. We present DeepLandforms, the first pre-release of 
a toolset for landform mapping using Deep Learning that includes all the components for data set preparation, 
model training, monitoring, and inference. In DeepLandforms, users have full access to the workflow and 
control over all the processes involved, granting complete control and customization capabilities. In order to 
validate the applicability of our tool, in this work we present the results achieved using DeepLandforms in the 
science case of mapping sinkhole-like landforms on Mars, as a first example that can lead us into multiple and 
diverse future applications.

Plain Language Summary  The creation of maps is a complex set of several tasks that, regardless 
of the type of map, are often very time-consuming. For instance, all the occurrences of a specific object, natural 
or man-made in a defined area, need to be identified, drawn and classified manually. Mapping large objects in 
small areas is an easy task but may be unmanageable in cases such as small landforms on the entire surface of 
a planet. Nowadays, especially on Earth, researchers and professionals take advantages of highly specialized 
software based on a technique called Deep Learning. Such software are almost never free nor ready-to-use 
and often requires higher knowledge in computer programming languages. In this work, we present the first 
pre-release of a novel open-source computer software, nearly ready-to-use, that provides all the instruments for 
approaching Deep Learning for automatic landforms mapping. We present also the results obtained by trying 
this software using data of Mars's surface to map sinkhole-like landforms.
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Servis et al., 2020; Watters et al., 2015), or boulder counting (Le Mouélic et al., 2020; Sargeant et al., 2020; 
Watkins et al., 2017). Other publications are focused on the characterization of polar layered deposits (Milkovich 
et al., 2009) and identification of the source of ice blocks in the north polar cap (Su et al., 2021). Others, not only 
investigate morphological properties but also perform comparative analyses and numerical modeling (Guimpier 
et al., 2021), or in-depth analyses of Mars's surface processes (Guallini et al., 2018; Luzzi et al., 2020). These 
surface processesinclude skylight, pits (Barlow et  al.,  2017; Cushing,  2017; Cushing et  al.,  2015; Haruyama 
et  al.,  2009; Michikami et  al.,  2014; Sharma & Srivastava, 2021; Wagner & Robinson, 2014; Wyrick, 2004; 
Xiao et al., 2014), and pit chains (Wyrick, 2004). Further works involve the application of advanced techniques, 
such as Structure-from-Motion, (Le Mouélic et al., 2020; Micheletti et al., 2015; Muller et al., 2021; Y. Wang 
et al., 2021), Shape-from-Shading (SfS) (Alexandrov & Beyer, 2018; Lohse et al., 2006) and Machine Learn-
ing for object detection and classification (Barrett et al., 2022; Dundar et al., 2019; Hipperson et al., 2020; Hu 
et al., 2021; Lee, 2019; Nodjoumi et al., 2021; Palafox et al., 2017; Rashno et al., 2017; Silburt et al., 2019; 
Wilhelm et al., 2020).

This leap in image quality and quantity has introduced new challenges for researchers since the higher resolutions 
brought the great advantage of being able to analyze the surface of those planets with unprecedented detail.

Nevertheless, the computational power requirements to process such bigger data have also increased, especially 
when performing large-scale feature mapping.

Teams and groups of researchers specialized in single to multiple fields aim to combine their knowledge to 
describe and characterize the surface of a planet, but producing a map requires carrying out multiple and complex 
tasks (Geomorphological Mapping, 2013; Napieralski et al., 2013; Nass et al., 2021). Depending on the type of 
map in production, these tasks may vary but at least four major focal tasks are shared across all map types: (a) data 
collection, (b) data exploitation, (c) map creation, and (d) map dissemination (Naß et al., 2017, 2021). Among 
those major tasks, the most time-consuming sub-tasks are the definition of the standards for map production and 
dissemination (Hare et al., 2018) and the proper digital creation of map elements by manually drawing all the 
features of the area of interest using a GIS software. For instance, in geomorphological mapping, the primary 
target is the identification of landforms. The term landform is defined as a topographic expression on the surface 
of a planetary body that can be described by at least seven parameters: shape, size, height, texture, pattern, tone/
hue, location/association (Tempfli et  al., 2009). Multiple landforms in an area constitute a terrain (Bridge & 
Demicco, 2008; DiPietro, 2013); for further details, we refer the reader to Table S1 in Supporting Information S1.

The formation mechanisms of landforms and terrains complexly combine interconnected settings, processes, and 
forces, some of which are more wide and planetary-scale dependent, while others are more related to specific 
environmental and atmospheric characteristics.

For instance, the size and shape of different morphologies, such as lava tubes and rilles on the Moon, Mars, and 
Earth, (Bardabelias et al., 2020; Chappaz et al., 2017; Cruikshank & Wood, 1972; Greeley, 1971; Haruyama 
et al., 2009; Horvath et al., 2020; Kaku et al., 2017; Léveillé & Datta, 2010; F. Sauro et al., 2020; Whitten & 
Martin, 2019) depends not only on the geological settings of the area but also on the gravity intensity.

Similarly to lava tubes morphologies, landslides (Hungr et  al.,  2014) and sinkholes (Parise,  2019) formation 
and driving mechanisms are deeply interconnected to gravity, geological settings, and atmospherical character-
istics. These landforms are found bothon Mars (Bardabelias et al., 2020; Cushing et al., 2007; De Blasio, 2011; 
Guimpier et  al.,  2021; Hooper & Smart,  2013; Sharma & Srivastava,  2021), as well as on Earth (Acharya 
et al., 2006; Díaz Michelena et al., 2020; Gutiérrez et al., 2008; Hungr et al., 2014; Jiang, 2020; Parise, 2019; Van 
Den Eeckhaut et al., 2007; Youssef et al., 2012) thus may have common formation mechanisms.

