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Abstract
This work focuses on the potential of a network of Doppler lidars for the
improvement of short-term forecasts of low-level wind. For the impact assess-
ment, we developed a new methodology that is based on ensemble sensitivity
analysis (ESA). In contrast to preceding network design studies using ESA,
we calculate the explicit sensitivity including the inverse of the background
covariance B matrix to account directly for the localization scale of the assim-
ilation system. The new method is applied to a pre-existing convective-scale
1,000-member ensemble simulation to mitigate effects of spurious correlations.
We evaluate relative changes in the variance of a forecast metric, that is, the
low-level wind components averaged over the Rhein–Ruhr metropolitan area
in Germany. This setup allows us to compare the relative variance change
associated with the assimilation of hypothetical observations from a Doppler
wind lidar with respect to the assimilation of surface-wind observations only.
Furthermore, we assess sensitivities of derived variance changes to a number
of settings, namely observation errors, localization length scale, regularization
factor, number of instruments in the network, and their location, as well as
data availability of the lidar measurements. Our results demonstrate that a net-
work of 20–30 Doppler lidars leads to a considerable variance reduction of
the forecast metric chosen. On average, an additional network of 25 Doppler
lidars can reduce the 1–3 hr forecast error by a factor of 1.6–3.3 with respect
to 10-m wind observations only. The results provide the basis for designing
an operational network of Doppler lidars for the improvement of short-term
low-level wind forecasts that could be especially valuable for the renewable
energy sector.
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1 INTRODUCTION

An accurate short-term wind forecast is crucial for the
energy sector, industry, and civil services. For example, a
reliable short-term wind forecast allows for a reduction of
the economic impact of extreme weather, time schedule
adjustment in transport networks, and enhanced popula-
tion safety. The forecast also provides valuable information
for electricity production controllers to manage conven-
tional power sources in a timely fashion according to
instantaneous changes in available renewable-source
power (Sweeney et al., 2020), and wind-based genera-
tion in particular. The changes in electricity production
by wind farms are backed up by power plants of differ-
ent, weather-independent types. However, a considerable
change in electrical power output requires a lead time,
which varies from 10 s to minutes for hydro reservoirs
and simple-cycle gas turbines to a day for nuclear power
plants (Gonzalez-Salazar et al., 2018). In addition, some
power plants, especially coal-fired ones, emit greenhouse
gases and air pollutants, and therefore the allocation of
electricity generation to such power plants needs to be
minimized. Thus, a proper management of electricity gen-
eration requires beforehand knowledge of the low-level
wind properties.

A reliable low-level wind forecast can help to esti-
mate the available electricity generation by wind farms
and therefore is beneficial for the distribution of energy
resources. Unfortunately, low-level wind forecasts have a
relatively large uncertainty, due to the high temporal and
spatial variability of the wind field. One way to improve
numerical weather prediction (NWP) forecasts substan-
tially is the assimilation of additional, new observational
data (Kalnay, 2002).

There are a number of studies showing the benefits of
data assimilation (DA) for low-level wind forecasts using
real observations from a single wind-profiling instru-
ment (Sawada et al., 2015; Pichugina et al., 2017; Finn
et al., 2020; Li et al., 2020; Hristova-Veleva et al., 2021).
For operational DA, however, it is beneficial to build a
dense network of remote-sensing sites capable of contin-
uous profiling of wind in the atmospheric boundary layer
(ABL). Before investing in such a network, however, more
investigation is required on what kind of instrumenta-
tion to acquire, how dense the network should be, and
what level of forecast improvement to expect. On the one
hand, utilization of real wind profiles for DA experiments
is beneficial because it allows for a direct incorporation
of observations and their measurement-error covari-
ances and allows us to quantify the impact considering
the actual atmospheric variability. On the other hand,
this approach provides only limited information to esti-
mate the quantitative benefit of a planned instrument

network and identify optimal locations of the
instruments.

One approach to obtain this information is based on
the ensemble transform Kalman filter (Bishop et al., 2001;
Majumdar et al., 2001), where both the analysis vari-
ance reduction due to the assimilation of a hypothetical
observation and the sensitivity of a forecast parameter to
this analysis variance reduction can be estimated based
on information from a precalculated forecast ensemble.
Ancell and Hakim (2007) developed an efficient approach
for this ensemble sensitivity analysis (ESA) to estimate the
forecast variance reduction due to additional observations.

ESA has been used in a number of studies to pro-
vide guidance for targeted airborne dropsonde observa-
tions for tropical cyclones (Torn, 2014; Majumdar, 2016)
and more recently in two network design studies for auto-
matic weather stations in Antarctica (Hakim et al., 2020;
Tardif et al., 2021). The efficiency of the ESA approach is
based on the cancellation of the background covariance B
matrix determining the analysis influence and the inverse
background covariance B matrix in the ensemble sensitiv-
ity in the absence of localization. The analysis background
covariance B matrix is, however, usually localized, which
can only be accounted for crudely in the efficient ESA
approach of Ancell and Hakim (2007). In ESA, localiza-
tion is usually applied to the forecast metric instead of
the analysis influence, which introduces errors, given an
unknown signal propagation speed in the atmosphere.
Further uncertainty is introduced by different signal prop-
agation for different variables and different perturbation
scales in the atmosphere. Therefore most preceding ESA
analyzed only the optimal location of one observation
type, but not optimal networks of measurements of dif-
ferent variables. To overcome this limitation, we propose
and apply a new approach for ESA that calculates both
the analysis variance reduction and the forecast sensi-
tivity explicitly, to allow for a correct representation of
localization in the assimilation system.

The quality of ESA results furthermore depends
strongly on the number of ensemble members. Many oper-
ational global NWP models only produce 14–50 ensem-
ble forecasts due to computational restrictions (Leut-
becher, 2019; Buizza and Richardson, 2017). Jacques and
Zawadzki (2015), Leutbecher (2019), and Necker et al.
(2020a) showed that a large number of ensemble mem-
bers reduces covariance sampling errors considerably in
comparison with smaller ensembles. Miyoshi et al. (2014)
performed their first experiments with a 10,240-member
global model ensemble and compared the results with
those obtained from datasets with fewer ensemble mem-
bers. They found that model ensembles with fewer than
100 members were affected considerably by spurious cor-
relation and could not capture the non-Gaussian shape of
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the probability density functions of certain atmospheric
variables. The authors concluded that an ensemble with
at least 1,000 members is not affected much by these
two issues. Houtekamer and Zhang (2016) and Necker
et al. (2020b) also showed that a high number of mem-
bers allows for a reduction of statistical errors and spuri-
ous correlations and by this enables more accurate esti-
mates of error covariances to be obtained. In this study,
we therefore use the 1,000-member ensemble dataset of
Necker et al. (2020b) to mitigate the effects of spurious
correlations.

There are a number of instruments providing measure-
ments of low-level wind potentially available or already
being assimilated for short-term weather forecasts. One
of the least expensive instruments that can provide reli-
able wind measurements is a surface weather station. This
instrument typically measures wind at 2 or 10 m height
and cannot characterize air motions throughout the com-
plete ABL. A meteorological tower can deliver wind pro-
files up to a few 100 m, also including the typical hub
height of wind turbines (around 80 m). However, a mete-
orological tower is expensive to build and maintain and
it can only characterize one location. Wind sensors that
are typically maintained on wind turbines provide wind
observations at a certain height, but not wind profiles.
Radiosondes can provide high-quality and high vertical
resolution profiles of wind. Radiosondes, however, are
typically launched only twice a day at distinct locations.
Space-borne instruments have the advantage of global cov-
erage, but typically have low temporal, angular, and spa-
tial resolution. For instance, scatterometers with synthetic
aperture on board Sentinel-1A/B satellites are capable of
measuring near-surface winds over oceans with an accu-
racy of about 2 m⋅s−1 (Ahsbahs et al., 2018). The Doppler
lidar Atmospheric LAser Doppler INstrument (ALADIN)
on board the Aeolus satellite provides profiles of the zonal
wind component with an accuracy varying from 1.9 to
4.4 m⋅s−1 (Martin et al., 2021). These instruments have a
recurrence cycle of the order of a week and therefore can-
not be used for an improvement of regional short-term
wind forecasts. Commercial aircraft deliver wind profiles
through the Aircraft Meteorological Data Relay (AMDAR)
for limited areas close to airports, since they measure pro-
files only during their ascents and descents (de Haan, 2011;
Petersen, 2016; Stone, 2018). Mode-Selective (Mode-S) is
another aircraft-based source for upper-air wind observa-
tions, which can be obtained from appropriately equipped
aircraft and provide upper-air wind observations giv-
ing local coverage of a flight area (de Haan, 2011;
Stone, 2018).

