
1. Introduction
The Central Andes is a natural laboratory to study tectonics and geodynamics processes. Although the subduc-
tion of the Nazca oceanic plate below the South American plate has been ongoing since at least ∼200 Ma, most 
of the Andean orogen formed in the last ∼15 Ma (Oncken et al., 2006, 2012). This unusually short growth time 
is recorded by shortening rates using various geological methods that constrained fault activities (Anderson 
et al., 2018; Oncken et al., 2006, 2012). The Central Andes hosts the second largest plateau in the world, the 
Altiplano-Puna plateau, which is on average ∼4 km high and extends over an area of 500,000 km 2 (Figures 1a 
and 1b). A few different mechanisms are thought to have contributed to the shortening of the Central Andes at 
the Altiplano latitude (∼21°S):

•  The westward absolute motion of the South American plate (∼2 cm/yr) provides the main shortening force 
(Husson et al., 2012; Martinod et al., 2010; Silver et al., 1998; Sobolev & Babeyko, 2005), where the relative 
velocity between the trench and the plate determines the tectonic stress regime (Funiciello et al., 2008; Holt 
et al., 2015; Lallemand et al., 2005, 2008). Slower trench migration as a consequence of the slab anchoring in 
the lower mantle over the last ∼40 Ma (Faccenna et al., 2017; Schepers et al., 2017) is argued to have initiated 
the shortening in the Central Andes.

•  A high interplate friction coefficient of ∼0.05–0.07 due to the low supply of sediments at the trench promotes 
the stress transfer from the slab to the overriding plate, accelerating the shortening (e.g., Brizzi et al., 2020; 
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including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within 
the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling 
we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the 
changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab 
segment which results in a slowing down of the trench retreat and subsequent increase in shortening of 
the advancing South America plate. This steepening first happens after the end of the flat slab episode at 
∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that 
mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance 
the intensity of the shortening events. These processes include delamination of the mantle lithosphere and 
weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the 
deformation from geological data in the Central Andes at the Altiplano latitude.

Plain Language Summary The Central Andes is a subduction-type orogeny that formed as a result 
of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 
million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, “geological” data 
compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. 
In this study, we used high-resolution 2D numerical geodynamic simulations to investigate the link between 
oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens 
in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental 
plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile 
shortening phases of a magnitude equivalent to that suggested by the data.
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Cosentino et  al.,  2018; Gerbault et  al.,  2009; Heuret et  al.,  2012; Horton,  2018; Lamb & Davis,  2003; 
Muldashev & Sobolev, 2020; Sobolev & Babeyko, 2005; Sobolev et al., 2006; Tan et al., 2012).

•  Weakening of the continental lithosphere that results from the eclogitization of the mafic lower crust 
(Babeyko et al., 2006; Sobolev & Babeyko, 1994) and the delamination of the lithospheric mantle (Babeyko 
& Sobolev, 2005; Beck & Zandt, 2002; Beck et al., 2015; Kay & Kay, 1993; Sobolev & Babeyko, 2005) helps 
strain localization and thereby increases the amount of shortening. The crust is eventually exposed to the 
hotter asthenosphere, leading to an increased basal heat flow. This increased heat flow could lead to strong 
partial melting of the thermally weakened crust (up to ∼20%, Haberland et al., 2003; Hamza et al., 2005; 
Schurr et al., 2003), which may weaken it further.

•  Weak sediments in the foreland help initiate simple shear shortening characterized by underthrusting 
of the Brazilian Cratonic shield (Allmendinger & Gubbels,  1996; Allmendinger et  al.,  1997; Babeyko & 
Sobolev, 2005; Gao et al., 2021; Gimbiagi et al., 2022; Kley et al., 1999; Liu et al., 2022).

•  The passage of the flat slab at ∼30–35 Ma (∼21°S; Bello-González et al., 2018; Yáñez et al., 2001) may 
have contributed to the weakening of the continental lithosphere and the acceleration of Andean shortening 
by scraping and bulldozing the continental sublithospheric mantle (Gutscher, 2018; Horton, 2018; Jordan 
et al., 1984; Liu & Currie, 2016; Ramos & Folguera, 2009).

Despite the multitude of proposed shortening mechanisms, none adequately explains the evolution and variability 
of the deformation in the Central Andes during the last ∼35 Ma (Figure 1c). However, the resolution of the short-
ening rate compilation (<5 Ma) from Oncken et al. (2006, 2012, Figure 1c) offers a solid base to investigate this 
problem through geodynamic models. Although the data may carry intrinsic uncertainties from using different 
measurement methods, it shows a systematic consistency in shortening amplitudes across time and latitude.

Shortening rates along the Altiplano section at 21°S are the most temporally resolved and suggest four different 
phases of deformation in the last ∼50 Ma (Figure 1c). Between ∼50 and 33 Ma (Phase 1), the shortening rate 
linearly increased from 0 to ∼3.5 mm/yr before escalating at ∼33 Ma to ∼8 mm/yr. From ∼33 to 15 Ma (Phase 2), 
the shortening rate stagnates in a range between ∼4 and ∼7 mm/yr. From ∼15 to 7 Ma (Phase 3) the shortening 
rate pulsed, reaching a maximum of ∼11 mm/yr before dropping to ∼5 mm/yr. Following this, a second pulse 
occurred from ∼7 Ma to present (Phase 4) that reached a maximum value of ∼16 mm/yr before dropping to the 
∼8 mm/yr seen from present day GPS velocities (Bevis et al., 2001; Klotz et al., 2006).

Utilizing high-resolution geodynamic models, with buoyancy-driven subduction, and validating them through 
geological shortening data from the Central Andes, this study proposes a new mechanism associated with slab 
steepening due to buckling events. This mechanism provides an explanation for the variability of the shortening 
rate. The models additionally address the decline in deformation intensity between 7 and 4 Ma to present-day 
levels. Our results suggest that a complex interaction between the oceanic and continental plates controls the 
timing and variability of the deformation in the Central Andes since the Oligocene.

2. Method
2.1. Governing Equations

We use the geodynamic finite element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, 
Bangerth et al., 2021; Heister et al., 2017; Kronbichler et al., 2012; Rose et al., 2017) to setup a 2D subduction 
model. The model solves three conservation equations for the momentum (1), mass (2), and energy (3), as well 
as the advection and reaction Equation 4 for the different compositional fields. The energy equation includes the 
radiogenic heating, shear heating, and adiabatic heating.

