
1. Introduction
Imaging methods that infer the internal structure of an object from measurements performed from the exterior 
are referred to as tomographic methods which are characterized by (a) the material property that is being imaged, 
(b) the physical observable that is measured and (c) the model for the physical interaction that connects (a) to 
(b). Examples for tomographic methods in geophysics include muon tomography (Lechmann et al., 2021) that 
uses the interaction of cosmic ray muons with matter to image the distribution of density or electrical resistivity 
tomography (Daily et al., 2004) that infers the subsurface resistivity structure from measurements of the electric 
field.

Seismic methods use the interaction of elastic waves with the subsurface to infer the distribution of elastic param-
eters. In the simplest case, the wave propagation velocity is reconstructed from observations of direct wave travel 
times (Aki, 1969). Depending on the interaction of elastic waves with the medium, an analysis of reflected waves 
is more successful—the approach of seismic reflection imaging (Gray et al., 2001) used to derive the subsur-
face impedance structure. A requirement for this approach to work is that the reflected arrivals are more or less 
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isolated in space and time meaning that it works best for single scattering. Full waveform inversion (FWI, Tape 
et al., 2009) is a more advanced approach capable of handling superimposed phases and multiple interactions 
with the medium. All seismic tomography methods have a resolution limit that is influenced by the method, 
the number of available seismic records and the wavelength. The structure at length scales above the resolution 
limit is the target of the conventional method and is deterministically imaged by the location and amplitude of 
the material property variability. However, the Earth's crust is heterogeneous on all scales (Sato et al., 2012) 
and while the structure above the resolution limit can be resolved by the imaging method, the interaction of the 
wavefield with the structure at a length scale below the resolution limit causes noise in the data. We refer to this 
structure at scales below the resolution limit as heterogeneity.

It is important to image the distribution of heterogeneity because it influences the wavefield by scattering 
which attenuates direct waves and generates coda waves (Aki, 1969; Aki & Chouet, 1975) which arrive at later 
times. In a more complex velocity structure as in the deep Earth, scattering can also cause precursory arrivals 
(Shearer,  2007). Besides its effect on the wavefield, the distribution of heterogeneity itself provides comple-
mentary information about the target medium which has been widely used in imaging of volcanoes (De Siena 
et al., 2013, 2016) and the deep Earth (Margerin & Nolet, 2003; Sens-Schönfelder et al., 2021). Since the value 
of tomographic imaging lies in the geological interpretation, the complementary information about heterogeneity 
can augment the conventional imaging of macroscopically averaged elastic properties.

Additional need for a tomographic method to image heterogeneity comes from the monitoring of elastic prop-
erties. Scattered coda waves have been shown to be highly sensitive to subtle changes of elastic properties 
which promoted many useful methods, such as coda wave interferometry (CWI, Poupinet et al., 1984; Snieder 
et al., 2002). Combined with seismic interferometry of ambient noise, this has been used for continuous monitor-
ing of subtle changes in volcanoes (Sens-Schönfelder & Wegler, 2006), fault zones (Brenguier et al., 2008), envi-
ronmentally stressed areas (Sens-Schönfelder & Eulenfeld, 2019), and even assessing groundwater storage (Illien 
et al., 2021; Mao et al., 2022). The spatial sensitivity of this coda wave-based monitoring, however, depends on 
the distribution of the heterogeneity that generates the coda waves (T. Zhang et al., 2021; van Dinther et al., 2021).

Meanwhile, the success of Snieder et al. (2002) inspired many laboratory experiments using ultrasonic waves 
in the concrete for monitoring the changes in materials corresponding to stress (Larose & Hall, 2009; Stähler 
et  al.,  2011), temperature (Larose et  al.,  2006; Niederleithinger & Wunderlich,  2013) or damage (Schurr 
et al., 2011; Wang et al., 2020). Planès and Larose (2013) reviewed the applications of ultrasonic CWI in concrete 
in detail. The development of CWI-related techniques benefited a lot from the parallel applications in acoustics, 
engineering and seismology.

A commonly used approach to describe wave scattering in heterogeneous media is diffusion theory that treats 
the propagation of wave energy analogous to the diffusion of for example, heat. In the diffusion theory, the diffu-
sion constant and dissipation are used to describe the ultrasonic scattering and intrinsic attenuation (Anugonda 
et al., 2001; Becker et al., 2003). These two parameters can be estimated by comparison between the experimental 
data and theoretical predictions using the diffusion model. This allows people to describe the effect of uniformly 
distributed material damage (Deroo et al., 2010; Ramamoorthy et al., 2004). The diffusion model has also been 
used for calculating the sensitivity kernel of CWI to velocity changes or decorrelation which allows for imaging 
of the spatial distribution of the changes (Rossetto et al., 2011; Y. Zhang et al., 2016).

Although the diffusion model has been successfully implemented to simulate the wave scattering and absorp-
tion, it is a simplification of the multiple-scattering process and hard to extend to more realistic cases, like the 
early coda, short source-receiver distances, anisotropic scattering or spatially variable heterogeneity. Wu (1985) 
first proposed the multiple scattering model and introduced the radiative transfer theory (RTT) to seismol-
ogy. To numerically solve the radiative transfer equations, the Monte Carlo method was introduced (Gusev & 
Abubakirov, 1987; Hoshiba, 1991), which allows for the ability to simulate wave scattering in the spatially vari-
able heterogeneity and intrinsic attenuating media (T. Zhang et al., 2021). Instead of the diffusion constant and 
dissipation used in the diffusion model, the spatial distribution of fluctuation strength ɛ in the random medium 
and the intrinsic quality factor Q −1 describe the spatial variability of scattering and absorption. The simulation 
of energy propagation with spatially variable properties using RTT allowed us to introduce the adjoint method 
initially developed in FWI (Fichtner et al., 2006, 2010; Tarantola, 1984; Tromp et al., 2005) for the imaging of 
scattering and absorption properties with scattered waves (T. Zhang & Sens-Schönfelder, 2022).
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In this article, we apply the new seismic tomography method that was introduced by T. Zhang and 
Sens-Schönfelder (2022) as adjoint envelope tomography (AET) to a real world data set. For this first application 
we selected a setting that (a) can be treated in two dimensions to reduce the computational demands in this first 
test, (b) allows for a treatment of scattering in the acoustic approximation and (c) provides independent informa-
tion about the internal distribution of heterogeneity in the target region. We chose a metric-sized concrete slab 
with embedded ultrasound transducers and known internal structure as presented in Section 3. In Section 5, we 
discuss the significance of this engineering-scale experiment for applications to the Earth which is ensured by the 
common size-wavelength ratio of the structures imaged in the ultrasound experiment in concrete and solid Earth 
targets investigated with seismic waves.