Another type of instrument providing wind profiles in
the ABL is a ground-based Doppler lidar (Lang and McK-
eogh, 2011; Frehlich, 2013; Gottschall et al., 2017; Pichault

et al., 2021). A Doppler lidar has a number of advantages
relative to ground-based Sound Detecting And Ranging
and radar wind profilers. First, this instrument delivers
continuous profiles of low-level wind with high temporal
and spatial resolution. Second, it can often profile wind
during clear-sky conditions, which is not always possi-
ble by radar (Hirth et al., 2017). Third, modern Doppler
lidars are relatively cheap, compact, and low-maintenance
instruments, making them suitable for building an oper-
ational network. Several studies have presented potential
benefits of Doppler lidars for wind-power applications.
For instance, Pichault et al. (2021) presented method-
ologies to use Doppler lidar observations for a predic-
tion of onshore power generation at a small wind farm.
Theuer et al. (2020) showed that a single Doppler lidar
can be a more cost-effective solution for wind-power out-
put prediction than a dual Doppler radar installation,
especially in areas where an installation of relatively big
radar systems is not feasible. Frehlich (2013) demon-
strated that scanning Doppler lidars can provide infor-
mation on the turbulence conditions, which is important
for wind-turbine efficiency improvements. Thus, Doppler
lidars are promising instruments for wind forecast and
wind-power prediction. However, more effort and research
needs to be directed towards the potential of a network of
Doppler lidars for the improvement of short-term forecasts
over the larger areas required, for example, by big wind
farms.

Within the Hans-Ertel-Centre for Weather Research
(HErZ: Weissmann et al., 2014; Simmer et al., 2016) we
estimate the potential to improve the short-term fore-
cast of low-level wind using a network of Doppler lidars.
As a part of HErZ, this study addresses three important
questions.

1. How much improvement in the short-term low-level
wind forecast can be expected from Doppler lidars
with respect to operationally assimilated surface in situ
stations?

2. How does this improvement depend on the number of
lidars in the network?

3. How does the improvement gained from lidars depend
on the penetration of lidar signal through the ABL?

This study focuses on the urban Rhein–Ruhr Area
(RRA) and surrounding regions. This area accommodates
more than 107 people and energy-intensive industry. The
RRA features ∼5.1 GW of installed wind farms, which
was 7.4% of the total installed wind-turbine capacity of
Germany in 2019. For our analysis, we apply a novel
ESA approach to the first convective-scale 1,000-member
ensemble simulation over Germany that was previously
generated using the Scalable Computing for Advanced
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Library and Environment regional model (SCALE-RM),
as described in detail by Necker et al. (2020a). The
simulation uses a full-physics nonhydrostatic regional
model and consists of ensemble forecasts from 16 initial
times. The period analyzed covers a period in May/June
2016.

The remainder of the article is outlined as follows,
The new ESA methodology is described in Section 2.
Section 3 provides details on the region and period of
interest, as well as the 1,000-member ensemble used in
this study. Sections 3.2,3.3, and 4 discuss the experimen-
tal design in detail and present sensitivity studies on the
choices of localization, observation errors, and regular-
ization. Section 5 presents the main results and demon-
strates the potential impact of a network of hypothetical
Doppler lidars relative to operationally assimilated sur-
face observations. First, Section 5 analyzes two case stud-
ies focused on the impact of Doppler lidars on low-level
wind forecasts for different weather situations. Second,
averaged results of our study are presented based on all
available 16 forecasts in May/June 2016. Finally, we sum-
marize and discuss the results and offer a short outlook
in Section 6.

2 METHOD

In this study we use a new ESA approach to estimate
how an assimilation of Doppler lidar data affects the
variance of a predicted quantity. The approach used
in this study builds upon the ESA methods described
in Ancell and Hakim (2007), Torn and Hakim (2008),
Torn (2014), Coniglio et al. (2019), and Hakim et al.
(2020), but extends preceding approaches by incorpo-
rating analysis localization while letting the impact of
observations on the forecast propagate freely over time.
A detailed comparison of the new approach with pre-
ceding ones is presented in a companion article by
Griewank et al. (2022), along with an evaluation using a toy
model.

2.1 Ensemble sensitivity analysis

The foundation of ensemble sensitivity is to assume a lin-
ear relationship of a predicted quantity and the ensemble
perturbations at the start of the forecast. This is in contrast
to the adjoint sensitivity calculated via an adjoint model,
which does not require an ensemble (Ancell and Hakim,
2007). For a given lead time, the predicted quantity 𝑗 is
represented by a 1 × n (row) vector j:

j = [𝑗1 𝑗2 · · · 𝑗n], (1)

where n is the number of ensemble members. The
state vector x consist of elements x1, x2, … , xm.
Ensembles of the state vector are given by a m × n
matrix X:

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1,1 x1,2 … x1,n

x2,1 x2,2 … x2,n

… … … …
xm,1 xm,2 … xm,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

It is generally assumed that the simulations have on
average zero bias relative to true values, which is rea-
sonable, since the main interest is in the second cen-
tral moment of the predicted quantity. In this case,
the forecast metric 𝛿j represents deviations of the pre-
dicted quantity from its ensemble average. The fore-
cast metric is a 1 × n vector. The variance of the fore-
cast metric over ensemble members is calculated as
follows:

𝜎2 = 1
n − 1

𝛿j𝛿jT
, (3)

where the T superscript denotes transposition.
Similarly, deviations of state vector elements from cor-

responding ensemble means are elements of the m × n
matrix 𝛿X (hereafter denoted as the state). The m ×m
covariance matrix of the state (background covariance
matrix hereafter) is denoted as

B = 1
n − 1

𝛿X𝛿XT. (4)

Using the first-order Taylor approximation, 𝛿j can be
approximated from 𝛿X:

𝛿j ≈ sT𝛿X, (5)

via the sensitivity s, which represents the 1 ×m vector of
partial derivatives in Equation (5):

sT =
[
𝜕𝑗

𝜕x1

𝜕𝑗

𝜕x2

𝜕𝑗

𝜕x3
… 𝜕𝑗

𝜕xm

]

. (6)

The sensitivity can be expressed using B by multiplying
both sides of Equation (5) with (n − 1)−1𝛿XTB−1:

s ≈
𝛿j𝛿XTB−1

n − 1
= cov

(
𝛿j, 𝛿XT)B−1, (7)

where cov is the cross-covariance matrix, elements of
which are covariances between the predicted quantity 𝑗
and elements of the state vector x.

Taking into account the linear approximation of 𝛿j in
Equation (5), the variance of the forecast metric 𝜎2 can be
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approximated from the background covariance matrix B
using the sensitivity s:

𝜎2 = var(𝛿j) = 1
n − 1

𝛿j𝛿jT ≈ var(s𝛿X)

= 1
n − 1

s𝛿X𝛿XTsT = sBsT, (8)

where var is the variance calculated over n elements.

2.2 Estimate of variance change

When observations are incorporated, an update of state 𝛿X
is performed using a Kalman filter (Whitaker and Hamill,
2002; Hacker and Lei, 2015; Hakim et al., 2020):

𝛿Xu = 𝛿X −KH𝛿X, (9)

where H is the p ×m linear forward operator that maps
the state space to the observation space, p is the number
of observations included, and K is the m × p Kalman gain
matrix.

Thus, the change in the variance of the forecast metric
Δ𝜎2 after assimilation of observations is as follows:

Δ𝜎2 ≈ var(s𝛿Xu) − 𝜎2 ≈ var (s(𝛿X −KH𝛿X)) − var(s𝛿X).
(10)

The relative variance change can then be found as a
ratio of the variance change over the initial variance of the
forecast metric:

Δ𝜎2
r =

Δ𝜎2

𝜎2 . (11)

2.3 Kalman gain and localization

The traditional Kalman gain matrix is defined as follows:

Kt = BHT(HBHT + R)−1, (12)

where R is the p × p observation-error covariance matrix.
The observation-error matrix R used in this study is a
diagonal matrix, due to the assumption of independent
observations. In this study, we update the ensemble per-
turbations with the modified Kalman gain matrix used in
the ensemble square-root filter designed by Whitaker and
Hamill (2002):

Kw = BHT
[(√

HBHT + R
)−1]T

[√(
HBHT + R

)
+
√

R
]−1

. (13)

Whitaker and Hamill (2002) use the traditional Kalman
gain matrix to update the ensemble mean and the modified

Kalman gain to update the ensemble perturbations. They
showed that the modified Kalman gain matrix is more
resistant to sampling errors related to a finite-size ensem-
ble. The formulation of the Kalman gain matrix given
in Equation (13) can process all available observations at
once. Therefore, an iterative procedure, such as that used
by Hakim et al. (2020), is not required.

Localization is a standard feature in ensemble assimi-
lation systems needed to reduce ensemble sampling errors
and increase computational efficiency. To estimate the
benefit of an observation for a specific forecast system,
the localization used by that forecast system needs to be
taken into account. We use similar values and weight-
ing functions to those used by the regional Deutscher
Wetterdienst (DWD) assimilation system (Schraff et al.,
2016), as we aim to estimate the impact for this specific
system.

In our ESA study, we apply two types of localization:
(1) horizontal localization Lh, that is, localization between
different horizontal coordinates and (2) vertical localiza-
tion Lv, that is, localization between different altitude
levels:

L = Lh ◦Lv, (14)

where L is the m ×m localization matrix and ◦ is a Schur
product.