Conversely, several authors found correlations between the presence of liquid-water seasonal precipitation, 
groundwater circulation and the occurrence of landslides and sinkholes. On Earth, the presence of liquid water is 
not only a driving mechanism but also a trigger for many geological and geomorphological processes (Allemand 
et al., 2011; Alonso et al., 2010; Cahalan & Milewski, 2018; Díaz Michelena et al., 2020; Duhart et al., 2019; 
Gutiérrez et al., 2008; Jiang, 2020; Lacerda et al., 2004; Lin et al., 2004; Van Den Eeckhaut et al., 2007; Youssef 
et al., 2012), while it is still under debate on those similar processes found on Mars and other rocky planets (De 
Blasio, 2011; Guimpier et al., 2021; Hooper & Smart, 2013; Salese et al., 2019; Smith et al., 2006).
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Several types of terrains and thus landforms are peculiar to specific areas or even planets or moons. For instance, 
Chaotic Terrains are planetary surface features notably found on Mars, Mercury, Jupiter's moon Europa and Pluto 
(Luzzi et al., 2020, 2021; Skjetne et al., 2021). Mountains, hills, plains volcanoes are common in almost all rocky 
planets of the Solar System (Hargitai & Kereszturi, 2015).

The occurrence of specific landforms is deeply connected to the geology of the area, the past and present atmos-
pheric processes. Besides natural processes, anthropological activities have a great impact on the shaping of the 
landscape. This is valid not only on Earth but also to a certain extent, to robotic or human landing sites.

(Brierley et al., 2021; James et al., 2013; Slaymaker et al., 2021). Studying those features is essential to better 
know the relations between the main processes involved in the characterization and evolution of an area.

Identification, classification, and description of landforms are done by mappers using multiple data types and 
sources such as images in various spectra, previous maps, digital terrain models (DTMs) and so on (Luzzi 
et al., 2020; Parente et al., 2019; Sivakumar et al., 2017). The time necessary to accomplish this specific sub-task 
strictly depends on the scale of the area of interest and the scale of the features within, since wider areas and 
smaller features may lead to extremely high workloads. The final map product is a fundamental element to 
consider while estimating the complexity of map production work. This is due to the wide diversity of map prod-
ucts available, and thus to the parameters to be defined and the data to be collected and processed.

Geological maps consider spatial-temporal relations between surface and subsurface's features, their composi-
tions and the past and present geological processes involved (Martinot et al., 2018; Naß & van Gasselt, 2021; 
Pondrelli et al., 2020; Sun & Stack, 2020; Tsibulskaya et al., 2020). Undoubtedly, visual properties derived from 
images like colors, texture, patterns, etc., take an essential role in the area's analysis (Kumar et al., 2019; Tirsch 
et al., 2021; Tsibulskaya et al., 2020; B. Wu et al., 2020).

In addition, the data collection steps can be very time-consuming tasks, beyond being also complex, since most of 
the data needs to be pre-processed prior to the proper analysis. For example, there are over 1.8 million products of 
HiRISE acquisitions that are over 49 Terabyte for a single imager that is still acquiring data at the time of writing.

In this framework, Deep Learning computer vision methodologies are robust and widely accepted and applied 
both on Earth for crops monitoring and management (Grace et al., 2021), land use (Rousset et al., 2021; Talukdar 
et al., 2020), risk management and assessment (Ghorbanzadeh et al., 2019; Liu et al., 2004; Merghadi et al., 2020; 
Paul & Ganju, 2021; Tien Bui et al., 2016; Yousefi et al., 2020); and on other Solar System planetary body (Barrett 
et al., 2022; Dundar et al., 2019; Hipperson et al., 2020; Lee, 2019; Palafox et al., 2017; Rashno et al., 2017; 
Stepinski et al., 2007; S. Wang et al., 2020; Wilhelm et al., 2020); thus, these technologies may play a crucial role 
in exploiting such a large amount of data.

The objectives of these methodologies are mainly the four types listed below and shown in Figure 1.

The first method displayed in Figure 1 is Image Recognition (ImR) which classifies the whole image contents. 
The second, called Image Segmentation (ImS), classifies each pixel of the image and creates segments of adja-
cent pixels with contiguous classification. The third technique, Object Detection (OD), locates the objects using 
bounding boxes and classifies them separately, while the fourth, Instance Segmentation (InS) is a combination of 
the second and the third method, getting the segmentation of only the objects identified by the detection.

In brief, each method uses complex computer codes to train a neural network model on a data set that contains 
images and class labels for each target of interest. This training comprises a cyclical series of mathematical and 
statistical operations which extract the embedded and unique features that describe each class target.

Those architectures may require a tremendous amount of well-labeled training data in order to better generalize 
the model and avoid over-fitting and underfitting problems (Zhang et al., 2021). More detailed descriptions are 
available in Text S1 in Supporting Information S1.

Such training data are not always ready-to-use for labeling, mostly because of compatibility issues between 
labeling software, deep learning software and the data itself. Data size and file format are the main issues, and 
therefore pre-processing tasks have a key role and are mandatory for any approach, especially if geo-referencing 
information is required. We provide a more detailed overview in Text S3 in Supporting Information S1 along with 
the pre-processing steps.
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Nowadays, Deep Learning methodologies are widely and commonly used to solve several daily problems. For 
instance, facial recognition features of social networks, Google images search, security surveillance and much 
more, but also specific problems relative to Earth Observation such as land coverage, crops vegetation moni-
toring, early warning systems and other (Brust et al., 2019; Hoeser & Kuenzer, 2020; Miyamoto et al., 2018; 
Redmon et al., 2016; Szegedy et al., 2013; Y. Wu et al., 2019, 2020; Zhao et al., 2019).