Section 2 briefly introduces the methodology of AET. The experiment is described in Section 3 including the 
data processing and the investigation of the background parameters used as starting models in the iterative inver-
sion. The inversions for absorption and scattering properties are conducted individually with later and early coda 
waves, respectively, in Section 4. Section 5 contains the interpretation of the inversion results, analysis of the 
resolution tests and a brief outlook for seismic applications.

2. Adjoint Envelope Tomography for Scattering and Absorption
2.1. Radiative Transfer Theory

Adjoint envelope tomography is based on RTT that describes the propagation of energy in scattering media. 
RTT was originally developed to investigate the propagation of light through atmosphere (Apresyan et al., 1996; 
Chandrasekhar, 1960) and was later introduced in seismology by Wu (1985). Assuming that the phase of inter-
fering scattered waves is randomized, RTT uses the additivity of wave energy rather than wave amplitudes which 
allows to use a statistical description of the medium heterogeneity instead of a deterministic one that is required 
for the wave equation. For the goal of imaging the heterogeneity, it is necessary to model energy propagation in 
the presence of spatial variability in heterogeneity and intrinsic attenuation. The 2-D acoustic radiative transfer 
equation with spatially variable heterogeneity and absorption is written as (T. Zhang & Sens-Schönfelder, 2022):

( �
��
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)

� (�, �, �) = −
(

�0�0
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where 𝐴𝐴 𝐴𝐴 (𝐫𝐫,𝐧𝐧, 𝑡𝑡) is the specific energy density propagating in direction n which is part of the total energy density 
𝐴𝐴 𝐴𝐴 (𝐫𝐫, 𝑡𝑡) at the position r with lapse time t. The left-hand side of Equation 1 is the derivative of the specific energy 

density in along a path element. The right-hand side describes the two processes that change the energy. The first 
term accounts for the loss of energy due to scattering from the given direction n into other directions (α0g0(ɛ 2(r))) 
and due to intrinsic attenuation (ω/Q(r)). The second term describes the associated effect of scattering: the energy 
increase by scattering from all other directions into direction n. 𝐴𝐴 𝐴𝐴 (𝐫𝐫, 𝑡𝑡) can be compared to seismogram enve-
lopes and constitutes the observable in AET. α0 indicates the velocity of the acoustic wave and ω is the angular 
frequency. Q −1(r) is the inverse intrinsic quality factor. g0(ɛ 2(r)) is the total scattering coefficient that is defined 
as the angular integral of the scattering coefficient 𝐴𝐴 𝐴𝐴

(
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where k0 is the wavenumber and θ is the scattering angle between the incident direction n and the direction of the 
scattered wave n′. Φ is the local power spectral density function (PSDF) of the spatial parameter fluctuations in 
the heterogeneous medium. The PSDF is the statistical characterization of the small-scale medium heterogeneity 
which influences the energy propagation through its effect on the scattering coefficient. In the present case an 
exponential type PSDF is assumed:

Φ
(
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2(𝐫𝐫)

)

=
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3∕2

, (3)

with the wave vector k. As shown in Equation 3, the RTT uses two parameters to describe the heterogeneity of 
the propagation medium—the correlation length a and the strength of the parameter fluctuations ɛ. We assume 
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here that the correlation length a is constant throughout space and that the spatial variability of scattering and 
attenuation is fully described by the distribution of ɛ 2(r) and Q −1(r). This representation allows us to model the 
energy propagation in any spatially variable model 𝐴𝐴 𝐦𝐦 =

{

𝜀𝜀2(𝐫𝐫), 𝑄𝑄−1(𝐫𝐫)
}

 .

2.2. Adjoint Method and Iterative Inversion

The concept of AET is in full analogy to the adjoint method in waveform tomography (Fichtner et al., 2006; 
Tarantola, 1984; Tromp et al., 2005). The inversion of seismogram envelopes for heterogeneity and absorption 
models starts with the definition of the misfit function that quantifies how well the model predictions match the 
observed data. In the present case the misfit function measures the match between the observed envelope of ultra-
sonic waves D(rj, t; ri) and the synthetic energy density E(rj, t; ri, m) simulated in the current model m. ri and rj 
represent the positions of the ith source and the jth receiver, respectively. Note that the envelope defined here is 
the squared velocity envelope. The least-squares misfit function is defined as:

𝜒𝜒(𝐦𝐦) =
∑
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The integration time window [T1, T2] can contain the ballistic waves or coda waves or it can comprise the full 
envelope including both ballistic and coda waves. But for simplification of derivation, we redefine the integration 
bound in Equation 4 as 𝐴𝐴 [0, 𝑇𝑇 ] where T = T2 − T1. The goal of the inversion is to minimize χ(m) by adapting the 
model parameters m. This process requires knowledge of the Fréchet derivative that we denote δχ(m) and which 
describes the derivative of the misfit function χ with respect to changes in the model m. δχ(m) could be calculated 
explicitly using finite differences on each parameter in the model vector m separately, which, however, is very 
ineffective since the dimension of m usually is large. Instead we use the adjoint method that greatly simplifies the 
calculation of the Fréchet derivative. We first write the Fréchet derivative as an integral over all model parame-
ters, that is, and integral over space V since we face an imaging problem:
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here  ɛK χ(r′) and  QK χ(r′) are the scattering and absorption misfit kernels, respectively, with respect to the changes 
in scattering and absorption properties δɛ 2(r′) and δQ −1(r′). In T. Zhang and Sens-Schönfelder (2022), we used 
the adjoint formalism to derive expressions for the misfit kernels:
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 is the total scattering coefficient under the condition that ɛ = ɛ0, which involves normalization by 𝐴𝐴 𝐴𝐴2
0
 refer-

ring to Equations 2 and 3. f(n, n′) indicates the normalized differential scattering cross section. E †(r′, t′, n; rj) is 
the adjoint energy field generated by the adjoint source F †(t, r″) which contains the information about misfit. E † 
is obtained as:
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 should be the adjoint Green's function with the differing scattering coefficients at 
the source position rj (T. Zhang & Sens-Schönfelder, 2022). But in this acoustic case, 𝐴𝐴 𝐴𝐴†
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same as the Green's function 𝐴𝐴 𝐴𝐴
(

𝐫𝐫
′, 𝑡𝑡′ − 𝑡𝑡, 𝐧𝐧; 𝐫𝐫𝐣𝐣

)

 since there is no energy pattern changed (Margerin et al., 2016). 
The adjoint source F †(t, r″) is derived from the misfit function as:
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where δ(r″ − rj) is the Dirac function. Equation 9 shows how the match between model prediction and observed 
data enters the Fréchet derivative.

The iterative inversion starts with an initial model 𝐴𝐴 𝐦𝐦0 =
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 using L-BFGS 
method (Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm). Note when k = 0, the steepest decent 
method is used instead of L-BFGS method. With the appropriate step length, the model mk of iteration k will be 
updated as mk+1:
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where η is the step length. More details about L-BFGS and the choice of step length refer to T. Zhang and 
Sens-Schönfelder (2022). The final model is obtained by repeating the workflow described above until the misfit 
converges.

3. Experiments
To test the AET against real data we choose an acoustic experiment conducted in a reinforced concrete specimen 
at the German Federal Institute for Material Science and Testing (BAM). The sample has a size of 4 m × 5 m 
with a height of 0.8 m as shown in Figure 1 (Epple et al., 2020). In this paper, the orientation defined as shown in 
Figure 1 is for convenience to discuss and not the natural geographic coordinate. All directions in the following 
discussion refer to this definition of orientation. Nineteen ultrasonic transducers are embedded in the central 
layer of the specimen at 0.4 m height. The transducers serve as the energy sources of ultrasound with a center 
frequency of 60 kHz and as receivers. Both emission and recording of acoustic waves is laterally isotropic. This 
setup provides for 19 × 18 source-receiver combinations. The experiment has the following advantages for the 
present purpose: (a) due to the rather flat shape of the specimen and the placement of the transducers in its 
central plane we can restrict the energy propagation to the lateral directions and simplify the problem to 2D. (b) 
The boundary conditions of the lateral edges of the specimen can easily modeled using mirror sources. (c) The 

Figure 1. Left panel: The photo of the concrete specimen. The red arrows indicate the location of ultrasonic transducers and the green shading indicates the plane 
where transducers were embedded. Right panel: The illustration of the transducer locations in the concrete specimen. The red points indicate 19 ultrasonic transducers 
that serve as the energy sources as well as receivers. The blue circles are four temperature sensors that will be discussed in Section 5.2. The orientation defined here is 
not the natural geographic coordinate.
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embedded sensors that are located 30 cm away from the free surfaces reduces the excitation of surface waves 
which are not treated in our approach.

3.1. Data Processing

The ultrasound signals were recorded with sampling interval of 0.5 μs for a lapse time of 5 ms. Seven identical 
experiments were performed on three consecutive days in October between 7:00 and 8:00 a.m. An illustration of 
original data excited at source T0120 and recorded by receiver T0135 is shown in Figure 2a. The first 200 samples, 
that is, 0–0.1 ms precede the signal transmission and are recorded to control the noise level (Niederleithinger 
et al., 2018). The impulsive signal at 0.1 ms lapse time is visible on all sensors and is caused by electro-magnetic 
cross-talk between the cables of the high voltage source and the recording sensors. We use this signal to synchro-
nize the pulse generator and the acquisition unit and determine the source time. Data is detrended by subtracting 
its mean (Figure 2b). The cross-talk is used to extract the envelope of the source signal and is then removed from 
the record (Figure 2c) which band-pass filtered between 60 and 120 kHz to remove the high-frequency noise 
(Figure 2d). The envelope of the filtered signal is extracted using the Hilbert transform (Figure 2e). Envelopes 
of the repeated experiments are averaged to obtain the final envelope (Figure 2f) for the inversion. The same 
processing is applied to the cross-talk to obtain the final envelope of the source signal (Figure 2f inset).