Both localization types are calculated using a
Gaspari–Cohn function (Gaspari and Cohn, 1999). This
function is Gaussian-shaped and the width of the function
is defined by a free parameter, which is the localization
scale. The application of the Gaspari–Cohn function
reduces correlations between elements of the state vector
to nearly zero after a certain distance or cut-off radius.
The cut-off radius is derived from the localization length
scale by multiplying the latter by 2

√
10∕3≈3.65. Elements

of Lh are calculated using radial distances between coor-
dinates of the corresponding elements of the state vector.
Elements of Lv are calculated using differences in the nat-
ural logarithm of pressure between the altitude levels of
the corresponding elements of the state vector.

The localization matrix L is applied as a Schur product
to the background covariance matrices B in the modified
Kalman gain matrix (Equation 13):

K = (L ◦B)HT

[(√

H (L ◦B)HT + R
)−1

]T

[√(
H (L ◦B)HT + R

)
+
√

R
]−1

. (15)

Elements of the localization matrix range from 0 to
1 and depend on the radial distance between the corre-
sponding locations of the state vector points. The precise
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localization values used in this study are described in
Section 3.2.5.

2.4 Regularization of sensitivity

Ancell and Hakim (2007) discussed two issues which
arise when attempting to calculate the sensitivity from
the approximation in Equation (7). First, the background
covariance matrix B cannot be inverted if the ensemble
size is smaller than the state size (Gombos and Hansen,
2008). Second, the computing time to inverse B increases
with the power of 3 in regards to state size m, making it pro-
hibitively expensive to invert the background covariance B
matrix of the full model state.

A number of studies avoid this issue by neglecting
off-diagonal terms of B (Torn and Hakim, 2008). Such
a diagonal approximation of the background covariance
matrix (1) guarantees that the matrix is always invertible
and (2) makes the inversion easy to calculate. Hacker and
Lei (2015) discuss an implication of the diagonal approxi-
mation of B. The authors show that neglected off-diagonal
elements of B in general lead to an overestimation of
sensitivity to individual components of the state vector,
which in turn leads to an inadequate quantitative charac-
terization of predicted quantities. The authors report that
the full background covariance matrix should be used for
the sensitivity calculation, since this gives more accurate
estimates of the predicted quantities, especially in the pres-
ence of fast dynamics, model errors, and large analysis
ensemble spreads.

In this study, we solve the problem with singular matri-
ces B in Equation (6) by applying a regularization tech-
nique. We apply Tikhonov regularization (Tikhonov, 1965)
to obtain the sensitivity:

s ≈ cov
(
𝛿j, 𝛿XT)BT(BBT + 𝛼2I

)−1
, (16)

where I is the m ×m identity matrix and 𝛼 is the regu-
larization coefficient (𝛼 ≥ 0). Hoerl and Kennard (1970)
showed that Equation (16) is a least-squares estimator
immune to the presence of highly correlated components
in the state vector. Throughout this study, the sensitiv-
ity approximation given in Equation (16) is used, but a
different form of regularization could have been applied,
such as the singular value decomposition used by Ancell
and Hakim (2007) and Hacker and Lei (2015). Section 4.1
explores the effects of the parameter 𝛼 and which values
are suitable for this study.

A computationally very efficient way of avoiding B−1

is to not compute the sensitivity at all. Instead, the change
in variance as estimated through Equation (10) is refor-
mulated so that the inverse B of the sensitivity is balanced

by the B from the Kalman gain shown in Equation (12)
(Torn, 2014; Hakim et al., 2020). However, this balancing
cannot be achieved if the analysis influence of observations
is localized, as the localized covariances of the Kalman
gain (L ◦B) cannot be balanced against the nonlocalized
B of the sensitivity. Instead, the variance change estimate
can take analysis localization into account by splitting the
forecast metric into local components and then applying
distance-based localization weights to the covariances of
the individual forecast metrics and the initial state (Hakim
et al., 2020; Tardif et al., 2021). This approach is equivalent
to having a nonlocalized sensitivity and a localized anal-
ysis if the observations only influence the forecast within
the analysis localization, that is, the impact of the obser-
vations does not propagate over time. This propagation
of the observation impact is also referred to as temporal
localization evolution (Gasperoni and Wang, 2015).

In our companion study (Griewank et al., 2022), we
discuss in depth the errors that result from applying the
approach of Tardif et al. (2021) when signal propaga-
tion is not accounted for appropriately, and estimating
signal propagation is extremely difficult in a nonlinear
three-dimensional atmospheric model. Different variables
and perturbations at different scales propagate at differing
speeds in the atmosphere, both horizontally and vertically.
Tardif et al. (2021) can safely ignore signal propagation, as
their metric is not calculated from the forecast but from the
analysis. By applying Tikhonov regularization to calculate
the sensitivity explicitly, we can take analysis localization
into account without having to make any assumptions on
signal propagation.

3 DATA AND EXPERIMENTAL
DESIGN

3.1 Ensemble data and period

ESA requires an ensemble forecast that provides the model
state and forecast metric. Our study utilizes an existing
convective-scale 1,000-member ensemble simulation that
has been computed on the K-computer at the RIKEN Cen-
ter for Computational Science in Kobe, Japan (Miyoshi
et al., 2016a; 2016b). The 1,000-member ensemble simula-
tion and its experimental setup are described in detail by
Necker et al. (2020a). Below, we introduce the model data
briefly, focusing on relevant aspects for the present study.

The 1,000-member ensemble simulation was done
with the full-physics nonhydrostatic SCALE-RM and the
SCALE Localized Ensemble Transform Kalman Filter
(SCALE-LETKF) DA system (Hunt et al., 2007; Lien et al.,
2017). Our study uses the high-resolution, convective-scale
forecast output that is available from May 29–June 2 and
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June 5–June 7, 2016. In this period, ensemble forecasts
with 14-hr lead time have been initialized twice per day (at
0000 and 1200 UTC). The forecast domain (350 × 250 grid
points) is centered over Germany. The model output has a
3-km horizontal resolution and 30 altitude levels ranging
from the surface to the model top at 16.9 km.

The high-impact weather period analyzed is charac-
terized by an atmospheric block over the Atlantic ocean
(Piper et al., 2016). A high-pressure system covered an area
from Western France over Great Britain to Iceland. In the
eastern part of France and over Germany, in contrast, there
was a low-pressure system. Pressure gradients over Ger-
many were weak, resulting in stationary conditions with
relatively low wind speeds and heavy precipitation (Necker
et al., 2020a).

3.2 Observational setup

3.2.1 Surface synoptic stations

Surface synoptic observations (SYNOP hereafter) are typ-
ically taken by an automatic weather station and include
measurements of temperature, relative humidity, pres-
sure, and wind at the surface. Since our study focuses on
wind, only 10-m wind components (u and v) were used
as SYNOP. Coordinates of SYNOP stations correspond to
the locations of surface stations assimilated operationally
by the German Weather Service (personal communication
with Elisabeth Bauernschubert, DWD). We include only
stations located within a radius of 3◦ from the center of
the RRA domain. Since the reduced model resolution is
30 km, we placed surface stations at the closest model grid
point. In total, there are 95 stations located within the cir-
cle area (Figure 1). SYNOP stations were included in all
experiments in this study.

3.2.2 Simulated Doppler lidar observations

A lidar is an active optical instrument that transmits a
short laser pulse into the atmosphere and collects the
light scattered back by atmospheric particles. In addition
to backscatter signal intensity, Doppler lidars can mea-
sure a Doppler frequency shift between the transmitted
and backscattered signals. The Doppler frequency shift
is determined by radial motions of atmospheric scatter-
ers (aerosols and clouds) due to their transport by hor-
izontal wind and up/down drafts. Therefore, by using
azimuthal scans at a fixed nonzenith elevation (Browning
and Wexler, 1968) and assuming horizontal homogene-
ity of the wind field inside the cone defined by the scans,
profiles of u and v components (or speed and direction)

F I G U R E 1 Locations of 95 SYNOP stations used in this
study. The 95 SYNOP stations (blue dots) are located within a radius
of 3◦ and from the center of the RRA shown by the gray rectangle.
Magenta dots denote the model grid used for the state vector.
Positions of the 10 Doppler lidars used for the experiment for
sensitivity studies are shown as green dots. Note that coordinates of
all shown SYNOP stations and Doppler lidars are mapped on the
closest model grid points [Colour figure can be viewed at
wileyonlinelibrary.com]

of the horizontal wind can be retrieved from the radial
velocity observed by Doppler lidars (Pichault et al., 2021).
The quality of the derived wind profiles depends strongly
on the signal-to-noise ratio (SNR), which is determined
by the backscattering efficiency of a volume of particles
and the path integrated attenuation as well as the dis-
tance of the lidar to the backscattering volume. The former
depends mainly on the size, shape, and number concentra-
tion of particles. Therefore, the maximum wind retrieval
height is often limited to ABL height (up to a few km alti-
tude: Schween et al., 2014; Coniglio et al., 2019; Pichault
et al., 2021). Aerosol concentrations in the free troposphere
above are typically too low for a sufficiently high SNR.
Also, the presence of liquid water in form of a cloud or
a fog layer will lead to signal attenuation within a few
100 m of liquid base. Theuer et al. (2020) report that appli-
cability of Doppler lidars for wind-farm applications is
strongly limited in rain and fog conditions. Taking this
into account, only the lowest five model output levels at
80, 429, 1,062, 1,853, and 2,845 m are considered for cal-
culating simulated Doppler lidar observations. Note that
in our study we refer to “simulated” observations, which
are based on SCALE-RM model data. Applying different

http://wileyonlinelibrary.com
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maximum height ranges, we can thus investigate the
impacts of these Doppler lidar limitations on DA.