In the last two decades, many efforts have been made to use Deep Learning for the resolution of planetary mapping 
problems on Earth (Liu et al., 2004; Paul & Ganju, 2021; Stepinski et al., 2007; Talukdar et al., 2020) as well as 
on Mars (Hipperson et al., 2020; Nagle-McNaughton et al., 2020; Palafox et al., 2017; Wilhelm et al., 2020) and 
the Moon (Hu et al., 2021; Silburt et al., 2019; S. Wang et al., 2020) exploring almost all architectures and  algo-
rithms with very promising results.

Sometimes, the code used for the analysis is publicly available (Aye et al., 2019; Barrett et al., 2022; Lee, 2019; 
Silburt, 2017/2019; Wilhelm et al., 2020) and may be used to create preliminary map products.

The results obtained with the above-mentioned codes are typically plain images with the bounding boxes or the 
segmented area superimposed and are in non-geo-referenced raster file type formats, such as png or jpeg. Those 
type of results need to be georeferenced before being further processed in GIS software to manually vectorize 
all the objects or segments. For instance, segmented areas such as those that represent geomorphological units 
need  to be manually digitized as individual shapes in GIS software, with the manual conversion and assignment 
of the properties of the units in the image.

Finally, after completing the digitation, mappers can obtain a vectorial map that can be published in a geospatial 
data format such as OGC Geopackage. This newer file format is specific for transferring geospatial information 
similarly to ESRI shapefiles (ESRI technical document, 1998), but with higher portability and compactness, and 
moreover it is an open format and standards-based (Open Geospatial Consortium, 2021).

Geologists and geomorphologists, who are not familiar with programming languages but are interested only in 
workflows and tools can find it difficult to understand and use complex machine learning approaches that require 
higher knowledge in computer science, especially if complete and ready-to-use tools are not available.

In this article, we present a first complete working release of DeepLandforms, a set of comprehensive and 
ready-to-use tools specifically developed for planetary mapping.

Figure 1.  Comparison between image recognition, image segmentation, object detection and instance segmentation for the 
specific case of geomorphology mapping.
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This toolset is a follow-up of the work reported in (Nodjoumi et al., 2021), based on the object detection meth-
odology and focused on the usage of You Only Look Once version 5 (YOLOv5) framework (Pham et al., 2020; 
Ultralytics/Yolov5, 2020/2021) to detect sinkhole-like landforms on Mars, obtaining a geopackage containing 
the centroid coordinates of the bounding boxes, the confidence level, and the classification class for each of the 
detections. While centroid coordinates could be considered a starting point for proper mapping, there is a lack 
of spatial dimensionality, can provide only a general localization of the features, and even using the coordinates 
of the detection boxes we still lack a precise localization and definition of the shapes of the landforms. To 
further improve the previous work, a change of architecture was needed, moving from object detection to instance 
segmentation architecture.

The instance segmentation library selected for this work is the Detectron2 Library, developed and periodically 
maintained by the Facebook AI Research team, specialized in ImS tasks through R-CNN networks. See Text S2 
in Supporting Information S1 for additional details on Detectron2 Library.

In this work, the Mask R-CNN network has been considered the only main network since it is specific for object 
instance segmentation tasks (He et al., 2018). Mask R-CNN extends Faster R-CNN, which produces only class 
labels and bounding boxes, by adding a third output, the object masks (He et al., 2018; Massa & Girshick, 2018). 
A mask can be considered as a method of describing an image in boolean-based representation by using specific 
filters or functions, meaning that the content of the image will be converted to only two possible values (0–1, 
on-off, true-false, and so on) (Text S4 and Figure S3 in Supporting Information S1). Each mask is then character-
ized by internal and external values and can be localized by using image pixel coordinates.

2.  DeepLandforms
DeepLandforms has been developed with the aim of creating a comprehensive set of tools to support a complete 
workflow for mapping landforms using geo-referenced data and producing results in vectorial format. A flow-
chart of the workflow is depicted in Figure 2 and is based on the general Deep Learning workflow summarized 
in Text S3 in Supporting Information S1.

Although the complete workflow contains data preparation and model training, it is possible to use all the 
components as a standalone tool. For instance, DeepLandforms-Inference component can be used to analyze 
geo-referenced images by passing a Detectron2 model trained elsewhere. The whole workflow is not bounded 
only to EDR/PDS data and so each component can work with any images as long as are geo-referenced and in 
GeoTiff/JPEG/PNG file format.

A detailed description of each step of the workflow is available in Section 3.2.

2.1.  Components

The toolset is composed of four major components, all based on the Docker open platform (Docker over-
view,  2021; Merkel,  2014), a state-of-the-art, well-known, open-source platform for developing, sharing and 
running applications as sandbox services called containers, with full support for NVIDIA GPU (CUDA) comput-
ing (Luebke, 2008).

The major advantage of using Docker platform consists in the capabilities of running services in an instantiated 
environment, independent from the host operating system without worrying about library dependencies, compil-
ers, interpreters and so on, thus providing great cross-platform compatibility. Docker containers can be shared 
both as pre-built container images for fast deployment and as a Docker building recipe named Dockerfile. Those 
recipes can be customized by combining with other dockerfiles and/or, with pre-build Docker images. Docker-
files can also be used in combination with docker-compose (Merkel, 2014), a tool for running multi-container 
Docker applications.

The first component is the ImageProcessingUtils Docker container (Nodjoumi, 2021b), a Jupyter notebook tool 
developed for resizing, cropping, removing black borders, tiling and converting images from CUB (Anderson 
Jeff & Deborah Lee Soltesz, 2003), jpeg2000 and GeoTiff file formats to GeoTiff (including Cloud Optimized 
GeoTiff), jpeg and png file formats. This notebook processes the images while maintaining georeferencing infor-
mation in the file metadata for GeoTiff or in ancillary files for jpeg and png formats. The second component is the 
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Labelme Docker container, an open-source tool with a graphical user interface for creating segmentation labels 
(Wada, 2021). The third component is the DeepLandforms Docker container, which includes two Jupyter note-
books, both built on top of the Detectron2 library, DeepLandforms-Training and DeepLandforms-Segmentation. 
DeepLandforms-Training notebook is an implementation of Detectron2 Library's training components in a Jupy-
ter notebook in which is possible to control all the main hyper-parameters mentioned in Text S1 in Supporting 
Information S1, such as Epochs, Learning rate, batch size and more. This notebook automatically splits the source 
data set in train, valid, and test sub-datasets and performs data augmentation on the train data set, randomly apply-
ing salt&pepper noise and blur to the images. After data augmentation, a class distribution pie chart is shown.