From the processed envelopes we noticed that certain sensors systematically recorded smaller amplitudes than 
others, or excited less energetic waves. We attribute this to variable sensor coupling including the conversion 
between electrical and mechanical signals as well as the mechanical coupling between the transducer and the 
concrete. We estimate the coupling using the coda normalization method (Sato et al., 2012) which states that 
the signal envelopes in the late coda should be independent of location due to the equal distribution of elastic 
energy. We estimate one coupling coefficient for each transducer acting as source and receiver, separately by 
averaging the late coda envelope (3.5–4.7 ms) from the respective source or recorded at the respective station 
(Figure 3a). Since the transducers act both as source and receiver, the coupling should have similar effects on both 

Figure 2. The illustration of data processing for one source-receiver combination(Source T0120 and Receiver T0135): (a) the original data recorded in seven identical 
experiments; (b) the detrended data by subtracting its mean; (c) the cross-talk removed from the record; (d) the filtered data with band-pass filtered between 60 and 
120 kHz; (e) the envelope of the filtered signal using the Hilbert transform; (f) the averaged envelope of the repeated experiments and the inset is the final envelope of 
the source signal.
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the emission and recording. This is consistent with the observations in Figure 3a. The influence on the envelope 
data from the ith source to the jth station is eliminated by dividing by the corresponding values in Figure 3a. 
An illustration of the coupling effect is shown in Figure 3b. The blue and red curves indicate two combinations 
exchanging the source and the station, which should be identical due to reciprocity. However, the sensor coupling 
introduces a difference between two curves shown in Figure 3b but can be corrected using the coupling correc-
tions (Figure 3c).

3.2. Diffusion Model

As introduced in Section 2.2, the iterative inversion starts with an initial model. The density of the concrete is 
provided by Niederleithinger (2017) as 2.4 g ⋅ cm −3 and the velocity of the wave is estimated from the arrival time 
of the ballistic waves as shown in Figure 4. The transition from the noise level (blue) to wave signal (red) indicates 
the arrival of the ballistic wave (dashed line) with a velocity of 4.475 m ⋅ ms −1.

We have no prior information about the scattering and absorption properties, for the concrete in the present exper-
iment. A simple description of multiple-scattering and intrinsic attenuation of ultrasound in concrete is provided 
by the diffusion model (Anugonda et al., 2001; Ramamoorthy et al., 2004). The 2D diffusion equation describes 
the energy radiating isotropically from a source (Wegler et al., 2006):

𝐸𝐸𝐷𝐷 (𝐫𝐫, 𝑡𝑡; 𝐫𝐫𝐢𝐢) = 𝐸𝐸0
1

4𝜋𝜋𝐷𝐷𝑡𝑡
𝑒𝑒
−𝑟𝑟2∕(4𝐷𝐷𝑡𝑡)

𝑒𝑒
−𝜔𝜔𝑡𝑡∕𝑄𝑄

. (12)

The diffusion energy ED(r, t; ri) at position r with the lapse time t is determined by the source energy E0, diffusion 
constant D and intrinsic factor Q −1 at the specific angular frequency ω. 1/4πDt and 𝐴𝐴 𝐴𝐴−𝑟𝑟

2∕(4𝐷𝐷𝐷𝐷) describe the shperical 
diffusion of energy in 2D and e −ωt/Q is the intrinsic attenuation term. ri is the position of the source while the 
distance between the source and receiver is 𝐴𝐴 𝐴𝐴 = |𝐫𝐫 − 𝐫𝐫𝐢𝐢| . To account for the existence of boundaries that reflect 
the acoustic energy, ED(r, t; ri) is summed for all mirror sources 𝐴𝐴 𝐫𝐫

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐢𝐢
 corresponding to ri (Y. Zhang et al., 2018). 

Figure 3. The illustration of removing the effect from sensor coupling: (a) the coupling coefficients for each transducer 
acting as source (stars) and receiver (inverted triangles); (b) the blue and red curves indicate two combinations exchanging 
the source and the station, which should be identical due to reciprocity but not because of sensor coupling; (c) the corrected 
traces after using the coupling corrections (coupling coefficients used for the blue and red curves shown in (a) with the same 
color).
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Benefiting from the analytic solution of the diffusion equation, we can estimate the parameters of the model by 
an interval search. Equation 12 is rewritten as:

ln [𝐸𝐸𝐷𝐷 (𝐫𝐫, 𝑡𝑡; 𝐫𝐫𝐢𝐢)] = ln𝐸𝐸0 −

[

ln(4𝜋𝜋𝐷𝐷𝑡𝑡) +
𝑟𝑟2

4𝐷𝐷𝑡𝑡

]

−
𝜔𝜔

𝑄𝑄
𝑡𝑡𝑡 (13)

Equation 13 consists of three terms in which lnE0 is constant. To speed up the process, we separately estimate 
Q −1 from the later coda wave (3.5–4.7 ms) since the later coda wave is more sensitive to the intrinsic attenuation 
(T. Zhang & Sens-Schönfelder, 2022). 𝐴𝐴

[

ln(4𝜋𝜋𝜋𝜋𝜋𝜋) + 𝑟𝑟2∕4𝜋𝜋𝜋𝜋
]

 varies slowly in the late coda. Therefore, −ω/Q is 
easily estimated from slope of the logarithmic envelope in the late coda. Figure 5a shows the distribution of the 
estimated Q −1 values from all source-sensor combinations. The mean and median value of this distribution are 
both 0.003 that will be used to estimate D in the diffusion modeling and as initial model for inversion.

With the fixed value of Q −1, the source energy E0 can be extracted as the offset from the envelopes for each 
assumed diffusion constant D. An interval of 𝐴𝐴 [50, 5000]mm2∕s with step-length 10 mm 2/s is searched for the 

Figure 4. The estimation for the velocity of the wave in the concrete specimen. All traces are displayed by the logarithmic 
scale with the exact distance between the source and the receiver. The dashed line indicates the boundary between the noise 
level (blue) and the wave signal (red), whose slope is 4.475 m ⋅ ms −1.