−∇ ⋅ (2𝜂𝜂 𝜂𝜂𝜂) + ∇𝑝𝑝 = 𝜌𝜌𝜌𝜌𝜌 (1)

∇ ⋅ 𝒖𝒖 = 0, (2)

_ρ𝐶𝐶𝐶𝐶

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝒖𝒖 ⋅ ∇𝜕𝜕

)

− ∇ ⋅ 𝑘𝑘∇𝜕𝜕 = _ρ𝐻𝐻 + (2𝜂𝜂 𝜂𝜂𝜂) ∶ 𝜂𝜂𝜂 − 𝛼𝛼𝜕𝜕 𝒖𝒖 ⋅ 𝑔𝑔𝑔 (3)

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝒖𝒖 ⋅ ∇𝜕𝜕𝜕𝜕 = 𝑞𝑞𝜕𝜕𝑞 (4)
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with the deviatoric strain rate tensor �́ = 1
2
(∇� + (∇�)�, the velocity field 𝐴𝐴 𝒖𝒖 = 𝑢𝑢(𝑥𝑥⃗, 𝑡𝑡) , the pressure 𝐴𝐴 𝐴𝐴 = 𝐴𝐴(𝑥𝑥⃗, 𝑡𝑡) , 

the temperature 𝐴𝐴 𝐴𝐴 = 𝐴𝐴 (𝑥𝑥⃗, 𝑡𝑡) , Cp the heat capacity, ρ the density, ϼ the reference density, k the conductivity, α the 
thermal expansivity, H the radiogenic heat production, η the viscosity, t the time, ci the composition, and qi  the 
reaction rate.

Although the model is incompressible, we adopt the equation of state of Murnaghan (Equation  5) 
(Murnaghan, 1944) to simulate realistic phase transformations that require a temperature and pressure dependent 
compressible density formulation. Previous studies have shown compressibility to have a small effect on mass 
conservation for subduction models, suggesting that it can likely be neglected (Fraters, 2014).

�� = �refi
(

1 +
(

� −
(

��
��

)

(� − Tref )
)

����
)1∕��

, (5)

where �� is the final density and �refi is the reference density for each composition at surface pressures and a 
surface temperature of 20°C (Tref), 𝐴𝐴 𝐴𝐴𝐴𝐴 is the thermal expansivity, 𝐴𝐴 𝐴𝐴𝐴𝐴 is the isothermal compressibility, and 𝐴𝐴 𝐴𝐴𝐴𝐴 is 
the isothermal bulk modulus pressure derivatives.

2.1.1. Rheology

Material in the model has a visco-plastic rheology (Glerum et al., 2018). The viscous regime is handled using a 
harmonic average of the contribution of dislocation and diffusion creep (Equation 6), whereas the plastic regime 
uses the Drucker-Prager criterion when the viscous stress exceeds the yield stress (Equation 7).

𝜂𝜂dif f |disl = 0.5𝐴𝐴
(−1∕n)

dif f |disl
𝑑𝑑𝑚𝑚�́�𝜀

(1.−𝑛𝑛)∕𝑛𝑛

e exp

(

𝑄𝑄dif f |disl + 𝑃𝑃 .𝑃𝑃dif f |disl

𝑛𝑛𝑛𝑛𝑛𝑛

)

, (6)

where A is the prefactor rescaled from uniaxial experiment, n is the stress exponent, d and m are the grain size and 
grain size exponent, 𝐴𝐴 𝐴𝐴𝐴e  is the square root of deviatoric strain rate, Q is the energy of activation, V is the volume 

Figure 1. (a) Structural map of the Central Andes (modified from Oncken et al., 2006), overlain with the extent of the active magmatic arc (red) and the foreland areas 
with thin-skinned (yellow) and thick-skinned (light-blue) deformation. Blue shaded areas indicate the neighboring flat-slab regions. White arrows show the present 
day absolute plate velocity (Becker et al., 2015). (b) Schematic tectonics of the Altiplano transect at 21°S (dashed rectangle in a), modified from Oncken et al. (2006) 
and Armijo et al. (2015). The question mark indicates an unclear presence of the lithosphere. (c) Estimated shortening rate evolution (Anderson et al., 2018; Oncken 
et al., 2006, 2012), volcanic activity (Trumbull et al., 2006), paleoelevations (Garzione et al., 2017), absolute velocity of the Nazca plate (Sdrolias & Müller, 2006), 
and perpendicular and parallel convergence velocity (Quiero et al., 2022). Blue squares indicate the margin of error of the estimated retroarc shortening rate (EC + SR, 
Anderson et al., 2018, modified from Quiero et al., 2022). WC: Western Cordillera; AP: Altiplano Plateau; EC: Eastern Cordillera; SR: Subandean Ranges.
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of activation, P the pressure, R the gas constant, and T is the temperature. Here n = 1 for the diffusion creep case 
and m = 0 for the dislocation creep case. The yield stress 𝐴𝐴 𝐴𝐴𝐴𝐴  is defined by Drucker-Prager law.

𝜎𝜎𝜎𝜎 = 𝐶𝐶 ⋅ cos(𝐹𝐹 ) + 𝑃𝑃 ⋅ sin(𝐹𝐹 ), (7)

where C is the cohesion, P the pressure, and F the internal friction angle in radian. We also included linear plas-
tic strain softening of the friction and cohesion that depends on the strain accumulation over time (Table S1 in 
Supporting Information S1). For example, in model M1, the internal friction angle of the upper crust decreases 
linearly from 30° to 6° between an accumulated plastic strain weakening interval of 0–1.5, while the weak fore-
land sediments decrease from 30° to 3° between 0 and 0.5.

The effective plastic viscosity is calculated by

𝜂𝜂 =
𝜎𝜎𝜎𝜎

2�́�𝜀
. (8)

2.2. Numerical Model Set Up

We split the model box into two sub-boxes; a 96 km thick (in depth) box that represents the lithosphere, and an 
804 km thick box that represents the sublithosphere mantle. This allows us to set more flexible independent side 
boundary conditions for each sub-box. For example, during the initialization we prescribe horizontal velocity to 
the lithosphere, the vertical velocity is stress free, whereas the initial lithostatic pressure is used to simulate an 
open side boundary in the sublithosphere mantle. The left border is fully open after initialization. The entire box 
is 2592 × 900 km, which gives an aspect ratio of ∼1:3 while the cells are square (Gerya et al., 2019). The adaptive 
mesh is refined based on the compositional fields and the magnitude of the strain rate. The asthenosphere mantle 
and the oceanic lithosphere mantle have a fixed resolution of 32 and 4 km, respectively. Surface topography 
is calculated using the ASPECT-Fastscape coupling (Bovy, 2021; Braun and Willet,  2013; Neuharth, Brune, 
Glerum, Heine, & Welford, 2021; Neuharth, Brune, Glerum, Morley, et al., 2021) using a very low diffusion 
coefficient (∼1e−6 m 2/year) simulating sluggish surface erosion in the central Andes.