DeepLandforms-Segmentation notebook is an implementation of the Detectron2 Library's inference components. 
This notebook includes several custom functions which are used to compute the geographic coordinates of the 
detection masks by using the affine transform of the inferred image. Another dedicated function converts the 
masks into vectorial data and stores all the detections in a geopackage file. Additionally, we developed also a 
specific function to convert the detection masks into label files in COCO json format that can be directly used to 
perform new training sessions. This notebook can work also be used with Detectron2 models trained with other 
tools.

The fourth component is the Tensorboard Docker container, a simple utility for monitoring the training process.

All the components combined, requires at least 15 GB of free disk space in order to be installed and operational.

Figure 2.  Flowchart of the complete workflow on which the DeepLandforms toolset relies.
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2.2.  Detection Masks Conversion to Geo-Referenced Polygons

As mentioned in the introduction, all results obtained by Mask-R-CNN are image masks described with pixel 
coordinates that completely lack of any geospatial information. Therefore, it is necessary to convert the masks 
to geo-referenced polygons. This operation has been accomplished by developing a function based on a Python 
library named Rasterio (Gillies & others, 2021), which contains specific modules for spatial data manipulation by 
using each inferred image affine transform. The affine transform is a matrix that describes the geometrical prop-
erties of an image and contains the origin of the image (top left corner), its cell size, and geometrical distortion if 
present. By combining affine transform and mask coordinates, it is possible to retrieve the geographical coordi-
nates of the masks. This operation also maintains the coordinate reference system of the source image. Notice that 
if the source image is not geo-referenced properly, the misplacement errors are propagated to the affine transform 
and to the final polygons. See Text S4 and Figure S3 in Supporting Information S1.

3.  Pits/Skylight Proof-Of-Concept Use-Case
While this toolset is not specific to any landforms, we chose pits/skylights and craters as test landform.

Pits and skylights are depressions of the terrain characterized by an elongated to almost circular shape, flat rims 
and bottom, walls ranging from almost flat to very steep and, in some cases sub-vertical (Cushing et al., 2015; 
Cushing & Titus, 2010; U. Sauro, 2016; F. Sauro et al., 2020; van der Bogert & Ashley, 2015; Wyrick, 2004). On 
Earth, their formation mechanisms are commonly related to the collapse of the top of a subsurface cavity, caused 
by the chemical or mechanical erosion of the subsurface sediments. On other planetary bodies, such as Mars 
and the Moon, their formation mechanisms are still debated. As mentioned before, pits and skylights may have 
different shapes and dimensions on Earth and other planetary bodies (Cushing et al., 2015; Hong et al., 2015; 
F. Sauro et al., 2020; Sharma & Srivastava, 2021; Whitten & Martin, 2019), yet maintain almost all the charac-
teristics. The classification proposed in Figure 3 is an expansion of the classification proposed by Cushing et al. 
(Cushing, 2017; Cushing et al., 2015) and is based only on a qualitative morphological analysis by observing the 
visual appearances of the features characteristic of pits and skylight, without taking into account morphometric 
properties. Performing only a qualitative morphological analysis may introduce misclassification errors because 
of the apparent similarities of different morphologies when particular conditions are met. For instance, strong 
similarities are common between Type-1b, Type-2a, and Type-4, especially when the solar incidence angle is low. 
The same errors may also occur between Type-1a and eroded craters and high solar incidence angle. To mitigate 
the occurrence of these errors, if a DTM is available, the best approach is to look at topographical profiles. This 
approach is described in Text S6 in Supporting Information S1, including visual examples Figures S4 to S7 in 
Supporting Information S1 Otherwise, is common practice to perform a context-aware analysis of the surround-
ings of the target landform, looking for additional features and indicators, such as similar morphologies. Is also 
advised to look at other information like solar incidence angle, image acquisition angle, and more, all commonly 
embedded in the file metadata or in the ancillary file provided in the data archive.

While these additional analyzes are a common practice for whom performs the classification, standard convolu-
tional neural networks are not yet capable of performing a context-aware feature extraction, thus their capabilities 
are constrained by the quality and quantity of the training data.

The most consistent and peculiar characteristic among pits/skylights that almost always differ greatly from craters 
is the presence of a raised rim. As previously mentioned, in craters it is common to find a bulge all along the rim, 
or in a specific direction that usually corresponds to the impact trajectory, while bulged rims in pits and skylights 
are almost completely absent or associated with previously existent landforms that can be visible also nearby to 
the pits and skylights.

The best method to evaluate the differences between pit and crater rims is to manually plot and evaluate DTM 
profiles but, since in most cases DTMs are not available, it is possible to evaluate them by plotting a profile along 
the maximum illumination direction of visible images. A detailed description of this method is presented in Text 
S6 in Supporting Information S1.
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3.1.  Region of Interest

Since our targets of interest are pits/skylights, we decided to collect data from a specific region of Mars named 
Tharsis Region. This region has its central coordinates at 0°N 260°E and is characterized by the presence of four 
of the largest shield volcanoes in the Solar System: Olympus Mons, Arsia Mons, Pavonis Mons, and Ascreus 
Mons. Considering the presence of these large shield volcanoes in this region and thus possible intact lava tubes, 
it is the best candidate region to look for possible cave entrances. Moreover, a previous work by Cushing et al. 
(Cushing, 2017) identified and published a database, the Mars Global Cave Candidate Catalog (MGC^3) contain-
ing point location of thousands of pit/skylights landforms. Considering that the MGC^3, was created and vali-
dated by analyzing manually several Context Camera (CTX) and HiRISE imagery, we decided to use it as a 
reference for the initial data selection and as a control data for all the analyzes performed in this and the previous 
work (Nodjoumi et al., 2021). A map showing the MGC^3 catalog over the Tharsis Region is reported in Figure 4.