Figure 5. The statistics histograms of the parameters: (a) Q −1, (b) E0, and (c) D estimated from all traces in the diffusion 
model, and (d) ɛ calculated according to (c).
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diffusion constant D. The diffusion model generated by Equation  12 is 
convoluted with the wavelet shown in Figure 2f to compare with the observ-
able. For all source-receiver combinations, the distributions of D and E0 are 
shown in Figures 5b and 5c. According to this distribution, we fix the source 
energy E0 in this study to 12. The diffusion constant D does not directly 
correspond to the parameters used for the non-isotropic scattering in RTT. It 
corresponds to the transport scattering coefficient g* which is a version of g 

that is weighted by the cosine of the scattering angle θ. The relationship between D and g* is given as (Wegler 
et al., 2006):

𝑔𝑔
∗

0
=

𝛼𝛼0

2𝐷𝐷
 (14)

where 𝐴𝐴 𝐴𝐴∗

0
 is the average transport scattering coefficient that is defined as:

𝑔𝑔
∗

0
=

1

2𝜋𝜋 ∫
2𝜋𝜋

𝑔𝑔(𝜃𝜃) [1 − cos(𝜃𝜃)] 𝑑𝑑𝜃𝜃𝑑 (15)

g(θ) has been introduced as a function of scatter strength ɛ and correlation length a in Equation 2. Assuming that 
the correlation length a is uniform with a = 0.011 m (Anugonda et al., 2001) we calculate the values of ɛ corre-
sponding to the estimated values of D using Equations 2, 14, and 15. The distribution of ɛ is shown in Figure 5d. 
We fix ɛ = 0.13 as background parameter describing the small-scale heterogeneity in the concrete specimen. 
Table 1 summarizes all background parameters estimated for the use with Equation 1.

3.3. Monte Carlo Simulation

The radiative transfer equation is solved using the Monte-Carlo method to simulate the energy propagating (T. 
Zhang et al., 2021). To account for the free surface boundary conditions in the Monte Carlo simulations the parti-
cles are reflected at the four sides of the model. In this study, 100 million particles are used for each simulation. 
The field generated by source T0120 in the initial model is illustrated in Figures 6a–6f. Although the algorithm 
allows us to simulate in models with spatially variable ɛ 2(r) and Q −1(r), here we only illustrate propagation in an 
uniform model with the background parameters given in Table 1. Note Figure 6 only shows the energy density 

𝐴𝐴 𝐴𝐴 (𝐫𝐫, 𝑡𝑡) , while we actually simulate the specific energy density 𝐴𝐴 𝐴𝐴 (𝐫𝐫,𝐧𝐧, 𝑡𝑡) with information about the propagation 
direction.

The Monte Carlo method simulates a point-source in space and time. The simulation result is therefore convolved 
with the source wavelet and multiplied with the same source energy E0 as diffusion model. Figure 6g shows a 
comparison of one observed envelope with the diffusion model and the MC simulation in the background model. 
The blue and red curves represent the energy simulated with the diffusion model and radiative transfer equation, 
respectively.

4. Imaging
Starting from the initial model with uniform parameters estimated with the diffusion approximation, we use 
AET to infer the spatial distribution of the strength of heterogeneity and attenuation. Both material properties 
influence the energy propagation causing a trade-off between changes in the scattering and absorption properties 
in a simul taneous inversion for both parameters as discussed in T. Zhang and Sens-Schönfelder (2022). For the 
ballistic wavefield, that is, the energy that propagates without being scattered, the effect of scattering and atten-
uation is identical - leading to the impossibility of discerning both effects with direct waves. But the trade-off 
also exists for arbitrary sub-segments of the propagation path of coda waves. Only the combination between the 
energy that propagates directly between two points in the medium and the energy that is scattered between these 
points allows us to resolve the trade-off since heterogeneity increases the scattered part of the wavefield at the cost 
of the direct part. This trade-off means that strong spatial differences of one parameter unavoidably map into the 
other parameter to some extent (Cormier & Sanborn, 2019; T. Zhang & Sens-Schönfelder, 2022).

However, the fact that the early coda is important to image the heterogeneity while the later coda is more sensitive 
to intrinsic attenuation (Calvet et al., 2013; T. Zhang & Sens-Schönfelder, 2022) helps us to separately invert ɛ 2(r) 

ω ρ α0 Q −1 E0 ɛ a

2π ⋅ 60 kHz 2.4 g ⋅ cm −3 4.475 m ⋅ ms −1 0.003 12 0.13 0.011 m

Table 1 
All Background Parameters Estimated for the Radiative Transfer Equation
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and Q −1(r) using the early and later coda, respectively. In this experiment, we simply define the early and later 
coda intervals by 1.7–3.5 ms and 3.5–4.7 ms respectively as shown in Figure 6g and use these time windows to 
image the absorption and scattering structures successively.

4.1. Intrinsic Attenuation Inversion

We first focus on the intrinsic attenuation inversion with Q −1(r) since the absorption influences the whole enve-
lope. The later coda wave (3.5–4.7 ms) is chosen as the time window to evaluate the misfit function and the initial 
model 𝐴𝐴 𝐴𝐴−1

0
(𝐫𝐫) is uniform with 𝐴𝐴 𝐴𝐴−1

0
= 0.003 . The other parameters and the model of ɛ 2(r) are all uniform based on 

Table 1 and remain constant during the inversion, meaning that only 𝐴𝐴 𝐴𝐴−1

𝑘𝑘
(𝐫𝐫) is updated.

After 11 iterations of AET, the normalized misfit between the observed envelopes and synthetic data converges 
to 66% as shown in Figure 7a. The decrease of the misfit is very fast in the beginning since the initial model is 
uniform, slows down and stagnates from iteration 7. The benefit of iterative inversion as compared to a linear 
kernel-based inversion (Ogiso, 2019) is that the model is further improved after the first iteration based on the 
results of earlier iterations. The final inversion result is shown in Figure 7b. The distribution of Q −1(r) shows a 
dominant first order structure with a maximum in the center and a symmetry in the west-east and north-south 
directions. The decrease toward the sides is not isotropic with the east-west direction showing faster decrease than 
the north-south direction. We will discuss the interpretation of this result in the next section.