3.2.3 Assigned observation errors

The assimilation of observations relies on an appropri-
ate estimate of the associated errors. Assigned observa-
tion errors in the context of data assimilation need to
include the instrumental error as well as the error related
to model representativeness (Hodyss and Nichols, 2015;
Janjić et al., 2018). In the case of the wind measurements
with Doppler lidars, the instrumental error is associated
with SNR, the type of scanning mode, and uncertainties in
azimuth, elevation, and ranging of the instrument (Theuer
et al., 2020). In addition, the retrieval quality is also part of
the instrumental error. For instance, Päschke et al. (2015)
show that homogeneity of the airflow within the scan-
ning volume and numerical stability of the retrievals with
respect to small errors affect the accuracy of wind mea-
surements. Päschke et al. (2015) evaluated wind profiles
from a Doppler lidar with respect to ones from radiosondes
and a radar wind profiler based on a one-year dataset. The
authors showed that the root-mean-square (RMS) differ-
ence of Doppler lidar wind profiles does not change much
up to 3 km height and does not exceed 1 m⋅s−1 in speed and
10◦ in direction relative to the other two instrument types.
In this study, we thus take a conservative estimate of the
instrumental error of 1 m⋅s−1 for both u and v components
of wind measured with a Doppler lidar.

Representativeness error is associated with unresolved
processes related to the differences in spatial and temporal
scale between observations and model (Janjić et al., 2018).
For instance, due to complex surface terrain and topogra-
phy, wind measurements can be influenced by small-scale
circulations that may not be resolved by NWP models
(WMO, 2018). In general, the representativeness error also
includes errors of the forward model used (operator H
in Equation (9)): Janjić et al., 2018). In this study, how-
ever, forward model errors are neglected because for grid
points with Doppler lidars the state space is the same as
the observation space.

We assume an observation error for Doppler lidars of
2 m⋅s−1 for both u and v components of wind at all five alti-
tude levels. Thus, in the case of uncorrelated instrumental
and representativeness error, the latter is ≈1.7 m⋅s−1. Sim-
ilar values of observation errors for wind observations in
the lower troposphere (between 850 and 1,000 hPa) were
estimated by Schraff et al. (2016) based on the Desroziers
statistics (Desroziers et al., 2005a; 2005b). The chosen
observation error is also consistent with the one used
in Coniglio et al. (2019) for assimilation of a Doppler
lidar for short-term forecasts. The 2 m⋅s−1 observation

error used meets the World Meteorological Organiza-
tion’s (WMO’s) Observing Systems Capability Analysis
and Review (OSCAR) requirement for an optimal (from a
cost–benefit point of view) improvement of wind in global
and high-resolution NWP application areas (Leuenberger
et al., 2020).

The wind observation errors of SYNOP surface sta-
tions are assumed to be 3.5 m⋅s−1 following the values
used in the operational data assimilation system of DWD.
The higher value—with respect to the observation error
of Doppler lidars—mainly originates from a lower repre-
sentativeness of point-like surface observations. The DWD
assimilation system for the limited-area mode currently
assumes that observation errors are uncorrelated and we
follow this approach in the present study. Accordingly,
the observation-error covariance matrix R is a diago-
nal matrix with a size of p × p. Diagonal elements of
R—variances of observation errors—are the squares of the
assigned observation errors. If observation errors are sub-
stantially correlated, we would overestimate the benefit
of the observations. However, we do not expect SYNOP
or Doppler lidar observations to have highly correlated
errors.

3.2.4 Observation space

The forward observation operator maps from model state
space to observation space. For observations of model state
variables, the observation operator is a linear function that
can be written as a matrix H. In our case, H is a matrix
with a size of p ×m. The number of observations included
varies for different experiments. Note that, while we refer
to our ESA estimates of the variance reduction for differ-
ent Doppler lidar network designs as “experiments”, our
experiments are only based on the existing ensemble sim-
ulations. We do not perform any data assimilation steps or
additional model simulations. First, observations include
u and v components of the 10-m wind, which represent
a network of 95 operationally assimilated SYNOP stations
(see Figure 1). For all experiments, the number of SYNOP
observations is 190, which is two variables measured by
95 stations. Second, the number of Doppler lidar obser-
vations depends on the number of sites and the number
of available ranges. The number of sites covers the range
from 1 to 95 Doppler lidars. Note that the number of sites
is fixed for an experiment, but may vary depending on
the type of experiment setup described in Section 3.3. The
number of available height ranges varies from 1 to 5. The
number of ranges is the same for all Doppler lidars in the
network within an experiment. Thus, the total number of
Doppler lidar observations varies from 2 (one instrument,
one range, and two measured quantities: u and v wind
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components) to 950 (95 instruments, five ranges, and two
measured quantities). Each observation is represented by
a row in the H matrix. For an observation, a single element
in the corresponding row of H is set to 1. This element
corresponds to the type of observation, coordinates, and
altitude of the observation. All remaining elements in the
row are set to 0.

3.2.5 Localization length scales

Our localization length scales are chosen from the range
of values applied in the regional modelling system of
DWD, as we are aiming to estimate the potential impact
of observations for this particular modelling system. We
decided to choose a static horizontal localization length
scale of 50 km, which is the lowest value of the adaptive
localization range (50–120 km) operationally applied by
DWD (Schraff et al., 2016). In the vertical, DWD applies
a height-dependent localization scale that increases from
0.075 at the surface to 0.5 ln(hPa) in the upper troposphere.
We chose a static and narrow vertical localization length
scale of 0.1 ln(hPa), since we focus on low-level observa-
tions up to 3 km.

3.3 Experimental setups

Within this study, we designed a number of experiments
to evaluate potential improvements in the short-term
forecast of low-level wind using a network of Doppler
lidars. Our experiments are based on three different setups
depending on the number of Doppler lidars included in the
network, as follows.

1. Setup 1 includes 10 randomly chosen Doppler lidars in
the network and their random locations were chosen
from the SYNOP station locations. This configuration
with a fixed number and location of instruments in
the network is used in Section 4 for sensitivity studies
based on a single forecast.

2. In setup 2, we increased the number of Doppler lidars
in the network from 5 to 95 with a step of 5 and chose
their locations randomly from SYNOP station loca-
tions. For each combination of the number of Doppler
lidars, the procedure is repeated 50 times. Setup 2 is
applied in the experiments shown in Section 5.1.

3. Setup 3 is used in Section 5.2–5.4, when the network
includes 25 Doppler lidars chosen randomly from the
locations of SYNOP stations and a random choice is
repeated 50 times for each combination of Doppler
lidars.

5°E 6°E 7°E 8°E 9°E 10°E
50°N

51°N

52°N

Jülich
Bonn

Cologne

Wind power plants

2825

53°N

~210 km

~142 km

F I G U R E 2 Location of wind-power plants within the RRA.
Data from 2019. The green rectangle depicts the borders of the RRA
used in this study to derive the forecast metric. Blue dots indicate
locations of individual windmills. The data were provided by Lukas
Schmidt, who retrieved the data using the code available at https://
github.com/OpenEnergyPlatform/open-MaStR [Colour figure can
be viewed at wileyonlinelibrary.com]

3.3.1 Forecast metric

This study focuses on the Rhein–Ruhr Area (RRA), one
of the biggest urban areas in western part of Germany.
In 2019 there were 2,825 wind turbines registered in this
area (Figure 2) with a total installed capacity of ∼5.1 GW.
The RRA domain has a size of ∼ 210 × 142 km2 that cor-
responds to an area from 50.5–51.8◦N and 6–9◦E. We used
averages of u and v components of the 80-m wind from
SCALE-RM over the RRA domain as out forecast metric
(ju and jv). We chose the wind at 80-m height as that is a
typical hub height of wind turbines.