Figure 3.  Main types of pits/skylights that can be identified on Mars, also used as classes for labeling training data set, 
expanded from a previous work (Nodjoumi et al., 2021).
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3.2.  Materials and Methods

3.2.1.  Source Data Type

The data used in this work are mainly images acquired by image sensors operating in the visible (VIS) and Near 
InfraRed (NIR) spectrums on board of probes orbiting Mars, as shown in Table 1.

This data set is composed of images by HiRISE instrument and downloaded both as Reduced Data Record (RDR) 
and Experiment Data Record (EDR) format from public space archives such as PDS Geosciences Node Orbital 
Data Explorer (ODE) (PDS Geosciences Nodes, 2021).

3.2.2.  Methodology

In order to validate all the packages, tools and the complete workflow, an intensive test has been performed on 
the above-mentioned pit, skylights landforms, including a generic set of craters for references and for testing the 
capability to discriminate those whose appearance resemble some types of pits.

3.2.3.  Data Pre-Processing

EDR images have been processed initially to produce RDR version using USGS Integrated Software for Imagers 
and Spectrometers (ISIS) (Laura et al., 2021) and then converted into jpeg2000 (JP2) file format or GeoTiff file 
format using the ImageProcessingUtils container. We used a dockerized version of ISIS (Nodjoumi et al., 2022) 
to perform the EDR to RDR workflow available in Text S7 in Supporting Information S1.

Figure 4.  MGC^3 over the Tharsis region.

Orbiter Target Instrument Sensor type
Ground sampling 

resolution Images

Mars Reconnaissance Orbiter (MRO) Mars High-Resolution Image Science Experiment (HiRISE) PanchromaticVIS + NIR Up to 0.30 m/pixel ∼1,000

Table 1 
The Data Set Used for Training and Testing Purposes Is a Selection of the Tharsis Region Images Acquired by the HiRISE Instrument
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Computational requirements of Machine Learning and, more in particular of Deep Learning architectures for 
Computer Vision are strictly determined by image bands number, image resolution, image size, and data set size, 
which have a great impact especially during the training of the model. On the other hand, the impact on computa-
tion resources during the usage of the pre-trained model is lower. The Martian and lunar high-resolution images 
from HiRISE and LROC, are enormous in terms of data size, easily reaching 50,000 pixel height. These images 
require a lot more processing resources than those required for processing low-resolution images, especially if the 
aim is to make them compatible with Deep Learning tasks or to reduce the computational requirements.

A simple and easy approach would be the direct resizing of these images but, this is not always possible because 
there is a significant risk of losing the object's unique details or even worse introducing apparent similarity 
between two different objects.

A better approach is to divide the images into tiles of the desired resolution. Here there is no detail loss, since 
the original spatial resolution is preserved, but the number of images increase dramatically. The tiles need to be 
filtered out of by removing the tiles which do not contain any relevant features and then the remaining tiles need 
to label. for example, The HiRISE PSP_004715_1855_RED image is 30137 × 76047 pixels, so dividing it into 
∼512 × 512 pixels tiles results in more than ∼8,700 tiles. Even tiling into larger tiles is not always a workable 
approach. Such tiling may cause the loss of contextuality of the objects, or introduce difficulties during the labe-
ling tasks, since the object may be split across multiple tiles.

In this situation, it is advised to define the requirements of the analysis and evaluate compromises between the 
approaches. In Table 2, we summarized the evaluation between scaling and tiling approach.

In the presented use case, a hybrid approach has been used: images spatial resolution has been scaled down to 
5 m/pixel, then the resulting images have been sliced into tiles with 1,024 pixel max width or height. To achieve 
these specific tasks, the Docker container named ImageProcessingUtils was used.

The data set comprises 186 HiRISE RDR red channel images, see Table S4 in Supporting Information S1. Using 
only red channel images is due to the swath of 6 km cross-orbit and 20 km along-orbit at a nominal 300 km nomi-
nal orbit. In comparison, the Blue-Green and NIR images have a swath of 1.2 km cross-orbit.

Those images have been processed using the ImageProcessingUtils 
(Nodjoumi, 2021b) Docker container to convert from jpeg2000 file format 
(JP2) to GeoTiff and then resized to a common 5 m/pixel cell size, and tiled 
into more useable files with the largest side up to maximum 1,024 pixel.

All resulting images have been manually examined to filter out those which 
did not contain any landform relevant for the labeling steps, obtaining 486 
labels. In Table 3, class distribution is summarized.

3.2.4.  Data Labeling

Then, all the images have been ingested into the LabelMe Docker container to 
annotate all the pits, skylights, and some representative craters following the 
classification shown in Figure 3. At the end of the labeling task, it emerged 
that the labels were unbalanced, meaning that the data set does not contain an 
almost equal number of each class.

Requirements Limits Compromises Approach

Maintain context Scaling to very low resolution may lead to huge loss 
of details

Limit the scaling to maintain discretization 
capabilities

Scaling 
approach

Maintain high discretization and avoid object 
splitting

Larger images produce several tiles proportional 
to the original image, objects may results split 
across several tiles

Limit the dimension of the tiles to avoid 
object splitting and keep the number of 
tiles low

Tiling 
approach

Table 2 
Comparison Between Approaches, Scaling Approach May Be Better for Analysis of Features at Regional Scale, While Tiling Approach May Be Preferred for Smaller 
Landforms

Type No of labels

Crater 91

Type-1a 101

Type-1b 24

Type-2a 45

Type-2b 50

Type-3 42

Type-4 133

Note. Class unbalance is clearly visible as Type-1b, Type-2a, Type-2b, 
Type-3 are underrepresented.