In order to convert the model time (tmod) to a real time (treal) we assume that treal (Ma) = 38 – tmod(My). As such, 
after the initial flat slab stage (∼6.5 My) the model starting time corresponds to a treal value of 31.5 Ma (Figure 5). 
Subduction in the model is initiated by prescribing an oceanic plate velocity of 7 cm/yr in the first 6.5 My, which 
represents the plate velocity between 35 and 30 Ma (Sdrolias & Müller, 2006). After this no oceanic plate veloc-
ity is prescribed, and the oceanic plate freely sinks through the mantle due to slab pull. The trenchward velocity 
of the continental plate is set to 2 cm/yr, corresponding to the average overriding plate velocity during the last 
40 Ma. As gaps in the Andean volcanic activity at ∼30–35 Ma suggest a phase of flat slab subduction (Barazangi 
& Isacks, 1976; Isacks, 1988; James & Sacks, 1999; Ramos et al., 2002; Ramos & Folguera, 2009), we initialized 
the model with a flat-subduction stage (Figure 2a, Text S1 in Supporting Information S1). After initialization 
(Figure 2c), the flat slab segment is ∼250 km long at ∼100 km depth, similar to the current Pampean flat slab 
(Marot et al., 2014; Rodriguez Piceda et al., 2021). This initialization (see text in Figure S1 in Supporting Infor-
mation S1) is required in a 2D model to simulate change of buoyancy of the oceanic plate in the Central Andes 
linked to the southwards migration of the flat slab at ∼25 Ma (Bello-Gonzalez et al., 2018; Yañez et al., 2001). 
Note that alternative conceptual models also exist. For instance, Kay and Coira (2009) indicate that slab steep-
ening could have occurred at ∼16 Ma between ∼21 and 24°S based on the timing of the volcanic activity recon-
structed from the ignimbrite volume record. O'Driscoll et al.  (2012) and Martinod et al.  (2020) consider two 
episodic horizontal subduction events at ∼35 Ma and ∼15 Ma, respectively.

The geometry of the continental plate is based on structural reconstructions and crustal balance estimations 
during the Oligocene (Armijo et al., 2015; Hindle et al., 2005; Sobolev et al., 2006). For the shortening anal-
ysis, we differentiated two continental domains: the orogenic and the foreland with the thicker lithosphere of 
the Brazilian Shield margin. We used an oceanic lithospheric thickness consistent with a 40 My old (Maloney 
et al., 2013) plate near the trench (Turcotte et al., 2002). We assumed a conductive geotherm for the lithosphere 
and an adiabatic temperature profile for the asthenosphere (Figure 2b) and let the temperature re-equilibrates 
during the initialization phase.
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3. Generic Models
We have tried to incorporate the most important ingredients found in the literature to simulate the deforma-
tion of the Central Andes. In summary, five key ingredients are used to simulate plate interaction in Model 1 
(reference model). First, a high-resolution (1 km) visco-plastic subduction interface with a low effective friction 
coefficient (0.05) enables the brittle-ductile transition to occur at ∼45  km depth. Second, simulate the main 
phase transitions, Olivine-Wadsleyite-Ringwoodite-Post Spinel transitions for the asthenosphere and lithospheric 
mantle (Arredondo & Billen, 2016, 2017; Faccenda & Dal Zilio, 2017) and Gabbro-Eclogite-Stishovite phase 
transitions for the oceanic crust and continental lower crust to simulate eclogitization (e.g., green color gradient, 
Figures 4 and 6) and delamination. Third, the rapid weakening of foreland sediments (see Section 2 for details) 
to allow a transition from a thick-skinned to thin-skinned deformation style, and to initiate underthrusting of the 
Brazilian cratonic shield (Liu et al., 2022; Sobolev et al., 2006). Fourth, the prescribed trench-ward motion of 
the overriding plate velocity, which provides the main driving force for building the Andes (Husson et al., 2012; 
Martinod et al., 2010; Silver et al., 1998; Sobolev & Babeyko, 2005). Fifth, the flat slab subduction which helps to 
initiate the thermomechanical weakening of the overriding plate through scrapping of the sublithospheric mantle 
and its removal, exposing the continental crust to the warmer asthenosphere after steepening of the flat slab 
(Isacks, 1988; Liu & Currie, 2016). We ran nine alternative simulations to Model M1 (Table S2 in Supporting 
Information S1): (a) three models with variable interplate friction coefficient (0.015, 0.035, 0.06; model M2a-c, 
Figures 4b–4d, Movies S3–S5); (b) one model without eclogitization of the lower crust to illustrate its impor-
tance for weakening of the overriding plate and strain localization (model M3, Figure 4e, Movie S6); (c) one 
model to evaluate the importance of higher heat flow and lower crustal viscosity related to partial melting (model 
M4; Figure 4f, Movie S7); (d) two models demonstrating the role of weak foreland sediments (model M5a-b; 
Figures 4g and 4h, Movies S8 and S9); and (e) two models to illustrate the role of the overriding plate velocity 
(model M6a-b; Figures 4i and 4j, Movies S10 and S11). In addition, we provide a model without flat subduction 
(Figure S10 in Supporting Information S1, Movie S12, Text S2 in Supporting Information S1) where we illustrate 
its role; in this context we also discuss the resulting subduction velocity. In all models, we measured the balance 
between the rate of trench retreat (Vtr), which is positive when the trench migrates westwards, and the overriding 
plate shortening rate (Vsr), which includes the orogenic shortening rate (Vos) and the rate of underthrusting of 

Figure 2. Model setup. Tpot is the mantle potential temperature. (a) The initial state of the model. (b) The initial temperature (red lines) and yield strength envelops 
(dark lines) of the orogenic (solid lines) and foreland (dotted lines) domain. (c) Zoom-in on the area of plate interface during the initial flat slab subduction stage for all 
models at the beginning of the free subduction at ∼6.5 My.
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the Brazilian cratonic shield (Vund; Table S3 in Supporting Information S1). The orogenic shortening and the 
underthrusting rate are equivalent to the Interandean and Subandean shortening rate (Oncken et al., 2012, 2006, 
Figure 1c). All of these components contribute to accommodating the westward velocity of the overriding plate 
(Vop = Vos + Vund + Vtr). When the trench retreat rate is less than the overriding plate velocity, the shortening rate 
increases to maintain the balance. In this context, we refer to the trench as hindered or blocked.

3.1. Reference Model (M1)

After the initialization stage, subduction evolved dynamically from 7 to 11 My (Figure 3a). The slab steepens and 
accelerates, slowing down the seaward migrating trench as it retreats. Part of the continental mantle starts delami-
nating when plastic strain localizes over a main thrust fault in the top of the continental crust. During this period, 
the topographic uplift is limited to the central area or the orogenic domain (equivalent to the Altiplano plateau). 
At ∼10 My, the block of continental lithosphere consisting of eclogitized lower crust and mantle delaminates and 
sinks with the slab. At ∼10.5 My, the subduction velocity decreases as trench retreat reinitiates.