In order to avoid spin-up effects in the SCALE-RM
simulations (Necker et al., 2020a), 00 and 01 hr forecasts
are not used in this study (0000 and 0100 UTC for model
initialization at 0000 UTC; 1200 and 1300 UTC for model
initialization at 1200 UTC). Instead, for model runs at 0000
and 1200 UTC the predicted quantities are calculated for
0500 and 1700 UTC forecasts, respectively. In order to ana-
lyze different lead times, we use states at 0200, 0300, 0400,
and 0500 UTC for the model initialization at 0000 UTC, as
shown in Figure 3. These lead times correspond to lead
times of 3, 2, 1, and 0 hr relative to the predicted quanti-
ties, respectively. For the initialization at 1200 UTC, states
at 1400, 1500, 1600, and 1700 UTC are taken, respectively.
Thus, the time of forecast metrics is fixed at 5 hr lead time,
while different lead times are simulated by changing the
time of the initial state. This required to compare the vari-
ance reduction in predicted quantities at different lead
times properly. Shifting the forecast metric would result
in a changing variance of the predicted quantity, which
would make comparing different lead times difficult.

https://github.com/OpenEnergyPlatform/open-MaStR
https://github.com/OpenEnergyPlatform/open-MaStR
http://wileyonlinelibrary.com
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F I G U R E 3 A schematic diagram of times for the forecast
metric 𝛿j and the state vector 𝛿X. The model initialization was
performed twice a day at 0000 and 1200 UTC. The first two hours
after model initialization are not used due to spin-up effects
discussed in the text. The time of the forecast metric 𝛿j is fixed at
0500 and 1700 UTC for initializations at 0000 and 1200 UTC,
respectively. For initialization at 0000 UTC, the time of state vector
𝛿X is 0200, 0300, 0400, and 0500 UTC for lead times of 3, 2, 1, and
0 hr, respectively. For initialization at 1200 UTC, the time of state
vector 𝛿X is 1400, 1500, 1600, and 1700 UTC for lead times of 3, 2, 1,
and 0 hr, respectively. Lead times of 0, 1, 2, and 3 hr are indicated by
𝛿X0, 𝛿X1, 𝛿X2, and 𝛿X3, respectively

3.3.2 Model state space

Doppler lidars measure u and v components of wind. Since
u and v wind components are usually prognostic variables
of NWP models, we use these components in our state vec-
tor (X in Section 2.1). For the state we use a larger area than
the RRA (model domain hereafter), which roughly ranges
from 48–55◦N and from 4–10◦E (see Figure 1). Note that,
due to computational restrictions, the present study uses a
reduced horizontal and vertical grid of the available orig-
inal model data. We only use every 10th grid in both the
north–south and west–east directions. Such a subsampling
results in a 30-km grid spacing (see Figure 1). Neverthe-
less, we compute the forecast response function using the
original model output with 3-km resolution. In the verti-
cal we use six of the original 30 levels, at 10, 80, 429, 1,062,
1,853, and 2,845 m height.

Each state vector (a column in X) contains values of
u and v components of wind at all grid points of the state
domain at six different height levels. After the subsam-
pling of the original model output (see Section 3.1), each
level has 348 grid points, a single state vector has 4,176
elements, and the complete ensemble state X is a 4,176 ×
1,000 matrix, where 1,000 is the number of ensemble
members.

4 SENSITIVITY STUDIES

In order to demonstrate how the ESA algorithm performs,
we selected one case study on May 29, 2016 that exhibited
a wind pattern common for the period analyzed. In this
case, the center of a low-pressure system was over the

northeastern part of France, producing easterly
flow at 80-m height over the RRA Figure 4. The
ensemble-averaged wind speed at 80 m for 3-hr lead time
ranges from 4–10 m⋅s−1 with a standard deviation not
exceeding 3 m⋅s−1. At latitudes above 50◦N, the wind
speed and direction are nearly homogeneous, while at
lower latitudes wind speed and direction have higher vari-
ability. Based on this single forecast case, we performed a
set of sensitivity studies to test and evaluate how results
change with different values of regularization coefficient,
localization length scale, and observational error.

4.1 Sensitivity of 𝚫𝝈2
r to the choice

of regularization coefficient

As shown in Section 2.4, we apply Tikhonov regulariza-
tion to estimate the sensitivity (Equation 16). In order to
find a suitable regularization coefficient 𝛼, which controls
the degree of regularization, we make a set of experiments
with 95 SYNOP stations (10-m wind) and 10 randomly
chosen Doppler lidar sites (setup 1 in Section 3.3), with
only one—80 m—observed level. For these experiments,
we use the model data for the 0000 UTC initialization
on May 29, 2016. Figure 1 depicts coordinates of the 95
SYNOP stations (blue dots) and 10 Doppler lidar sites
(green dots). As mentioned earlier, the SYNOP stations
are always fixed and the Doppler lidar sites were chosen
randomly.

We repeat the experiment with different values of
𝛼 ranging from 10−6 to 104. Figure 5 summarizes the
results of these experiments and shows the relative vari-
ance changes Δ𝜎2

r for different lead times as functions
of 𝛼. Since DA, on average, leads to a reduction of fore-
cast variance, values of Δ𝜎2

r change are mostly negative.
When 𝛼 is too small (e.g., < 10−2), the sensitivity esti-
mate starts to become unstable and shows an oscillatory
behavior (shown in Griewank et al., 2022). The extreme
effect occurs at 𝛼 = 10−6 when the variance change is
positive (not shown). Positive values of variance reduc-
tion are unrealistic, since they imply that the assimilation
increases the variance of the forecast metric. High val-
ues of 𝛼 (e.g., >10) reduce the sensitivity too much, and
the impact of observations is completely suppressed in the
variance change estimates. For 𝛼 ranging from 10−3 to 3,
the effect of the assimilation shows minimal values for 2-
and 3-hr lead times. For the 1-hr lead time, the minimum
appears at a lower value of 𝛼. At 𝛼 values of 10−3 to 3,
however, the estimated variance change at the 1-hr lead
time is not much higher (a few per cent). For the follow-
ing analysis we chose 𝛼 = 3. This value gives near-maximal
estimates ofΔ𝜎2

r for all lead times used and is high enough
to suppress any unstable behavior. The chosen value 𝛼 = 3
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F I G U R E 4 (a) Mean and (b) standard deviation of wind at 80-m height on May 29, 2016 at 0500 UTC obtained from the model. Mean
values and standard deviations are calculated over 1,000 ensemble members. Black arrows indicate wind direction at 80-m height. The RRA
is shown by the green rectangle [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Dependence of Δ𝜎2
r on 𝛼 for different lead times.

Calculations are made for the 0000 UTC initialization on May 29,
2016. Simulated data from 10 Doppler lidars and 95 SYNOP stations
are assimilated. The blue, orange and green lines correspond to 1-,
2-, and 3-hr lead times, respectively. The forecast metric is the
u-component of the 80-m wind. Lidar observations are available at
only one level (80-m height) [Colour figure can be viewed at
wileyonlinelibrary.com]

results in an uncertainty of about 2–3% in estimated Δ𝜎2
r

relative to results obtained with 𝛼 values in the range from
10−3 to 3.

Subsequently, we discuss the sensitivities regularized
with 𝛼 = 3 to determine if they match our theoretical
expectations. Figure 6 shows the sensitivity of 𝛿ju to the
observations of the u-component of the 80-m wind for
different lead times. We know that for the 0 hr lead-time
(Figure 6a) the sensitivity should have a constant value

within the RRA, marked by the green rectangle, and be
zero outside the RRA, and the computed ensemble sensi-
tivity matches the expected pattern well, with only small
values outside the RRA. The sensitivity for the 1- and 2-hr
lead times (Figure 6b,c) also has maximum values in the
center of the RRA, but as expected the maximal values
decrease with lead time. The sensitivity outside the RRA,
however, has increased. In the case of 3-hr lead time, the
maximum sensitivity values are located to the east of the
RRA. These sensitivity patterns are consistent with the
wind conditions of that day (Figure 4). In the latitude range
from 50–52◦N, the wind was blowing homogeneously from
east to west on that day. Apparent negative sensitivity val-
ues have considerably lower magnitude relative to positive
sensitivities within the RRA.

4.2 Sensitivity of 𝚫𝝈2
r to the choice

of observational error

In order to evaluate how ESA results change with localiza-
tion scale and observational error, we performed a similar
set of experiments to that in Section 4.1. Here, instead of
changing 𝛼, we fixed it to 𝛼 = 3, and the observation error
of Doppler lidars was changed from 1 to 20 m⋅s−1. Three
series of experiments were made: (1) with 95 SYNOP
stations assimilated, (2) with 95 SYNOP stations and 10
Doppler lidars (setup 1 in Section 3.3) observing at 80 m
only, and (3) with 95 SYNOP station and 10 Doppler
lidars (setup 1 in Section 3.3) observing at all five altitude
levels (or height ranges). Recall that the observation error
of SYNOP stations is always fixed at 3.5 m⋅s−1. Figure 7
shows the resulting relative variance changes in the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 A demonstration of sensitivity of a forecast metric to selected elements of the state vector. The forecast metric is the
u-component of 80-m wind forecast averaged over the RRA for 0500 UTC on May 29, 2016. Elements of the state vector are u-components of
80-m wind at all grid points of the model domain. The sensitivity is shown for (a) 0, (b) 1, (c) 2, and (d) 3 hr lead times. The sensitivity is
calculated with Tikhonov regularization (𝛼 = 3) [Colour figure can be viewed at wileyonlinelibrary.com]

u-component of the 80-m wind. As expected, the vari-
ance reduction becomes more negative at lower values of
observation error. This is due to the fact that observations
with a lower error have a higher weight compared with
the model according to Equations (12) (13), and (15) used
for Kalman gain calculations. It can be seen that, with the
selected error assumptions, Doppler lidar observations
reduce the variance considerably relative to SYNOP sta-
tions, even when only observations at 80 m are available.
Information from more altitude levels increases the impact
of Doppler lidar observations further. If the observation
error was larger than 3.5 m⋅s−1, a network of 10 Doppler
lidars would gain little (with respect to SYNOP) when only
observations at 80 m are available. All five levels, how-
ever, would still give an improvement. It can also be seen
that a further reduction of observation errors would be
valuable for even stronger reduction of the forecast metric

variance. These results indicate that (1) our method
estimates correctly that reducing observation errors
increases their impact, (2) during cases with optically
thick clouds, fog, and precipitation it is beneficial to use
another wind profiling instrument less affected by pres-
ence of clouds (e.g., scanning cloud radars or radar wind
profilers), and (3) a further improvement of short-term
wind based on DA of Doppler lidars motivates the devel-
opment of more powerful Doppler lidars, which should
have lower observation errors.