Table 3 
Class Distribution for the Source Data Set
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Since the collection and processing of newer images containing more landforms of the unbalanced classes was 
not workable at the time of analysis, a simpler approach was chosen and comprise a reduction of the classes 
by grouping into similar ones, doing so resulted in only four classes, Type-1, containing -1a and -1b, Type-2, 
containing -2a and -2b, Type-3, Type-4.

3.2.5.  Data Augmentation

Since the initial data set was rather small and unbalanced, containing less than an average of 70 labels per class, 
we prepared two additional python scripts to further increase and balance the data set. The first python script, 
lblextractor.py, extract all the labels from the initial data set and save both the image and the label file in a new 
folder and create a geopackage containing all the information of the extracted labels, including the geometry. 
Then, using the ImageProcessingUtils Docker, we downscale the original images at different resolutions: 0.5, 1, 
and 3 m/pixel. Finally, we used the geopackage generated by the first script and, using the second python script, 
lblreplicator.py, we extracted the same original labels from all the new datasets.

Since all these labels were essentially the same, with the resolution as the only major difference, we implemented 
an additional step of data augmentation directly in the DeepLandforms-Training notebook.

This step was executed after splitting the data set into train, valid and test sub-datasets. The script randomly 
applies blur, salt&pepper noise effects.

Last, in order to reduce the strong class imbalance, we merged all subtypes for every class.

3.2.6.  Data Training

After concluding the data set preparation, we used the DeepLandforms-training notebook to perform several 
training sessions using different combination and values for learning rate, batch size, and training epochs param-
eters. These parameters directly influence the training of the model. For instance, the learning rate (lr) affects the 
intensity of errors correction of the weights during training (small values of learning rate means small weights 
adjustments), the batch-size correspond to the quantity of images trained concurrently (larger batch size requires 
more processing memory and more time), and epochs affect both the speed and the overall accuracy (Detectron2. 
Config—Detectron2 0.6 Documentation, 2022).

The ranges of the main training parameters are summarized in Table S3 in Supporting Information S1. We have 
also used a different combination of classes and datasets to improve the results and mitigate over-fitting, as better 
discussed in the results chapter.

We used the mask_rcnn_R_50_FPN_3x model configuration as, according to Detectron2's model zoo, it is 
reported to have the best-balanced results/training requirements ratio.

To evaluate the stability and scalability and the performance of the tool, we executed the above training on 
two different computers with Ubuntu Linux as the operating system and NVIDIA GPU card. Because of the 
high variability of hardware components and operating systems available, we could not test DeepLandforms and 
Detectron2 in other types of machines.

3.2.7.  Training Monitoring

All the training sessions were monitored using the Tensorboard Docker container to evaluate the progression and 
the performance of the training sessions.

3.2.8.  Training Evaluation

At the end of all the training sessions, we evaluated all the models by using them on the test data and by visual-
izing the training metrics in the tensorboard Docker as represented in Figures 6–8.

The main metric used to evaluate object detection and segmentation models is mean Average Precision (mAP), 
that is a comprehensive evaluation of the performance of the model. mAP metric, considers three sub-metrics: 
precision (accuracy of the predictions as a ratio between True Positive and False Positive), recall (capability 
to retrieve all positive predictions as a ratio between True Positive and False Negative), and Intersection over 
Union (IoU, a measure of the overlap between the predicted bounding box) and the ground truth bounding box. 
Commonly, for all major model configurations and frameworks, like Detectron2, developers periodically release 
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a set of benchmark metrics that are computed by running each model configuration with very large datasets (e.g., 
COCO data set). Detectron2's benchmark metrics are available on the official GitHub page (Y. Wu et al., 2019).

We tested the trained model on the valid data set, and then the results were loaded into the LabelMe Docker 
container to check if the labeled objects are detected and labeled correctly, as shown in Figure 5.

4.  Results
Herein are described the results obtained after re-training Mask-R-CNN models on a custom data set of HiRISE 
images containing pit/skylights' landforms. All the configuration parameters, the components of DeepLandforms, 
including additional descriptions of the data pre-processing and labeling components, the training and inference 
Jupyter notebooks, and the obtainable results are available in Text S3, S4, S5, S6, and S7 and Tables S2, S3, and 
S4 in Supporting Information S1. In the first training session, we trained all the sub-classes using the whole data 
set, obtaining poor results for all the classes, as shown in Figure 6. Since this is mostly caused by class unbal-
anced and small data set, we decided to combine the sub-classes for all subsequent training sessions, reducing the 
classes to Type-1, Type-2, Type-3, Type-4, Crater.

We performed new training sessions using different combinations of the same data set and combined classes 
(train_532105_1_2+3_4_5 and train_321_cls_1_2_3_4 in Figure 7, where 532,105 and 321 correspond to the 
resolution used) but the results did not improved. We suspected that within this data set, the variability between 
all labels of each class is low, so we decided to remove the Crater class and combine class 2 with class 3 before 
training the model again. Figures 7 and 8 shows combined results and evaluation metrics relative to six training 
runs, visualized using tensorboard Docker container.

Using combined and simplified classes, mAP increased dramatically. The results were also consistent across 
multiple runs and while training with smaller data set (e.g., train_321_cls_1_2+3_4). These results further 
improved when we used only Craters and Type-1 classes, as show in Figure 8.