The misfit is the integral of the differences between the observed and modeled results in the specified time 
window. However, we can also directly check the data fit of the envelopes. Figure  8 shows the data fit for 

Figure 6. (a–f) The snapshots of the simulated energy density field from T0120 (red star) at different lapse times. The 
scattering mean free path is 0.36 m and the mean free time is 0.08 ms. (g) The comparison among the envelopes recorded 
at T0135 (red inverted triangle) from the Monte Carlo simulation (red curve), the diffusion model (blue curve), and the real 
data from the concrete experiment (black curve). Note that the color scale range of each time in (a–f) is different and the 
energy density field has been multiplied with E0 but not convolved with the source so that the values are not the same as the 
envelopes shown in (g).
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some source-receiver combinations. The simulated envelopes in the final inverted model (red solid curves) are 
compared with the initial model (blue dashed curves) and the observed data (black solid curves). The locations 
of source and receiver in each combination are shown on the right side. For the north-south oriented combina-
tions T0119-126, T0123-130, T0126-133, and T0130-137 which are located in the west and east, the envelopes 
of the inverted model become more similar to the observation compared with the initial model, as expected for a 
successful inversion that minimizes the misfit. This is caused by the decrease of Q −1 along the western and east-
ern sides of the model. There are no significant improvements for station combinations T0120-122 and T0134-
136 because already the initial model fits the observations reasonably well in these areas and the model update 
during the inversion is marginal. Envelope fits of the combinations T0124-125 and T0131-132 that transect 

Figure 7. (a)The misfits of the later coda time window varied with iterations for the absorption inversion. (b) The inversion 
result of Q −1(r) after 11 iterations.

Figure 8. The data fitting of different combinations (illustrated on the right side, red star and blue inverted triangle are 
source and receiver, respectively) in the later coda wave (3.5–4.7 ms). The blue dashed and red solid curves indicate the 
envelopes simulated in the initial model and the inverted model shown in Figure 7b, respectively. The black curve is the real 
data from the concrete experiment.
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through the whole specimen do not improve. In fact the fit of these long distance east-west combinations slightly 
degrades in favor of significant improvements of other pairs.

4.2. Scattering Inversion

Although the early coda wave is more sensitive to scattering, scattering inversion can benefit from using a more 
reasonable model of Q −1 to suppress the influence of the absorption. In this step, we employ the inversion result 
shown in Figure 7b as the model of Q −1(r) and keep it constant throughout the inversions for ɛ(r). The initial 
model of ɛ(r) is uniform and we use the earlier time window with lapse times 1.7–3.5 ms (cf. Figure 6).

Nine iterations were conducted until the normalized misfit converged to 77% which is shown in Figure 9a. Note 
that although the simulation in the initial model in Figure 9a is the same as the last one in Figure 7a, the abso-
lute value of misfit is not since the time windows are different. Figure 9b shows the inversion result of ɛ(r). 
The dominant value of it is about 0.14 which is a little higher than the initial uniform model 0.13. The inferred 
distribution of heterogeneity has a more complex structure than the attenuation structure. Stronger scattering is 
inferred in two areas at the western and eastern boundaries and also in one anomaly of higher value in the south 
at about y = 2 m. An elongated features extends from the northern to the southern edge at about y = 3.4 m. A 
very low-value anomaly that indicates reduced heterogeneity is located in the north-east corner. Interpretations 
are discussed in the next section.

The data fits are shown in Figure 10. Similar to what we discussed in Figure 8, the different-distance combina-
tions are compared in the early coda waves time window. The inversion result is dominated by the short-distance 
combinations which achieve a significantly improved data fit during the inversion. The medium- and long-distance 
combinations do not improve clearly. Note that the y-scale of the graphs in Figure 10 is variable and combinations 
T0124-125 and T0131-132 have far smaller amplitudes.

5. Discussions
5.1. Misfit Evolution

In Section 4, we have described two successive inversion runs for ɛ 2(r) and Q −1(r) using the early and later coda, 
respectively. We start with uniform models of both parameters, first update the model of Q −1(r) only, and then fix 
the Q −1(r)-model and continue to update ɛ 2(r). The time windows of the misfit are chosen to use only the later 
coda for intrinsic attenuation inversion and only the early coda for scattering inversion because of their sensitivi-
ties. Of course, the misfits of both time windows varied in both inversions. Figure 11 shows the evolution of the 
misfits of both time windows for the whole inversion process. The red and blue curves indicate the misfits of  the 
later and early coda, respectively. The solid parts of the curves show the misfits that are optimized for during 

Figure 9. (a) The misfits of the early coda time window varied with iterations for the scattering inversion. (b) The inversion 
result of ɛ(r) after nine iterations.
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the  inversion (they have been shown in Figure 7a and Figure 9a) while the dashed lines indicate the misfit during 
the optimization of the other time window.

The whole inversion is separated into two periods shown in Figure 11. In the first period when we only update 
Q −1(r) (red domain), the misfit of the later coda (the red solid curve) decreases since the misfit kernel is based 
on this time window. Reasonably, with the improvement of the attenuation model the misfit of the early coda (the 
blue dashed curve) decreases as well although it is not used to guide the inversion. During the subsequent updat-
ing of ɛ 2(r) (blue domain) the misfit of early coda time window continues to decrease since it is used to calculate 
the adjoint source. On the contrary the misfit of the late time window which is not used in this step re-increases 

Figure 10. The data fitting of different combinations (illustrated on the right side, red star and blue inverted triangle are 
source and receiver respectively) in the early coda wave (1.7–3.5 ms). The blue dashed and red solid curves indicate the 
envelopes simulated in the initial model and the inverted model shown in Figure 9b, respectively. The black curve is the real 
data from the concrete experiment.