4.3 Sensitivity of 𝚫𝝈2
r to the choice

of localization length scale

To understand the impact of a different horizontal local-
ization scale better, we performed a set of experiments

http://wileyonlinelibrary.com
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F I G U R E 7 Dependence of Δ𝜎2
r on the observation error of

Doppler lidars. Calculations are made for the 0000 UTC
initialization on May 29, 2016. The forecast metric is the
u-component of 80-m wind. A lead time of 3 hr is used. The blue
and orange lines correspond to the assimilation of data from 10
Doppler lidars and 95 SYNOP observations. Lidar observations are
available at 1 (blue line) and 5 (orange line) levels. The red dot
indicates the observation error of SYNOP stations. The value of the
red dot and the horizontal dashed line on the y-axis corresponds to
Δ𝜎2

r when only the 95 SYNOP stations are assimilated. The black
circles denote the 2 m⋅s−1 observation error of Doppler lidars
assumed in this study. Regularization coefficient 𝛼 = 3 [Colour
figure can be viewed at wileyonlinelibrary.com]

as in Section 4.1 with fixed 𝛼 = 3 but for horizontal
localization length scales varying from 33 to 120 km. Such
an increase of the localization scale could, for example,
be feasible in assimilation systems with a larger number
of ensemble members that lead to fewer spurious corre-
lations and a larger number of degrees of freedom. We
repeated the experiments for (1) the 95 SYNOP stations
only and also for (2) 95 SYNOP stations and 10 Doppler
lidars (setup 1 in Section 3.3) observing all five altitude
levels. The results are depicted in Figure 8. It can be seen
that the estimate of Δ𝜎2

r depends strongly on the choice
of horizontal localization length scale. In general, a larger
horizontal localization scale increases the influence radius
of observations, resulting in a more negative Δ𝜎2

r . These
results underline that it is crucial to choose realistic local-
ization scales that match the NWP system of interest. In
the case of DA including both the 95 SYNOP stations and
10 Doppler lidars (orange solid line), the selected 50-km
localization scale reveals differences of −40% and +80%
relative to 33 and 120 km, respectively. If Δ𝜎2

r is evaluated
against SYNOP stations only (i.e., ratio of the orange line
over the blue one), the dependence on the horizontal local-
ization scale is considerably less pronounced. In this case,
the difference of the 50-km localization scale relative to
33 and 120 km is within ±10%. In the following analysis,
we evaluate Δ𝜎2

r when both SYNOP stations and Doppler
lidars are assimilated with respect to the relative variance
reduction when only SYNOP stations are assimilated.
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F I G U R E 8 Dependence of Δ𝜎2
r on the horizontal

localization length scale. Calculations are made for the 0000 UTC
initialization on May 29, 2016. The forecast metric is the
u-component of 80-m wind. A lead time of 3 hr is used. The blue
line corresponds to the assimilation of 95 SYNOP stations. The
orange line corresponds to the assimilation of data from 10 Doppler
lidars and 95 SYNOP. Lidar observations are available at all five
levels. The observation error is set to 3.5 and 2 m⋅s−1 for 10-m wind
from SYNOP stations and wind profiles from Doppler lidars,
respectively. The black circle denotes the choice of localization
length scale applied in this study for our experiments. [Colour
figure can be viewed at wileyonlinelibrary.com]

5 NETWORK DESIGN STUDIES

Now that the sensitivity experiments have confirmed
that our estimated variance changes fulfil our theo-
retical expectations, we now estimate the benefit of a
potential Doppler wind lidar network for a short-term
low-level wind forecast relative to conventionally assim-
ilated SYNOP observations. For all available cases, we
calculatedΔ𝜎2

r for u and v components of the 80-m wind as
predicted quantities. The calculation was performed sep-
arately for the u and v components. Recall, however, that
both components are assimilated simultaneously. A num-
ber of experiments was performed. First, we derived values
of Δ𝜎2

r for the assimilation of the 95 SYNOP stations only
for 0, 1, 2, and 3 hr lead times. Then values of Δ𝜎2

r were
obtained for the assimilation of 95 SYNOP stations and
Doppler lidars.

For a given experiment, the number of Doppler lidar
stations, the number of range altitude levels, and the lead
time were fixed. For each experiment, locations of Doppler
lidars were chosen randomly from the coordinates of the
95 SYNOP stations. An experiment for a combination of
the number of Doppler lidar sites, available range altitude
levels, and lead time was repeated 50 times to estimate
how variable Δ𝜎2

r is depending on the exact lidar network
configuration.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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5.1 Doppler lidar network density

In this section, we investigate the optimal size of the
Doppler lidar network needed to achieve an improvement
of low-level wind forecast in the RRA. We expect that the
impact saturates for a certain size of Doppler lidar net-
work, that is, with an increasing number of lidars the
contribution of each following lidar toΔ𝜎2

r should become
smaller than the contribution of previously added lidars. In
order to check this, we run experiments for all 16 available
cases. For these experiments, we increased the number of
Doppler lidars in the network from 5 to 95 with a step of
5 (setup 2 in Section 3.3). For a given number of Doppler
lidars in the network, the statistics of Δ𝜎2

r were calculated
over 800 values of Δ𝜎2

r corresponding to all 16 available
cases and 50 random lidar locations for each available case.
The results of the experiment for the 3-hr lead time shown
in Figure 9 depict an indication of the saturation effect.
Note, however, that the divergence from a linear depen-
dence between Δ𝜎2

r and the number of Doppler lidars
starts at 20–30 instruments in the network when at least
three levels are observed. The saturation effect is much less
pronounced when only one level is available in Doppler
lidar observations. The saturation effect starts at nearly the
same number of Doppler lidars in the network for u and
v components of the 80-m wind. Based on these results,
we conclude that the most cost-efficient improvement of
low-level wind in the RRA could maybe be achieved by
a Doppler lidar network with about 25 instruments. For
the analyzed cases, an assimilation of SYNOP stations and
25 Doppler lidars gives on average three times better Δ𝜎2

r
relative to SYNOP stations only. In the case of SYNOP
stations and 95 Doppler lidars, this improvement is only

5.5 times. Note that this conclusion is valid only for a suffi-
ciently deep ABL and when there is no cloud below 3-km
height. An expected impact of a Doppler lidar network
with 25 instruments is discussed in the next subsection.
Such a network corresponds to one Doppler lidar per 8 ×
103 km2. This is equivalent to installation of a Doppler lidar
in every fourth SYNOP site in the area of interest.

5.2 Situation-dependent forecast
variability

In this subsection, we give a quantitative characteriza-
tion of the improvement expected from a 25 Doppler lidar
network (setup 3 in Section 3.3) in addition to the oper-
ationally assimilated SYNOP stations for the 16 differ-
ent available forecasts. For each of 16 analyzed forecasts,
derived values ofΔ𝜎2

r were averaged over the 50 repetitions
with randomly chosen Doppler lidar locations. These aver-
aged values of Δ𝜎2

r are shown in Figure 10 as functions of
the lead time. The results are shown for the case when only
one level of lidar observations is available (Figure 10a,b)
and when all five levels are available (Figure 10c,d). As
expected, five observed levels give better results, that is,
more negative Δ𝜎2

r in comparison with one level avail-
able. As was discussed in Section 3.1, the analyzed period
is characterized by distinct weather patterns. In addi-
tion, the analyzed cases include both day and night-time
forecasts. We see that the estimated benefit varies
substantially depending on the atmospheric situation and
whether the u or v component of the wind is chosen as
the forecast metric. In the most beneficial case, the same
number of lidars provides roughly twice the benefit as in
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F I G U R E 9 Dependence of Δ𝜎2
r on the number of Doppler lidars in the network. Calculations are made for Δ𝜎2 averaged over all 16

cases. The forecast metrics are the (a) u-component and (b) v-component of 80-m wind. The blue, orange, and green lines correspond to the
assimilation of data from a different number of Doppler lidars and 95 SYNOP observations. The SYNOP value on the x-axis corresponds to
only 95 SYNOP stations assimilated. Lidar observations are available at one (blue line), three (orange line), and five (green line) levels. The
solid lines show the mean over 50 repetitions. The shaded areas depict 25th and 75th percentiles [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 Dependence ofΔ𝜎2
r on the lead time. The forecast metrics are the (a,c) u-component and (b,d) v-component of 80-m wind.

The assimilation is performed for simulated data from 25 Doppler lidars and 95 SYNOP stations. Lidar observations are available at (a,b) one
and (c,d) five levels. Gray lines correspond to values of Δ𝜎2

r averaged over the 50 repetitions for a single case. The thick green and black lines
show Δ𝜎2

r averaged over all 16 cases for 1 and 5 available levels, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

the weakest case. In all forecasts, the estimated benefit
decreases as lead time increases from 1 to 3 hr, although
the slope is again forecast-dependent. A deeper analysis on
how the synoptic situation effectsΔ𝜎2

r is outside the scope
of this article.