Figure 5.  Comparison between ground truth labeled image used in training (left) and inferred labeled image (right). The 
major difference is in the density of the points of the shape, where in the inferred image are far denser than those of the 
ground truth.
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To further evaluate the training of the models and check whether over-fitting or underfitting occurred, we plotted 
the Total/Validation Loss as shown in Figure 9.

Total and validation loss are metrics computed during the training and are generated by assessing the cumulative 
errors during the training on train (total loss) and valid (validation loss) datasets. Both metrics are fundamental to 
evaluate the overall quality of the training and to visualize if over-fitting or under-fitting occurred. Examples of 
over-fitting and under-fitting are presented in Figure S2 in Supporting Information S1.

Finally, we used the trained model to predict and map the trained landforms on some of the original images with 
good results. We used QGIS software, to import and visualize both tested images and the geopackage file contain-
ing the results as shown in Figures 10, 11, and 12. Despite these detections seems good, it is necessary to consider 
that Figures 10 and 11 are part of the training data set, while Figure 12 is new.

Despite the good values of mAP and accuracy, there are several landforms missed completely by the model, as 
is possible to see in Figure 11.

Notice that, in all the processed images, there are different misalignments between the MGC^3 points and the 
HiRISE or CTX Images. The cause of this discrepancy has not been identified yet but is probably due to the posi-
tional uncertainty introduced during the map projection of the EDR and the use of uncontrolled data. To greatly 
reduce these errors and to have a more accurate positioning of the images, is strongly advised to co-register all the 
images to a common basemap. In Figure 12, another clear example of position error is showed.

Figure 6.  Example of Mean Average Precision (mAP) of the Fast-R-CNN component (object detection) obtained from two training session using the same data set 
and 7 classes. The poor results and high variability of the mAP is mostly due to class imbalance and low data set diversity. Each color corresponds to different training 
session. Higher mAP correspond to better results.
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5.  Discussion
5.1.  DeepLandforms Toolset

Using DeepLandforms toolset, it was possible to perform all the steps necessary to train and use Deep Learning 
instance segmentation models without the necessity of relying on separate tools, nor install several python envi-
ronments and packages. The only exception was the conversion of the source EDR to map-projected RDR that 
can only be performed sing ISIS

With the ImageProcessingUtils Docker container, it was possible to prepare the initial base data set by scaling and 
tiling the source RDR images. Then, with the labelme Docker container, we labeled all the images for instance 
segmentation.

Using DeepLandforms Docker container, we performed both the training sessions with different combination of 
training parameters and the analysis of newer images using the trained model.

Finally, with tensorboard Docker container, it was possible to monitor and compare all the training metrics.

The results that can be obtained using DeepLandforms are highly dependent on several aspects.

•	 �Quality and quantity of the data set: more and better data are necessary to better generalize the unique char-
acteristics of the target classes,

•	 �Quality of the labels: accurate labels grant better segmentations, since is a pixel-wise analysis,
•	 �Tuning of hyper-parameters: in addition to the base hyper-parameters (learning rate, batch-size, epochs) there 

are lot more parameters that can be tuned to improve the training.

A summary of assets and liabilities is presented in Table 4.

Figure 7.  Mean Average Precision (mAP) of the Fast-R-CNN component (object detection) relative to 6 training runs. All the runs with high values of mAP 
corresponds to those trained using a data set in which Crater class is removed and Type-2/Type-3 are combined. The only run with poor values is the one trained with 
all classes. Y axis correspond to mAP while X are the train epochs. Each color corresponds to different training session. Higher mAP correspond to better results.
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5.2.  Pit/Skylight Use-Case

The proof-of-concept use case of pit/skylight detection on Mars was extremely useful to evaluate DeepLand-
forms' workflow.

5.2.1.  Image Pre-Processing

Data set composition was the most time-consuming task since it included all image pre-processing steps that 
required also a lot of computing time. First, we analyzed MGC^3 to identify high-density pitted areas, then we 

Figure 8.  Heatmaps displaying the confusion matrix obtained on the test data set for the model trained with 4 classes (left) 
and with 2 classes (right).

Figure 9.  Plot of Total/Validation Loss of the train run 532105_1_2+3_4. The validation curve follows very well the total 
loss curve, meaning that the model trained without over-fitting or under-fitting.
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collected relative EDR images from data archives and converted from USGS standards to geospatial GeoTiff. 
Once converted, we evaluated and validated all processed RDR images.

Next, we used ImageProcessingUtils Docker container to reduce the size of all images by tiling and down-sampling 
them at different cell resolutions. This step was highly demanding in computer resources since it required a few 
hundreds of GB of disk space and 3 days to convert all the images to downsampled and tiled GeoTiffs, using a 14 
cores, 24 threads machine equipped with 32 GB of ram. The manual selection step took approximately 2 days, 
while the labeling required 1 week.

5.2.2.  Model Training and Evaluation

We executed all training sessions in parallel on three different computers, using the same parameters and data 
set, Table S5 in Supporting Information S1, requiring an average of 6 hr for each training. Using tensorboard 
Docker container was possible to monitor the training, helping to abort prematurely the training in the occur-
rence of terrible metrics (e.g., mAP not increasing or decreasing, low accuracy). For instance, we aborted the 
train_532105_1_2+3_4_5 session after 5,000 epochs. Tensorboard was also used to compare all training metrics 
relative to all trained models, as shown in Figures 6–8. While performing all the training sessions, we found 
that when training five or less classes, a minimum of 1,000 labels for training and 250 labels for validation are 
necessary, while for training more than five classes more labels are necessary. These values increase when trained 
classes are very similar. All well-trained models, tested on their respective test data, could detect correctly almost 
all landforms, although several misclassification errors and few missing detections. We expected these kinds of 
results since the original data set is small, while the final training data set is mostly composed of the augmented 
version of the same source data.