Figure 11. The misfits of the later (the red curve) and early (the blue curve) coda waves as the time window varied with 
the whole inversion. The red and blue domains respectively indicate the absorption and scattering inversion conducted in 
Section 4. The dashed parts of the curves are not used in the inversion.
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slightly which is not surprising since this time window was already optimized for in the Q −1(r)-inversion and does 
not inform the ɛ 2(r)-inversion. However, the misfit change in the second run is dominated by the decrease of the 
misfit in the early time window. Using both time windows together to guide the second part of the inversion run 
would possibly have damped the misfit increase in the late time window, at the expense of smaller improvements 
in the early time window.

5.2. Interpretation

We begin the discussion with an interpretation of the inferred attenuation. The attenuation anomaly (Figure 7b) is 
symmetric with respect to west-east and north-south axis in the center of the specimen and appears to be affected 
by some large scale influence on the specimen rather than internal small scale differences. Three processes could 
globally affect the specimen and result in a perturbation with the symmetry observed in the attenuation structure: 
(a) diffusion of humidity, (b) temperature changes and (c) stress distribution.

To investigate this hypothesis we make use of supplemental instrumentation. Additional to the 19 ultrasonic 
sensors, there were four temperature sensors embedded in the concrete specimen (shown in Figure 1) which 
measured the internal temperatures on three consecutive days in the morning between 6. and 8 a.m. as shown in 
Figure 12a. This experiment was conducted during a phase of decreasing temperatures in autumn. The tempera-
ture at each sensor decreased during the three successive days but the sensors maintained rather constant offsets 
from one another. The central sensor T0128 shows highest temperatures compared to the sensors closer to the 
rim. Smallest temperatures are observed in the corner of the specimen at sensor T0137 while intermediate 
temperatures are observed along the sides. We use the temperature measured on 28 October at these four sensors 
to obtain an idea of the temperature distribution within the specimen. We therefore use the geometric symmetry 
of the sensor locations to interpolate the observations throughout the whole concrete in 2D using adjustable 
tension continuous curvature splines by Generic Mapping Tools (Smith & Wessel, 1990; Wessel et al., 2013). 
The resulting temperature distribution within the concrete is shown in Figure 12b. This is clearly a rough estimate 
of the internal temperature distribution, but it shares clear similarity with the inversion result of Q −1(r) shown in 
Figure 7b.

It has been demonstrated that the temperature changes of the concrete can result in the velocity perturbation 
but the sensitivity is only about 0.05–0.15%K −1 (Epple et  al.,  2020; Larose et  al.,  2006; Niederleithinger & 
Wunderlich, 2013). Since the maximum temperature change during the experiment is only 0.5 K(°C) the observed 
temperature changes will thus have a negligible influence on the propagation velocity and thus leave the enve-
lopes unaffected which warrants the assumption of uniform and constant velocity in this experiment. We did not 
find conclusive evidence in the literature for the influence of temperature on attenuation in concrete or similar 
aggregates (at the present temperature (Zong et al., 2020)).

Figure 12. (a) The temperature measured on three consecutive days morning between 6 and 8 a.m. from four embedded 
temperature sensors. (b) The temperature distribution of the whole concrete interpolated with four temperature sensors (the 
black circles) based on the geometric symmetry.
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The influence of humidity on attenuation has been clearly documented by a number of authors (Clark et al., 1980; 
Green et al., 1993; Tisato & Quintal, 2014). Unfortunately in-situ observations of humidity are not available to 
us and the specimen is insulated from the sides and covered for protection against rain so that the humidity might 
be more or less uniform in the volume.

A distribution of absorption with a very similar symmetry pattern in a sample of comparable size was found 
by Liu and Guo (2005). These authors imaged the attenuation in a reinforced concrete block under the highway 
bridge pier cap which had a size of 6 m × 8 m with a height of 1.5 m. Using direct waves Liu and Guo (2005) 
inferred an inverse intrinsic quality factor of 0.0063 in the center of the block. This value is close to our result 
0.0045. Toward the sides of their block, attenuation increases seven times while it decreases four times in our 
results.

Different from absorption, the heterogeneity of the medium appears to be governed by internal structure rather 
than an external influence since the inferred distribution is much more structured. Figure 13 shows the construc-
tion drawing of this concrete specimen. The strongest anomaly of increased heterogeneity is found at the western 
edge of the specimen. This area corresponds to a volume of the specimen that was cast with a different kind of 
concrete (salt concrete: 1,600 × 1000 × 250 mm). Here, salt was added to the concrete mix to be able to provoke 
rapid corrosion of rebar at a later stage. As the concrete was poured separately by a different team and cured 
under different conditions, a different density and porosity can be expected. We interpret the increased scattering 
inferred in this region to be caused by the different properties of the salt-concrete.

The second prominent area of increased heterogeneity located in the east does not directly correspond to model 
features from the construction plans. During the installation of the embedded sensors an anomaly was detected 
in this area. While the calculated quantity of grout was sufficient to completely fill the boreholes in all other 

Figure 13. The construction drawing of the concrete specimen. The western anomaly block is the salt concrete that is different from the background material with the 
size of 1,600 × 1000 × 250 mm. Four horizontal plastic pipes, one vertical clamping channel, three autoclaved aerated cube concretes and three heating cartridges are 
embedded.
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locations, almost three times the amount was required for refilling the borehole of sensor T0132. It can therefore 
be assumed that cavities were unintentionally created in this area during concreting, which now contribute to the 
increased scattering.

Before this experiment, there were three heating cartridges inserted in the south, east and northeast (Heating 
Cartridge A, B, and C respectively in Figure 13). Heating Cartridge A had been used to heat the concrete to 510°C 
(Niederleithinger, 2017) while the other two had not been activated. The concrete after high-temperature heating 
generated thermal cracking and stress changes (Hager, 2013) that increase scattering.