From ∼11 to ∼20 My (Figure 3b), relatively fast slab rollback continues as the slab sinks into the transition zone. 
At ∼18 My, the slab reaches the lower mantle but does not immediately penetrate into it, instead it is deflected 

Figure 3. Evolution of the subduction model M1. UPM, TZ, and LM are the upper mantle, transition zone, and lower mantle, respectively. Other acronyms defined 
in Figure 1. The small dark arrows indicate the direction of the velocity vectors. Bold arrows indicate the direction of the plate motion and white arrows indicate the 
direction of the main resistive forces due to slab stagnation in the transition zone. (a) The steepening of the slab is associated with the continental lithospheric mantle 
removal. (b) The slab freely sinks and flattens at lower mantle transition. (c) The slab buckles, the continent delaminates, the deformation migrates eastward, and the 
foreland underthrusts. (d) The slab buckles a second time and the foreland underthrusts. We also present evolution of the viscosity field in the model (Figure S11 in 
Supporting Information S1).
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Figure 4. Final state of the models at ∼38 Ma which is supposed to be equivalent to present day. (a) M1. (b) M2a. (c) M2b. 
(d) M2c. (e) M3. (f) M4. (g) M5a. (h) M5b. (i) M6a. (j) M6b. White line isotherms are for 400°C, 800°C, and 1,300°C.
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and slowly traverses horizontally along the 660-km phase transition bound-
ary. At ∼20  My, the slab buckles by folding twice to the west and to the 
east  at the transition zone as the trench continues to retreat.

At ∼23.5 My, the slab segment in the upper mantle steepens and halts trench 
retreat such that the trench no longer moves relative to the mantle. Simul-
taneously, subduction velocity increases, the previous thrust fault is reacti-
vated, the strain localizes in the eastern orogenic domain, and the lithospheric 
mantle successively delaminates in the east as the deformation intensifies 
and migrates east toward the foreland (Figure  3c). Underthrusting of the 
cratonic shield initiates at ∼26 My during the delamination period. The east-
ern domain uplifts from ∼20 to 24 My, then slightly subsides at ∼24 Ma.

From ∼25 to ∼31 My the topography significantly uplifts and approximately 
reaches elevations of the present day (Figures 1c and 6). At ∼29 My, active 
deformation in the foreland decreases and trench retreat reinitiates as the new 
slab segment reaches the lower mantle transition trenchward of the older 
and stalled slab segment. After this time, topography no longer significantly 
changes (Figure 5). At ∼30 My, the slab buckles a second time followed by 
another stage of hindered trench motion at ∼35 My (Figure 3d) as the slab 
steepens and accelerates. By ∼33.5 My, the cratonic shield has re-initiates 

underthrusting beneath the orogenic domain. At ∼37.5 My foreland deformation becomes less efficient and the 
mantle wedge starts to delaminate as trench retreat reinitiates. Overall, after 38 My the trench retreats ∼330 km, 
the orogen shortens ∼195 km. Because of underthrusting the foreland shortens by ∼105 km (Table S3 in Support-
ing Information S1, Figures 9a and 9b, Movie S2).

3.2. Models With Variable Interplate Frictions (M2a-c)

We ran three variations of the reference model M1 that has a friction coefficient at the subduction interface of 
0.05 (Figures 4b–4d, Movies S3–S5) where we varied the friction: 0.015 (model M2a), 0.035 (model M2b), 
and 0.06 (model M2c). The friction used in model M2a is thought to be similar to the Southern Andes (Sobolev 
et al., 2006), although the slab geometry and structure of the upper plate may vary latitudinally. Shortening in 
model M2a is ∼100 km, with most of the deformation being accommodated within the orogen. No underthrusting 
occurs in that model, suggesting that the deformation did not reach the foreland. With a friction of 0.035 (model 
M2b) the orogenic shortening increases (∼170 km), but once the deformation has migrated to the foreland, the 
shield underthrusts by ∼90 km at ∼29 My. Finally, with a higher friction (0.06) at the interface in model M2c, 
underthrusting of the shield occurs sooner ∼25 My and reaches ∼105 km. Initially, most of the shortening is 

Figure 5. Topographic evolution of the reference model, with deformation 
phase timings shown using dotted black lines, and key features of each phase 
are written in black. LV is for Longitudinal Valley. Other acronyms defined in 
Figure 1.

Figure 6. Two stages of delamination associated with different modes of shortening. (a) Stage 1: Asymmetric delamination, facilitated by the heating and pure shear 
thickening of the continental crust. (b) Stage 2: Delamination acceleration, accompanied by migration of the deformation to the foreland and initiation of the foreland 
underthrusting by simple shear shortening.
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accommodated by the orogen before it quickly migrates to the foreland. The models also suggest that lower fric-
tion at the interface results in higher oceanic plate velocities (Figure S2 in Supporting Information S1).

3.3. No Eclogitization Model (M3)

We ran one model (Figure 4e, Figure S7 in Supporting Information S1, Movie S6) without eclogitization of the 
lower crust to illustrate the importance of this process. As in the reference model, in the model without eclogi-
tization the slab steepens after the flat subduction stage, however, only a small block of the continental mantle 
is delaminated. Deformation does not efficiently localize as the plastic strain becomes distributed within the 
orogen. At ∼27.5 My, after the first buckling of the slab, the slab steepens, the orogen shortens, and deformation 
migrates to the foreland. Shortly after, the shield starts underthrusting as a result of the weakening of the foreland 
sediments. Underthrusting soon becomes inefficient, but after the second slab buckling (∼34 My), it reinitiates. 
After ∼38 My, the trench has retreated ∼455 km, the orogenic domain has shortened by only ∼110 km, and the 
total underthrusting is only ∼65 km.

3.4. High Heat Flow Model (M4)

The Central Andes hosts the largest magmatic body in the world (Perkins et al., 2016), and as such the surface heat 
flux is particularly high (>110 mW/m/K; Hamza et al., 2005; Schilling et al., 2006). This is partly due to partial 
melting of the crust (up to 20%) as suggested by the high Vp/Vs and high seismic attenuation detected in the area 
(Haberland et al., 2003; Hamza et al., 2005; Schurr et al., 2003). An increase of the degree of partial melting 
would result in lower viscosities (Dingwell et al., 1996; McKenzie & Bickle, 1988), and stimulate intra-crustal 
convection (Arndt et al., 1997; Babeyko et al., 2002). To evaluate the importance of lower viscosities related to 
partial melt, we ran a model (Figure 4f, Figure S7 in Supporting Information S1, Movie S7) where we increased 
the thermal conductivity of the upper crust by 1,000× and decreased its minimum viscosity to 2.5e18 Pas (vs. 
∼1e22 Pas in the reference model) when the temperature is greater than 1,000 K. In this model the orogenic 
shortening increases (∼280 vs. ∼195 km in the reference model), with the orogenic domain accommodating the 
majority of the shortening. Strain in the orogen strongly localizes onto a few faults and, thus, does not migrate to 
the foreland (Figure S7 in Supporting Information S1, Movie S7). As a result, the sediments do not accumulate 
enough plastic strain to weaken and underthrusting does not occur. Shortening rate after the first slab buckling 
cycle is more efficient than in the reference model and reaches ∼25 mm/yr. Compared to the reference model, the 
greater orogenic deformation results in a thicker orogen and higher surface heat fluxes (>120 mW/m; Figure S3 
in Supporting Information S1).

3.5. Foreland Sediments Strength (M5a-b)

Foreland sediments in the reference model (M1) have an internal friction angle of ∼3° and a cohesion of 1 MPa, 
thus an effective friction coefficient is ∼0.05. We ran two models in which we increased the internal friction 
angle and cohesion to 10° and 20 MPa (model M5a, Figure 4g, Movie S8) and 30° and 20 MPa (model M5b, 
Figure 4h, Movie S9). In both models, the model initially evolves like the reference model, but underthrusting 
is not significant, resulting in a lower accumulated shortening magnitude of ∼240 km (Figure S8 in Supporting 
Information S1).