5.2.3.  Remarks on Pit/Skylights

An automated or semi-automated approach as the one proposed in this work, compared to the manual mapping, 
may be a game-changer, providing robust processing workflows for generate high-end data in compliance with 

Figure 10.  Example of detection on High Resolution Imaging Science Experiment Red channel image and comparison 
between MGC^3, DeepLandforms-YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. 
Tables show attributes of fields in the shapefiles.
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the OGC standards, for map productions at planetary scale, with the enormous advantage of relaying the most 
time-consuming task of data pre-process and first analysis to computer time instead of human-time.

The analysis presented in this work, if expanded to a large data set, and if implemented with morphometrical anal-
ysis, may improve the knowledge of the spatial distribution of skylights, pits, and pit chains, including those already 
known and described, providing a detailed wide map that can be further integrated with morphometric  analyzes.

6.  Conclusions
The advantages and improvements in data analysis provided by machine learning are undoubtful and constantly 
expanding in more and more sectors, especially in remote sensing of Earth and Space. With an exponential 
amount of fast-growing available datasets, newer and faster methods are necessary to perform a continuous 
stream of analyzes, and with a plethora of publications, works, architectures and unconnected tools available, that 
are mainly accessible by everyone, albeit not useable by not insiders, is also necessary to make those available 
for the wider audience, especially those who are involved in the analyzes of data but are not specialized in the 
machine learning.

Figure 11.  Example of detection on High Resolution Imaging Science Experiment Red channel image and comparison 
between MGC^3, DeepLandforms-YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. 
Tables show attributes of fields in the shapefiles.
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DeepLandforms toolset, presented in this work, may be a forerunner, and a tentative to lead an easier approach 
well suitable both for first-time users and advanced users.

Despite this toolset is at its first release, and still in development, it may help to further improve the mapping 
process in faster and robust ways.

Although this use-case is a proof-of-concept, skylight, pits and pit chains are an extremely interesting type of 
landforms that can be observed on almost all rocky planets and moons of the Solar System.

Formation mechanisms are commonly related to volcanic and tectonic processes but are still debated, moreover 
it is still not clear whether such formation mechanisms are the same on all planetary bodies in which those land-
forms are observed, especially since there are very similar and common morphological characteristics among all 
observations. If it is the case of common formation mechanisms, this implies that there should be shared geolog-
ical properties and settings among those bodies, thus common geological history.

Figure 12.  Example of detection on High Resolution Imaging Science Experiment Red channel image and comparison between MGC^3, DeepLandforms-YOLOv5 
object detection and DeepLandforms-Mask-R-CNN instance segmentation. Multiple misclassification and segmentation error occurs. Classification errors, such 
as Type-1/Crater are mostly caused by the small training data set. Segmentation errors are caused by both the small data set and by inference performed on tiles. 
For instance, Type-1 and Type-2 have straight horizontal lines that correspond to the edge of the tile. This specific error can be mitigated by using larger tiles or by 
implementing a sliding-window analysis. Tables show attributes of fields in the shapefiles.

Assets Liabilities

Almost ready-to-use Not compatible with every platform and hardware configuration

Semi-automated approach Require intensive user supervision in the initial phase and during preliminary evaluation

Large data volume processing capabilities Depends on the machine in which is running

Possibly to use results for further correlation with other data

Wide adaptability to different landforms May not be compatible with every landform type, depending on the training data

Table 4 
Tabulated Assets and Liabilities of the Toolset Presented in This Work
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Further on, skylights and some pits may have access to caves as observed on Earth analogs, and hypothesized on 
Mars and the Moon (Hong et al., 2015), such as those found in large shield volcanoes (Léveillé & Datta, 2010; 
F. Sauro et al., 2020). Presence of accessible caves on other planets and moons has an huge importance for space 
exploration since those cave may contain traces of life, both past and potentially present, as some extremophile 
bacteria and other smaller life-form may have found shelter from harsh surface condition and cosmic radiations 
(NASA, 2021). Moreover, caves are considered as good candidates for future human habitation outposts (Cushing 
& Titus, 2010; Pipan & Culver, 2019), and also are an excellent window on subsurface structure, thus providing 
valuable information for understanding the geological settings and evolution of the area and potential direct 
access to mineral resources (Blamont, 2014).

To explore the above-mentioned targets and objectives, is necessary an accurate and global scale mapping of 
skylight, pit and pit chains, in order to better understand the spatial distribution of such landforms and correlate 
their presence with other geological and non-geological features and settings.

For instance, since pit chains may be related to the presence of lava tubes or dikes (Ferrill et al., 2011; Whitten 
& Martin, 2019; Wyrick, 2004), mapping pits could lead to new understandings of lava tube distribution, thus to 
better knowledge of volcanic processes involved, even across planets and moons. Isolated pits with no surround-
ing other morphological evidence may indicate the presence of a deep buried lava tube or cavity originating from 
other processes.

It is also possible to compare the distribution of such landforms with structural maps or other features that may 
be interconnected (Ferrill et al., 2004, 2011).

Another advantage is connected to planetary human mission planning, since the availability of geomorphological 
maps, even if not at highest resolution possible, may lead to the identification of better scientific targets or path 
planning in the case of rovers.

7.  Further Development
Further development includes implementation of sliding window to improve further the segmentation of large 
images without pre-tiling them, the integration with GIS statistics such as the parametrization of the detected 
shapes, including cross-analysis of different data types such as DTMs in order to improve the quality of the results 
including eventually volume estimation, or integration with hyperspectral data to retrieve a mineral composition 
of the surface.

Another development could integrate the workflow with the SfS technique (Alexandrov & Beyer, 2018; Lohse 
et al., 2006; Micheletti et al., 2015) in order to extract depth and thus volume information where DTMs are not 
available.

Moreover, this toolset is not specific to any planetary body nor specific landforms, thus is compatible with every 
planet or moon imagery, if provided images are geo-referenced and the corresponding reference system is passed 
to the tool.
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