5.3 Vertical extent of the Doppler lidar
measurements

This section shows results on the impact of a potential
Doppler lidar network depending on the vertical extent
of the Doppler lidar measurements. The vertical wind
profiles from Doppler lidars can be influenced by the pres-
ence of hydrometeors—for example, fog, low-level liquid
clouds, and precipitation—and therefore lead to different
impacts on the low-level wind forecast. Figure 11 sum-
marizes the impact of assimilation of SYNOP stations
and 25 Doppler lidars with different vertical extents of
Doppler lidar measurement on Δ𝜎2

r relative to assimila-
tion of SYNOP stations only. The figure displays values of
Δ𝜎2

r averaged over all 16 available cases. The results show
that the assimilation of only 95 SYNOP stations (dashed
black lines in Figure 11) yields on average 18–20% and
8–10%Δ𝜎2

r for 1- and 3-hr lead times, respectively. An addi-
tional network of 25 Doppler lidars improves these values,
although the exact improvement depends on the num-
ber of observed levels. When only one level is observed
(green solid lines in Figure 11) by all Doppler lidars, the
improvement is a factor of 1.6 for 1-hr lead time. When
three levels are available, that is, Doppler lidars profile the
wind up to 1 km, the improvement is a factor of 2.3 for
the 1-hr lead time. When wind profiles from 80 m to 1 km
have been assimilated, the assimilation of wind profiles
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F I G U R E 11 Dependence of Δ𝜎2
r averaged over all 16

available cases on the lead time. The forecast metrics are the (a)
u-component and (b) v-component of 80-m wind. The assimilation
is performed for simulated data from 95 SYNOP stations only
(dashed black lines), and for 25 Doppler lidars in addition to the 95
SYNOP stations (other lines). Lidar observations are available at
one (green lines), two (orange lines), three (blue lines), four (red
dotted lines), and five (solid black lines) levels [Colour figure can be
viewed at wileyonlinelibrary.com]

from 1–3 km does not improve Δ𝜎2
r considerably on aver-

age. These results reveal that wind profiles up to 1 km are
essential for the low-level wind forecast.

5.4 Lead time

We investigated the impact of a Doppler lidar network
for forecasts up to 3 hr. The absolute impact decreases
with lead time and has approximately halved after a
3-hr forecast compared with analysis time, depending on
the number of observed levels (Figure 11). Our results
indicate that the impact of Doppler lidars is longer-lasting
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compared with SYNOP observations, given the relative
benefit of lidars with respect to SYNOP only. For instance,
Figure 11 shows that for 1-hr lead time the improvement
relative to the assimilation of only surface wind observa-
tions is a factor of 1.6 and 2.3 when the Doppler lidar
data are assimilated with vertical measurement extent
up to 80 m and 1 km, respectively. For 3-hr lead time,
the improvement from assimilation of Doppler lidars
increases to 2 and 2.7–3.3 for Doppler wind profiles up
to 1 and 3 km, respectively. This result indicates that
Doppler wind profiles are more beneficial than surface
observations and the efficiency of assimilation of Doppler
lidars is increasing with lead time. Especially notewor-
thy in this regard is that, while the fifth lidar level adds
no additional benefit initially, its contribution grows with
lead time. In contrast, while the benefit of the lower
three lidar levels is greater, their contributions decrease
with lead time.

6 SUMMARY AND OUTLOOK

The main focus of our study is to estimate the impact of
a hypothetical network of Doppler lidars on short-term
forecasts of low-level wind in the RRA (Rhein–Ruhr area
in the west of Germany). For this purpose, we developed
and applied a new approach for ESA (Ensemble Sensitivity
Analysis) that calculates the analysis variance reduction
due to the assimilation of additional observations and its
sensitivity to a forecast metric explicitly. In contrast to
preceding methods, our approach accounts correctly for
localization in the assimilation system without the need
to prescribe the signal propagation of observation impact
over time (in-depth analysis in Griewank et al., 2022). This
new method provides a very efficient approach for network
design studies compared with computationally expensive
Observing System Simulation Experiments (OSSEs) that
require a complete model simulation for every potential
configuration (Privé et al., 2021).

Our study is conducted using output from an existing
1,000-member ensemble simulation (Necker et al., 2020a).
In total, we analyzed 16 forecasts of zonal and meridional
wind on eight days during summer 2016. The benefit of
assimilating hypothetical observations is characterized by
the variance change Δ𝜎2

r relative to the original variance
of the forecast metric before any assimilation. The benefit
of additional Doppler lidar data is evaluated relative to the
assimilation of surface-based wind sensor data assimilated
operationally by the German weather service. The bene-
fit is estimated for different potential networks of Doppler
lidars randomly installed in the RRA. Results are discussed
for u and v components of the 80-m wind averaged over the
RRA. The main conclusions of our study are the following.

1. Network density: Our results indicate that, for the
low-level wind in the RRA (∼ 210 × 142 km2), a net-
work of 20–30 lidars is reasonable in the cost–benefit
sense. Adding additional instruments to the network,
in general, gives less improvement per instrument. For
our study, we selected 25 instruments as a realistically
achievable network. Such a network corresponds to
installing a Doppler lidar at every fourth SYNOP site in
our domain.

2. Situation dependence: The estimated value of the
variance change Δ𝜎2

r varies by roughly a factor of two
over the 16 separate forecasts in the summertime con-
vective period analyzed.

3. Vertical extent of the Doppler lidar measure-
ments: The exact benefit depends strongly on the pene-
tration depth of the Doppler lidars, which is affected by
the presence of hydrometeors. For example, low-level
liquid clouds, fog, and precipitation can reduce the
vertical measurement extent. Single-level lidar observa-
tions at 80-m height have an estimated benefit that is
1.6–2 times larger than that of the surface wind obser-
vations. The benefit of observing three levels up to 1-km
height is 2.3–3.3 larger than that of the surface observa-
tions. Wind observations above 1-km height do not con-
tribute considerably to further improvement, but their
contribution grows with lead time. This result indicates
that, for areas with frequent events of fog, low-level
liquid clouds, and precipitation, scanning cloud radars
and/or wind profilers could be beneficial to improve
short-term low-level wind forecasts further.

4. Lead time: The estimated benefit of additionally
assimilating wind profiles grows slightly with lead time
compared with assimilating SYNOP only. For instance,
for 1-hr lead time, the improvement relative to the
assimilation of only surface wind observations is a fac-
tor of 2.3 when 1-km profiles from the Doppler lidars
are assimilated. The improvement increases to 2.7–3.3
for 3-hr lead time.

5. Sensitivity studies: We conducted sensitivity studies
to confirm that our approach behaves as expected in
regard to observation errors, localization length scales,
lead times, and number of observations. As results
depend strongly on the chosen observation error and
localization length scale, it is important to choose real-
istic values that mirror the operational modelling sys-
tem of interest to achieve reliable impact estimates.

6. Regularized ensemble sensitivity: Our method
relies on a regularized multivariate ensemble
sensitivity, which requires us to choose the regular-
ization coefficient 𝛼. Overregularization suppresses
sensitivities, while underregularization leads to
extremely unrealistic and noisy sensitivities. We tested
a range of regularization coefficients to find a suitable
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value for our experimental setup. For a fixed value
of 𝛼 = 3, the resulting sensitivities fulfil theoretical
expectations for all lead times.

Our results show that Doppler lidars provide consider-
able potential to improve low-level wind forecasts at the
hub heights of wind turbines (80 m), essential for sus-
tainable energy applications. In addition to energy appli-
cations, as was shown in other studies, Doppler wind
lidars can also improve predictions during the early evo-
lution of severe weather (Coniglio et al., 2019). While it
is virtually impossible to predict precisely how much real
observations would benefit an operational NWP system,
due to biases, system complexity, and nonlinear interac-
tions, our results emphasize further that Doppler lidars
should be considered as an important component of future
observational networks.

Future studies should extend similar investigations to
longer periods to capture different weather situations and
possible seasonal effects. In addition, it is possible to use
the same approach for different forecast metrics or dif-
ferent ground-based instrumentation. An aspect that was
beyond the scope of this study is the question of what
minimum ensemble size would be required to guarantee
reliable ensemble sensitivities. The 1,000-member ensem-
ble applied mitigates the issue of sampling errors in ESA
as shown by Necker et al. (2020a). If no large ensemble
is available, a time-lagged ensemble or a climatology of
forecasts (Hakim et al., 2020; Tardif et al., 2021) could
allow a sufficient sample size to be obtained. A statistical
sampling-error correction could help to mitigate sampling
errors further when relying on smaller ensembles (Necker
et al., 2020b). Finally, this work has so far only analyzed
the RRA located in the western part of Germany. The work
can potentially be extended to more geographical regions,
especially those having a high potential for wind-farm
installations.