3.6. Overriding Plate Velocity (M6a-b)

In the reference model, the overriding plate velocity is 2 cm/yr, which represents an average absolute motion 
orthogonal to the trench over the last 40 Ma. We ran two alternative models where the overriding plate velocity 
is 1 cm/yr (model M6a, Figure 4i, Movie S10) and 4 cm/yr (model M6b, Figure 4j, Movie S11). The M6a model 
results in a total shortening of ∼155 km and a retreat of the trench of ∼160 km (Figure S9 in Supporting Infor-
mation S1). The slab piles in the transition zone (Figure 4i); the orogenic domain shortens during the steepening 
of the flat slab and after its delamination during the last 7 Ma. In model M6b, the slab does not deform and is 
anchored to the lower mantle, the amplitude of shortening is ∼450 km and the trench retreat is ∼810 km; most of 
the shortening comes from early foreland underthrusting at ∼23 Ma which stops in the last ∼5 Ma.
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4. Discussion
Our results suggest that the timing of the shortening events is a direct consequence of the interaction between the 
buckling subducting plate and the weakened overriding plate. In the reference model, we distinguish four notable 
deformation phases that correspond in amplitude, timing, and space to the shortening rate from the geological 
compilation (Oncken et al., 2012). Overall, deformation migrates across the orogenic domain to the eastern fore-
land in four phases, illustrated in Figure 5.

Phase I: Central orogenic domain deformation (∼6.5–∼11 My): Plastic strain is localized in the center of the 
orogenic domain (e.g., Altiplano plateau) due to flat slab steepening and removal of the lithospheric mantle.

Phase II: Eastern Cordillera domain deformation (∼11–∼20 My): Distributed plastic strain slowly accumulates 
in the east. No significant deformation is observed in the continent due to efficient trench retreat.

Phase III: Deformation migrates from the Eastern Cordillera to the foreland domain (∼20–∼29 My): Strain 
intensifies in the Eastern Cordillera domain and migrates to the foreland. The delamination follows this migra-
tion. When the Brazilian Cratonic shield starts to underthrust below the orogeny, the delamination accelerates and 
the underthusting becomes more effective.

Phase IV: Foreland domain deformation (∼29–∼38 My): Underthrusting of the shield slows down. At ∼33.5 My, 
it re-accelerates until ∼35 My before decelerating until 38 My.

The compressive stress generated by the difference of velocity between the trench and the overriding plate is 
accommodated in one of two ways: (a) orogenic shortening and (b) underthrusting of the foreland. The effec-
tiveness of deformation localization depends on the strength of the overriding plate and the interplate coupling. 
Here, we discuss the key processes that affect the strength of the overriding plate, the subduction and deformation 
dynamics of the slab, and, finally, the interaction between the two plates.

4.1. Overriding Plate

4.1.1. Delamination

Extensive lithospheric delamination is known to have taken place under the Altiplano-Puna plateau (Beck 
& Zandt,  2002; Beck et  al.,  2015; Kay & Kay,  1993) and contributed to present-day elevations (Garzione 
et al., 2006, 2008, 2017; Wang et al., 2021). This process is thought to be the result of the eclogitization of the 
mafic lower crust and lithospheric mantle, which is facilitated by the hydration of the sub-lithosphere from the 
∼200 Ma subduction history that accelerates the metamorphic reaction (Babeyko et al., 2002, 2006). Additional-
ly,the thick (∼45 km) initial crust at ∼30 Ma results in a high lithostatic pressure in the lowermost crust (Armijo 
et al., 2015; Hindle et al., 2005; Sobolev et al., 2006). After eclogitization and delamination the crust warms up, 
which enhances the weakening of the overriding plate and leads to localized deformation and subsequent delam-
ination events. Model M3 demonstrates that delamination and shortening are inhibited without eclogitization 
(Figure 4). Whereas model M4 shows that, due to the faster crustal thickening accumulated by the weak crust, 
eclogitization and delamination are very effective when the orogenic domain is thermally weakened. In that latter 
case, the migration of the deformation to the foreland is not guarantee (Figure S7 in Supporting Information S1).

We observe two delamination stages after the first event caused by steepening of the flat slab in Phase I. First, 
the initial removal exposes the crust at the western edge that is directly in contact with the asthenosphere, thereby 
increasing its temperature and decreasing the viscosity at its base. As a result, the lower crust delaminates faster 
in the west, causing it to asymmetrically drip to the east (i.e., Stage 1 in Figure 6a). The pure shear deformation 
localizes in the orogenic domain until delamination is complete. Second, when the viscous deformation of the 
orogen connects with the plastic deformation of its foreland at 26 My, the foreland start underthrusting beneath 
the orogen due to the low effective friction of sediments. This results in orogenic thickening and a switch from 
pure shear to simple shear shortening. Consequently, deformation migrates to the east causing delamination 
to accelerate (Stage 2 in Figure  6b). We note that our model contrasts with the previous model of Sobolev 
et al. (2006) where the delaminating lithospheric mantle flowed toward the subduction wedge, and coupled with 
the sinking plate, increasing the shortening rate.
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4.1.2. Mechanical Weakening of the Foreland Sediments

The presence of weak foreland sediments in our model is the key factor in simulating the transition from pure 
shear deformation to simple shear deformation at ∼10 Ma in the Altiplano. Simple-shear shortening is associated 
with higher strain localization over fewer faults and the formation of deep low-angle detachments. In the foreland, 
these faults are situated near the base of the sedimentary cover and are characteristic of the thin-skinned tectonic 
style. Increased fluid pressure in the Paleozoic shale layers (Allmendinger & Gubbels, 1996), likely due to rapid 
deposition of foreland basin strata (Uba et al., 2009), at the front of the orogen, may have resulted in transient 
weakening and reduction of the effective coefficient of friction to ∼0.05 or less, initiating the underthrusting of 
the Brazilian cratonic shield (Babeyko & Sobolev, 2005; Babeyko et al., 2006).

In the reference model, underthrusting takes place in two stages. The first stage happens during hindered trench 
motion at ∼20.5 My, causing the deformation to migrate to the foreland. When the active brittle shear zone, from 
the failure of the foreland sediments, connects to the ductile shear zone accommodating the on-going delamina-
tion, underthrusting becomes more efficient. The delamination also facilitates the underthrusting of the Brazilian 
cratonic shield that meets less resistive forces. Underthrusting of the shield forces the middle and lower crust to 
flow and thicken forcing the topography to uplift, reaching present-day elevations of ∼4 km at ∼31 My (∼7 Ma 
ago). A second stage of underthrusting occurs in the last ∼4 My when the trench is again blocked, but the topog-
raphy does not change significantly (Figure 5).

4.2. Subducting Plate

While the westward motion of the South American plate provides the main force (Husson et al., 2012; Martinod 
et al., 2010) for the tectonic shortening, the magnitude of the compressive stress in the South American plate 
margin is determined by the resistance of the Nazca plate (i.e., by the ability of the trench to retreat; Funiciello 
et  al.,  2008; Holt et  al.,  2015; Lallemand et  al.,  2005,  2008). In the Central Andes, the trench has migrated 
west over the last ∼40 Ma as a result of the rollback and subsequent sinking of the bending slab in the astheno-
sphere, as well as the forced trench retreat from the excess velocity of the overriding plate (Schepers et al., 2017). 
Recent studies have proposed that the trench velocity can also be affected by deep subduction dynamics (Boutoux 
et  al., 2021; Briaud et  al., 2020; Faccenna et  al., 2017). In this section, we discuss the implications of these 
subduction dynamics.

4.2.1. Flat Slab Steepening

The cause of flat subduction is still debated. It likely results from the shallowing of the slab from long last-
ing subduction, as well as larger buoyancy related to the Juan Fernandez ridge (Schellart, 2020; Schellart & 
Strak, 2021) that has migrated to the south during the last ∼35 My (Figure 1; Bello-González et al., 2018; Yáñez 
et al., 2001). Others authors (Liu & Currie, 2016; Quinteros & Sobolev, 2013) suggested that slab break-off in 
the upper mantle could have further contributed to the slab flattening by decreasing the slab pull force. The flat-
tening of the slab could also be caused by an increase in asthenospheric pressure due to the proximity of a thick 
cratonic lithosphere (Manea et al., 2012, 2017; Pérez-Gussinyé et al., 2008).Most shortening in the Central Andes 
occurs after the passage of the ridge (Oncken et al., 2006, 2012), so in this study we focus on processes after 
the flattening event. Our models suggest that a flat slab at ∼100 km depth, analogous to the Pampean flat slab, 
could scrape the base of the lithosphere. Eventually at ∼7 My model time, the slab steepens and accelerates as the 
trench becomes blocked (Figure 7a). The continental mantle coupled to the flat slab segment blocks the corner 
and is pulled down and thus accommodates the deformation. When the lower continental crust eclogitizes, plastic 
strain localizes in the top portion of the crust. Slab steepening then accelerates due to the eclogitization of the 
oceanic crust and parts of the lithosphere are removed. This process of delamination is similar to the mechanism 
of “blocking of the subduction corner” of Sobolev et al. (2006) for which the increase in shortening rate results 
from the coupling between the delaminated lithosphere driven downward by the slab. According to our alterna-
tive model M7 (Figure S10 in Supporting Information S1) that has no flat slab, flat slab steepening plays a key 
role in triggering the initial weakening of the overriding plate, and is facilitated by lower-crustal eclogitization.

4.2.2. Buckling Instability Cycles

Slab buckling occurs when the oceanic plate subducts into the more viscous mantle transition zone or the lower 
mantle. The difference in velocity between the deeper slab segment relative to the new subducting segment, is 
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accommodated by slab deformation (Ribe et al., 2007). Previous studies have suggested that the lower mantle 
viscosity and the dip, age, thickness, and strength of the oceanic plate may affect the buckling periodicity and 
timing of slab stagnation in the transition zone, and additionally could be linked to periodic crustal deformation 
(Boutoux et al., 2021; Briaud et al., 2020; Capitanio et al., 2011, 2010; Cerpa et al., 2014; Čížková & Bina, 2013; 
Garel et al., 2014; Lee & King, 2011; Lyu et al., 2019; Marquardt & Miyagi, 2015; Quinteros & Sobolev, 2013; 
Quinteros et al., 2010; Ribe et al., 2007). Analyzing the variety of interchangeable parameters that affect the 
buckling process exceeds the scope of this study. Here, we first interpret the different stages of the buckling cycles 
and then propose that the westward velocity of the upper plate is a primary factor in controlling the subduction 
dynamics regime.

We identified two buckling cycles, at ∼20 My and at ∼30 My. Within each cycle, three main events are distin-
guished that may affect the trench migration rate:

1.  Slab impediment (Figure 7b) takes place when the slab meets viscous resistance. This is the case when the 
slab is impeded by the viscous lower mantle at the beginning of a buckling cycle (∼17 and ∼29.5 My), or 
before steepening. For instance, when the slab reaches the viscous lower mantle it does not immediately pene-
trate it. The first slab segment in contact with the lower mantle slows down and viscously resists the new, still 
sinking, segment. This difference of velocity between the two segments is accommodated through bending in 
the slab. During these slab impediment events the dip of the slab becomes shallower and the trench continues 
retreating. This mechanism differs from slab anchoring (Faccenna et al., 2017), in which the difference of 
velocity between the two segments is too small to cause the folding of the slab.

2.  Slab folding (Figure 7c) events occur when, after slab impediment, the slab dip flips in the transition zone. 
The now shallower slab dip enables the trench retreat, though no significant deformation is observed. Each 
buckling cycle consists of two folding events, each consisting of a syncline and an anticline at ∼20, 21 My 
and ∼30, 33 My, respectively.

3.  Slab steepening (Figure 7d) is a drastic event that occurs at the end of a buckling cycle after the second 
folding event (∼23.5 and ∼33.5 My). Chronologically, the sinking slab meets resistance from the last fold to 
the east (i.e., Impediment) and bends to the west as for the first folding event. However, the overriding plate 
has forced the trench to retreat during the previous events, which, prevents the slab from piling up. The slab 
continues to sink in the transition zone, steepens, and accelerates. The trench slows down and blocks the 
overriding plate that shortens to accommodate the ongoing deformation. When the trench is blocked, the hori-
zontal stress in the overriding plate can reach values of ∼350 MPa (Figure S1 in Supporting Information S1, 
movie S1), which exceeds the maximum strength of the crust (∼250 MPa, Figure 2) and causes it to shorten. 
Overall, slab shallowing is associated to periods of trench retreat related to the folding events, whereas slab 
steepening is associated to periods of hindered trench motion following folding events.

This chain of events occurs in a single subduction dynamics regime, primarily determined by the absolute motion 
of the overriding plate orthogonal to the trench. By comparing the subduction velocity to the trench velocity, we 

Figure 7. Subduction dynamics. Black triangle and circle indicate the position of the trench and the foreland edge, respectively. Colored circles indicate slab evolution 
in Figure 9. The small dark arrows indicate the direction of the velocity. Bold arrows indicate the main plate motion and white arrows indicate the direction of the main 
resistive forces due to slab stagnation in the transition zone. (a) Steepening and sinking of the flat slab leads to an increase of plate velocity and slows down the trench. 
(b) The slab front is impeded in the viscous lower mantle transition zone. (c) The stagnant slab folds, meanwhile the trench retreats. (d) The slab folds but the lack of 
obstacle leads to its steepening.
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can identify three regimes of subduction dynamics. In the first regime, the lower velocity of the overriding plate 
leads to the “piling” of the slab in the transition zone (Regime 1; Model M6a, Figures 4i and 8b and Figure S9 in 
Supporting Information S1). In the second regime, the trench episodically blocks due to “buckling and steepen-
ing” of the slab (Regime 2; Model M1, Figures 4a and 8a and Figure S10 in Supporting Information S1). In the 
third regime, the “anchoring” of the slab in the lower mantle and the high forced trench retreat prevent it from 
buckling (Regime 3; Model M6b, Figures 4j and 8c and Figure S9 in Supporting Information S1).