AUTHOR CONTRIBUTIONS
Tatiana Nomokonova: conceptualization; formal
analysis; methodology; software; visualization; writ-
ing – original draft; writing – review and editing.
Philipp J. Griewank: conceptualization; methodology;
writing – review and editing. Ulrich Löhnert: concep-
tualization; supervision; writing – review and editing.
Takemasa Miyoshi: writing – review and editing. Tobias
Necker: conceptualization; data curation; methodology;
writing – review and editing. Martin Weissmann:
conceptualization; supervision; writing – review and
editing.

ACKNOWLEDGEMENTS
This work has been carried out within and funded by the
Hans-Ertel-Centre for Weather Research funded by the
German Federal Ministry for Transportation and Digital
Infrastructure (Grant number BMVI/DWD 4818DWD5B).
The ideas of this research have been inspired by the
WWRP Working group DAOS (“Data Assimilation and
Observing Systems”) and CPEX-LAB (Cloud and Precip-
itation Exploration Laboratory within the Geoverbund
ABC/J, http://www.cpex-lab.de). Collaborative efforts for
this research have been supported through the EU COST
Action CA18235 “PROBE” (European Cooperation in Sci-
ence and Technology), funding agency for research and
innovation networks (http://www.cost.eu). We acknowl-
edge RIKEN for providing the SCALE-RM model data
used in this study. We thank Elisabeth Bauernschubert
from Deutscher Wetterdienst for providing us with the
coordinates of the SYNOP stations used operationally for
data assimilation. We appreciate Lukas Schmidt, who
provided data of wind-power plants in Germany using
the open code (https://github.com/OpenEnergyPlatform/
open-MaStR) to scrap the data from the “Marktstamm-
datenregister” (MaStR). The ensemble data were postpro-
cessed using the open-source project and Python pack-
age “xarray” (Hoyer and Hamman, 2017). We are grate-
ful to the reviewers for their constructive suggestions,
which helped to improve the article. Open Access funding
enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT
Code and output data are available on Zenodo
(Nomokonova et al., 2022, https://doi.org/10.5281/
zenodo.6331758).

ORCID
Tatiana Nomokonova https://orcid.org/0000-0002-
8086-1403
Philipp J. Griewank https://orcid.org/0000-0003-0906-
3553
Ulrich Löhnert https://orcid.org/0000-0002-9023-0269
Takemasa Miyoshi https://orcid.org/0000-0003-3160-
2525
Tobias Necker https://orcid.org/0000-0002-7484-3372
Martin Weissmann https://orcid.org/0000-0003-4073-
1791

REFERENCES
Ahsbahs, T., Badger, M., Volker, P., Hansen, K.S. and Hasager, C.B.

(2018) Applications of satellite winds for the offshore wind farm
site anholt. Wind Energy Science, 3, 573–588.

http://www.cpex-lab.de
http://www.cost.eu
https://github.com/OpenEnergyPlatform/open-MaStR
https://github.com/OpenEnergyPlatform/open-MaStR
https://doi.org/10.5281/zenodo.6331758
https://doi.org/10.5281/zenodo.6331758
https://orcid.org/0000-0002-8086-1403
https://orcid.org/0000-0002-8086-1403
https://orcid.org/0000-0002-8086-1403
https://orcid.org/0000-0003-0906-3553
https://orcid.org/0000-0003-0906-3553
https://orcid.org/0000-0003-0906-3553
https://orcid.org/0000-0002-9023-0269
https://orcid.org/0000-0002-9023-0269
https://orcid.org/0000-0003-3160-2525
https://orcid.org/0000-0003-3160-2525
https://orcid.org/0000-0003-3160-2525
https://orcid.org/0000-0002-7484-3372
https://orcid.org/0000-0002-7484-3372
https://orcid.org/0000-0003-4073-1791
https://orcid.org/0000-0003-4073-1791
https://orcid.org/0000-0003-4073-1791


NOMOKONOVA et al. 209

Ancell, B. and Hakim, G.J. (2007) Comparing adjoint- and
ensemble-sensitivity analysis with applications to observation
targeting. Monthly Weather Review, 135, 4117.

Bishop, C.H., Etherton, B.J. and Majumdar, S.J. (2001) Adaptive
sampling with the ensemble transform Kalman filter. Part I:
Theoretical aspects. Monthly Weather Review, 129, 420–436.

Browning, K.A. and Wexler, R. (1968) The determination of kine-
matic properties of a wind field using Doppler radar. Journal of
Applied Meteorology and Climatology, 7, 105–113.

Buizza, R. and Richardson, D. (2017) 25 years of ensemble forecast-
ing at ECMWF. ECMWF Newsletter, 153, 20–31. Accessed Jan-
uary 5, 2022. https://www.ecmwf.int/sites/default/files/elibrary/
2017/18198-25-years-ensemble-forecasting-ecmwf.pdf

Coniglio, M.C., Romine, G.S., Turner, D.D. and Torn, R.D. (2019)
Impacts of targeted AERI and Doppler lidar wind retrievals on
short-term forecasts of the initiation and early evolution of thun-
derstorms. Monthly Weather Review, 147, 1149–1170.

Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005a) Diagnosis of
observation, background and analysis-error statistics in observa-
tion space. Quarterly Journal of the Royal Meteorological Society,
131, 3385–3396.

Desroziers, G., Brousseau, P. and Chapnik, B. (2005b) Use of random-
ization to diagnose the impact of observations on analyses and
forecasts. Quarterly Journal of the Royal Meteorological Society,
131, 2821–2837.

Finn, T.S., Geppert, G. and Ament, F. (2020) Towards assimilation of
wind profile observations in the atmospheric boundary layer with
a sub-kilometre-scale ensemble data assimilation system. Tellus
A: Dynamic Meteorology and Oceanography, 72, 1–14.

Frehlich, R. (2013) Scanning Doppler lidar for input into short-term
wind power forecasts. Journal of Atmospheric and Oceanic Tech-
nology, 30, 230–244.

Gaspari, G. and Cohn, S.E. (1999) Construction of correlation func-
tions in two and three dimensions. Quarterly Journal of the Royal
Meteorological Society, 125, 723–757.

Gasperoni, N.A. and Wang, X. (2015) Adaptive localization for the
ensemble-based observation impact estimate using regression
confidence factors. Monthly Weather Review, 143, 1981–2000.

Gombos, D. and Hansen, J.A. (2008) Potential vorticity regression
and its relationship to dynamical piecewise inversion. Monthly
Weather Review, 136, 2668–2682.

Gonzalez-Salazar, M.A., Kirsten, T. and Prchlik, L. (2018) Review
of the operational flexibility and emissions of gas- and coal-fired
power plants in a future with growing renewables. Renewable and
Sustainable Energy Reviews, 82, 1497–1513.

Gottschall, J., Gribben, B., Stein, D. and Würth, I. (2017) Floating
lidar as an advanced offshore wind speed measurement tech-
nique: current technology status and gap analysis in regard to full
maturity. WIREs Energy and Environment, 6, e250.

Griewank, P., Weissmann, M., Necker, T., Nomokonova, T. and Löhn-
ert, U. (2022) Ensemble-based estimates of the impact of potential
observations. Quarterly Journal of the Royal Meteorological Soci-
ety. Submitted.

de Haan, S. (2011) High-resolution wind and temperature observa-
tions from aircraft tracked by mode-s air traffic control radar.
Journal of Geophysical Research: Atmospheres, 116, D10111.

Hacker, J.P. and Lei, L. (2015) Multivariate ensemble sensitivity with
localization. Monthly Weather Review, 143, 2013–2027.

Hakim, G.J., Bumbaco, K.A., Tardif, R. and Powers, J.G. (2020)
Optimal network design applied to monitoring and forecasting

surface temperature in Antarctica. Monthly Weather Review, 148,
857–873.

Hirth, B.D., Schroeder, J.L. and Guynes, J.G. (2017) Diurnal evolu-
tion of wind structure and data availability measured by the DOE
prototype radar system. Journal of Physics: Conference Series, 926,
012003.

Hodyss, D. and Nichols, N. (2015) The error of representation: basic
understanding. Tellus A: Dynamic Meteorology and Oceanogra-
phy, 67, 24822.

Hoerl, A.E. and Kennard, R.W. (1970) Ridge regression: applications
to nonorthogonal problems. Technometrics, 12, 69–82.

Houtekamer, P.L. and Zhang, F. (2016) Review of the ensemble
Kalman filter for atmospheric data assimilation. Monthly Weather
Review, 144, 4489–4532.

Hoyer, S. and Hamman, J. (2017) xarray: N-D labeled arrays and
datasets in Python. Journal of Open Research Software, 5(1), 10.

Hristova-Veleva, S., Zhang, S.Q., Turk, F.J., Haddad, Z.S. and Sawaya,
R.C. (2021) Assimilation of DAWN Doppler wind lidar data dur-
ing the 2017 convective processes experiment (CPEX): impact
on precipitation and flow structure. Atmospheric Measurement
Techniques, 14, 3333–3350.

Hunt, B., Kostelich, E. and Szunyogh, I. (2007) Efficient data
assimilation for spatiotemporal chaos: a local ensemble trans-
form Kalman filter. Physica D: Nonlinear Phenomena, 230,
112–126.

Jacques, D. and Zawadzki, I. (2015) The impacts of representing the
correlation of errors in radar data assimilation. Part II: Model
output as background estimates. Monthly Weather Review, 143,
2637–2656.
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