In all models, flat slab steepening occurs in a similar manner (i.e., Phase 1). However, westward migration of 
the trench (i.e., Phase 2) is associated with steady trench retreat for M1 and M6a, but not for M6b for which 
delamination began earlier. In the latter case, the velocity of the overriding plate is absorbed by the deformation 
of the orogenic domain, its early delamination, and the underthrusting of the foreland, as the craton no longer 
encounters resistance from the lithospheric mantle. The rates of shortening and of trench retreat further intensify 
when the slab becomes anchored in the mantle and the craton is blocked by the slab (Figure 8c and Figure S9 in 
Supporting Information S1). Both models M1 and M6a are characterized by slab folding, but the higher trench 

Figure 8. Detailed evolution of the velocity of the trench (VT) and the subduction (VSP) velocity every 500 ka for: (a) model M1 (VOP = 2 cm/yr), (b) M6a 
(VOP = 1 cm/yr), and (c) M6b (VOP = 4 cm/yr). Background colors correspond to the time interval of the defined shortening phases (see Section 4 for more details) 
also illustrated by geometric symbols. Symbols are filled by the shortening rate color gradient. Gray cross indicates the range of velocities calculated by Lallemand 
et al. (2008) for North Chile (NC) and Peru (P) using different reference frame NNR-NUVEL1A and HS3-NUVEL1A (NNR and HS3, Gripp & Gordon, 2002) and 
SB04 (Steinberger et al., 2004). The gray line is the regression (Lallemand et al., 2008) for which subduction zones at present day trend to align with using HS3.



Journal of Geophysical Research: Solid Earth

PONS ET AL.

10.1029/2022JB025229

14 of 21

Figure 9. Summary exposing the relation between continental plate deformation (a and b) and oceanic plate dynamics (b and c) for the reference model. Background 
colors indicate the shortening phases. Colored pills indicate the slab evolution stage as in Figure 7. (a) Smoothed shortening rate for the orogenic and foreland domain 
(see data acquisition and processing for details). (b) Cumulative shortening for the orogenic and foreland domain and cumulative trench retreat. Numbers indicate the 
shortening phases. (c) Velocity of the oceanic plate (black line) and trench migration rate (purple line). (d) Average slab dip for different depth intervals.
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retreat of M1 allows episodic slab steepening, resulting in trench blocking and a slight acceleration of the subduc-
tion rate. In contrast, in model M7 that we ran without a flat slab (Figure S10 in Supporting Information S1), no 
deformation happens implying that buckling and steepening occur independently. Nevertheless, the initial weak-
ening of the overriding plate caused by the passage of the flat slab is necessary to trigger the shortening. Thus, 
the strength of the orogenic domain is controlled by the timing and intensity of delamination, which plays a major 
role in transmitting the velocity of the overriding plate to the trench, and controls the timing of underthrusting. 
The trench velocity ultimately determines the regime of subduction dynamics. Given that westward movement 
of the overriding plate has decreased from 45 Ma (∼3 cm/yr) to the present day (∼1 cm/yr), we suggest that the 
Andean subduction regime may have changed from anchoring to buckling and steepening over the last ∼20 Ma.

4.3. Interaction Between Overriding and Subducting Plates

4.3.1. Interplate Coupling

Our models predict that an effective friction of 0.035–0.05 is required in the Central Andes to obtain significant 
deformation that is consistent with previous estimates (Sobolev & Babeyko, 2005; Sobolev et al., 2006). Higher 
friction values result in slightly slower subduction velocity (Figure S2 in Supporting Information S1) but more 
intense pulsatile shortening phases during slab steepening (Figure S6 in Supporting Information S1). The effec-
tive friction is dependent on the sediment thickness at the trench, which at present day may vary from ∼0.5 to 
∼2 km in the Central and Southern Andes, respectively (Lamb & Davis, 2003). This latitudinal variation results 
from the efficiency at which the surface processes supply sediments to the trench. In the last ∼6 Ma, glacial 
erosion supplied a large amount of sediments to Southern Andes trench. Whereas in the Central Andes, the 
internal drainage of the Altiplano-Puna plateau is related to low erosional rates that have contributed to sediment 
starvation at the trench (Lamb & Davis, 2003; Melnick & Echtler, 2006; Oncken et al., 2006). Hu et al. (2021) 
also show that the temporal variation of sediments included in subduction can lead to a temporal variation in the 
interplate coupling, suggesting that sediments can be a major contribution of the along-strike shortening magni-
tude and, thus, the onset of deformation.

4.3.2. Slab Buckling and Overriding Plate Interaction

The rapid growth of the Andes in the last ∼10 Ma (Figures 1c, Garzione et al., 2017) results from a sequence 
of events generated by plate interactions. While subduction dynamics exerts a major control on plunging plate 
deformation by blocking trench migration, the overriding plate strength ultimately controls where deformation 
localizes and forces the trench to retreat. In model M1, when the slab does not steepen, the trench is forced to 
retreat at the prescribed westwards velocity of the overriding plate, ∼2 cm/yr (M1, Figure 9c). Alternatively, in 
model M3 without lower crustal eclogitization, the slab steepens independently of the shortening of the stronger 
overriding plate and the velocity of the overriding plate is accommodated by the forced trench retreat (Figure S7 
in Supporting Information S1). This latter case indicates that the steepening is mostly controlled by slab strength 
and the slab buoyancy rather than the shortening of the overriding plate. The upper plate strength is evolving, 
first, with the passage of the flat slab that may have initially weakened the lithosphere through partial removal of 
the lithospheric mantle, and through thermal weakening related to crustal exposure near the hotter asthenosphere 
(Isacks, 1988), and second, by triggering the subsequent delamination (see previous section).

Pulsatile behavior in the deformation of the South American plate has been inferred from paleoelevation recon-
structions using stable isotope (Boschman, 2021; Garzione et al., 2008; Leier et al., 2013) and the magmatic activ-
ity (Decelles et al., 2009). We suggest that buckling instabilities in a subducting plate offer a plausible explanation 
in the variability and timing of the Nazca plate deformation during the last ∼20 Ma as well as the present-day 
deep seismicity distribution (Figure S4 in Supporting Information S1). We find that shortening rate pulses occur 
at the end of each buckling cycle when slab steepening inhibits trench retreat (Figures 9c and 9d), and that these 
pulses reproduce similar signals to what is seen in the geological data. When the slab steepens the forced trench 
retreat from the overriding plate is hindered and the horizontal stresses increase (Figure S1 in Supporting Infor-
mation S1; Movie S1), resulting in a shortening of the upper plate. Additionally, in the last ∼2 Ma the geological 
data shows a decrease in the shortening rate, which is also predicted by our model through underthrusting. At 
later stages, the trench retreat resumes and underthrusting loses its efficiency, which could indicate the beginning 
of a new buckling cycle. More recently, based on updated high-resolution convergence rate data orthogonal to 
the trench (Figures 1c), Quiero et al. (2002) show that there are some short-term variations over the last ∼30 Ma. 
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They attribute these variations to the delamination of the Central Andes (Quiero et al., 2022). The model M7 
with no flat slab suggests that these variations could represent pulses associated with deep subduction dynam-
ics, causing a periodic increase in subduction velocity (Figure S10 and Text S2 in Supporting Information S1). 
Nonetheless, in this model, no deformation occurs due to the lack of weakening of the overriding plate from the 
absence of the flat slab and the overriding plate remains strong, so trench retreat is therefore more effective and 
may delay the steepening of the slab, causing the last pulse to occur ∼3 Ma later (Figure S10d in Supporting 
Information S1). We also notice that the periods of steepening also correlate with flare-up of volcanic activity 
and greater volume of ignimbrites (Figure S1c in Supporting Information S1, Trumbull et al., 2006). Slab steep-
ening and lithospheric mantle delamination becomes more active when the trench is hindered, which can lead to 
(Figure 9a) an increase in the basal heat flow of the lithosphere and more intense volcanic activity (Section 4.1.1, 
Isacks, 1988; Kay & Coira, 2009).

Previous seismic tomography studies indicate two large negative seismic anomalies near the transition zone 
(at depths of 600 and 900 km) that are attributed to slab accumulations (Chen et  al., 2019; Liu et  al., 2003; 
Widiyantoro, 1997). The deeper accumulation may relate to a slab anchoring before (Faccenna et al., 2017, Figure 
S4 in Supporting Information S1), suggesting that previous accumulation cycles could have occurred before and 
have “avalanched” in the lower mantle (Briaud et al., 2020; Hu & Gurnis, 2020), wherein they may have become 
detached from the shallower slab. Indeed, the Peruvian phase from ∼110 to 70 Ma consisting of a rapid series 
of alternating compressive and extensive regimes of ∼10 Ma (Faccenna et al., 2017; Mora et al., 2009) may 
indicate that slab buckling events have happened earlier in the northern subduction history. However, because of 
the absence of an efficient weakening mechanism to trigger delamination and too thin crust to facilitate eclogi-
tization, the orogen experienced no significant deformation. Potentially, we suggest that these avalanche events 
may have repeated at least three times over the last ∼90 Ma, as suggested by the three cycles of convergence 
rate recognized in Martinod et al. (2010). These events could also explain the cyclicity of the orogenic processes 
(Decelles et al., 2009, 2014; Haschke et al., 2002).

4.4. Model Limitations

The main limitation of our model is its dimensionality. The use of 2D modeling is appropriate for the Central 
Andes, where toroidal flow affecting the edges of the Nazca plate can be neglected. However, latitudinal crustal 
flow is estimated to have contributed between ∼10% and 30% of the present day crustal thickness of the Central 
Andes (Hindle et al., 2005; Kley & Monaldi, 1998). In our models the crustal thickening is mainly caused by 
intraplate shortening. As a result, the crustal thickness of the orogen in our models is lower than the actual thick-
ness of the Central Andes. For example, in model M1 the final orogenic crustal thickness is ∼57 km, whereas it 
should increase to ∼62–74 km (+10–30%) taking into account the latitudinal crustal flow. In addition, shortening 
may also be underestimated, which could partially explain the crustal thickness deficit in the models.

In the model M2a (Figure S6 in Supporting Information S1), the final dip of the slab agrees with the seismic 
tomography (Figure S4 in Supporting Information S1). In this model the interplate friction is 0.015, similar to 
the expected friction of the southern Andes (Sobolev & Babeyko, 2005). This suggests that the current dip of the 
subducting plate in the central Andes is partially caused by lateral support of the shallower oceanic plate to the 
south. In addition, the appearance of a deeper slab pile 900 km to the east could also indicate deep mantle flow 
that is not accounted for in our model. Slab buckling could provide a plausible explanation for the distribution of 
deep seismicity (Figure S4 in Supporting Information S1).

We find that with an interplate effective friction of 0.05 (Figure S2 in Supporting Information S1), the maxi-
mum amplitude of the modeled subduction velocity is lower than the absolute normal velocity of the Nazca 
plate (∼12.5 cm/yr at ∼20 Ma, Sdrolias & Müller, 2006). This suggests that slab velocity is largely controlled 
by the slab interface friction southward and northward of central Andes, where effective friction is lower due to 
the presence of sediments. Interestingly, despite the lower subduction velocity, our model predicts a decrease in 
the  pulsatile intensity during the last ∼25 Ma to 20 Ma in accord with the observations.
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5. Conclusion
In this study, we demonstrate that cycles of slab buckling due to dynamic slab behavior can explain the timing 
and amplitude of tectonic shortening pulses observed in the Central Andes since the Late Eocene. The findings 
of our subduction-related Andean models, suggest that the primary cause of these pulses that contributed to the 
growth of the Central Andes is the evolving geometry of the subducting Nazca plate. In particular, the steepening 
of the slab in the upper mantle slows down the trench retreat and subsequent shortening of the advancing South 
American plate. This steepening first occurs after the end of the flat slab episode at ∼25 Ma. By eroding the lower 
part of the mantle lithosphere, this episode predisposes the margin for the next deformation phases by decreasing 
its strength. Later, slab steepening occurs following the buckling of the slab in the mantle transition zone. This 
new buckling-steepening mechanism sheds light on the causes of the rapid pulsatile growth of the Central Andes 
during the last ∼20 Ma, and the model evolution is consistent with geological data (Oncken et al., 2012) and 
with the timing of uplift of the Altiplano plateau (Garzione et al., 2017). Our study also confirms the previous 
modeling results (Babeyko & Sobolev, 2005; Liu et al., 2022; Sobolev & Babeyko, 2005; Sobolev et al., 2006) 
regarding the important roles of long-term overriding by South America plate, high intraplate friction due to the 
lack of sediments in subduction channel, lithosphere delamination of the lithospheric mantle, and weakening of 
the foreland sediments in the shortening evolution of Andes.

Data Availability Statement
All input files to reproduce the results of this paper are available at https://doi.org/10.5880/GFZ.2.5.2022.001. 
The color scales were taken from Crameri (10.5281/zenodo.5501399). The modified version of ASPECT 
(version 2.3.0-pre, dealii 9.2.0), including the implementation of new custom plugins necessary for the model set 
up and the prostprocessing, is accessible from https://github.com/Minerallo/aspect/tree/Paper_slab_buckling_
Andes. The input parameters files and initial temperature and composition are also available from https://doi.
org/10.5880/GFZ.2.5.2022.001 (Pons et al., 2022). The FASTSCAPE code is also accessible from https://github.
com/fastscape-lem/fastscapelib-fortran.
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