Three autoclaved aerated cube concretes with size of 0.3 m, four horizontal plastic pipes and one vertical clamp-
ing channel are also embedded in the concrete. Structures of these size are out of the inversion resolution but can 
also affect the scattering to some degree.

A very prominent anomaly that is left to be discussed is the low-δɛ anomaly close to sensor T0122. This anomaly 
is located right at the boundary of the inversion domain and converges toward extremely low values of heteroge-
neity, that is, locally homogeneous material. Its location directly on the boundary close to a corner of the model 
leads us to the interpretation as an artifact. Fitting envelopes of waveforms always requires significant averaging. 
In theory this averaging should be achieved by repeated observations in statistically identical realizations of 
the experiment. In reality there is only a single specimen and the averaging is realized on the one hand based 
on ergodicity by using long time windows for the comparison between observations and synthetics and on the 
other hand by using multiple source and receiver combinations. While the effect of long time windows is the 
same everywhere in the sample the averaging by different sensor combinations is not. The reflecting boundary 
conditions reduce the effective averaging by a factor of two along the edges and by a factor of four in the corners. 
A prominent wiggle in the waveform that can coincidentally originate from the constructive interference of scat-
tered waves results in a strong pulse in the envelope (cf. Figures 6, 8, and 10). Such a pulse can push the inversion 
into a certain direction and cannot effectively be compensated by other sensor combinations with sensitivity to 
the same location since the mirror sources have identical waveforms.

5.3. Resolution Test

Different tools exist to study the capabilities of the combination of a measurement setup and an inversion method. 
Checkerboard tests (Lévěque et al., 1993) use a periodic pattern of variable wavelengths to infer the minimum 
size of a feature to be resolved in different parts of the domain. Analytical approaches use the sensitivity of the 
misfit function to changing perturbations (the Hessian) at the different locations in the domain to estimate the 
resolution capabilities (Fichtner & Trampert, 2011).

We take a different approach for the following reasons. Since we use reflecting boundary conditions in a domain 
with a regular distribution of sensors we can assume that also the resolution capabilities are rather uniform which 
would limit the value of a checkerboard test. The analytic approach using the Hessian is either computationally 
very expensive or requires further development, that is beyond the present scope. Here we ask the question: What 
would the inversion obtain if the structures were as we interpret it from the actual imaging. Technically this 
question is answered by inverting a simplified version of the obtained result that contains all structures which are 
regarded as relevant and interpreted. This approach is often used in tomography to confirm that the interpreted 
structure could indeed be resolved by the imaging (Jiang et al., 2014; Koulakov et al., 2009). For nonlinear prob-
lems such statements are more useful than theoretical values of resolution length in a homogeneous background 
model.

In our resolution test we set up a test model, generate synthetic data by forward modeling and investigate how well 
the inversion procedure is able to recover the original model. The forward simulation that computes the synthetic 
envelopes in the test model uses the same Monte-Carlo method that is also used in the inversion. The inversion 
of the synthetic data is then performed using exactly the same procedure and parameters (sensor location, time 
windows, starting models, etc.) as in the original inversion of the real data in Section 4.

The test model of ɛ(r) is based on the construction plans of the concrete specimen and the inversion result. The 
background value of ɛ(r) is designed not to be the same as the initial model but taken from the inversion result as 
0.14. Figure 14a shows the input model for the resolution test that contains the structures obtained in the inversion 
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and some small elongated anomalies along the locations of channels and reinforcement bars in the specimen. The 
input model of Q −1(r) (Figure 14b) is based on the temperature distribution shown in Figure 12b.

Panels (c) and (d) of Figure 14 show the resulting outputs of the synthetic inversion test. The output of ɛ(r) shows 
that the background value is recovered well although it was different from the initial model. The three larger 
anomalies are localized well, but their shapes are not recovered in detail due to limitations imposed by the number 
and the setup of sources and receivers and the intrinsic smoothing of imaging with the envelope information, only. 
Likewise the thin elongated anomalies are not resolved as could be expected from the locations of the 19 sensors 
of which only three are not arranged along the rim of the specimen. The incorrectly inferred shape of the anom-
alies is connected to their peak amplitudes which are partially overestimated during the inversion. Since the scat-
tered energy depends to first order on an integral scattering strength of the anomaly higher values in the centers 
of the larger anomalies compensate for the lower strength along the edges of these anomalies. The inversion result 
of Q −1(r) recovered the input structure well. However, decay in the north-south direction is underestimated and 
the peak anomaly is overestimated.

From this test, we conclude that the first order features interpreted from the imaged attenuation and scattering 
structures would indeed show up as observed in the results. Due to ambiguity and limited resolution we cannot 
exclude that smaller anomalies are present in the specimen.

5.4. Solid Earth Applications

AET is applicable to elastic waves in the multiple scattering regime. The existence of this regime depends on the 
characteristics of the heterogeneity and on the wave length of the elastic waves but it can be found in ultrasound 
laboratory experiments with concrete and in earthquake records at high frequencies. The frequency in our exper-
iment is 60 kHz corresponding typical frequencies of about 1 Hz in seismological investigations of the scattered 

Figure 14. The resolution test: (a) the input model of ɛ(r) based on the construction plans of the concrete specimen; (b) 
the input model of Q −1(r) based on the temperature distribution shown in Figure 12b. (c and d) the inversion results of two 
parameters following the same workflow as the inversion for the laboratory experiment.
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wavefield. Since the acoustic velocity in concrete does not significantly differ typical seismic velocities in crustal 
rocks, the size of the block of concrete would correspond to a field scale of about 300 km which is rather typical 
for studies of wave scattering at volcanoes (De Siena et al., 2013, 2016; Del Pezzo et al., 2016).

The setup of the sensors shown in Figure 1 results in source-receiver distances ranging from 0.85 to 5.56 m which 
translates into reasonable epicentral distances up to a few hundred kilometers. Station numbers and spacing can 
be expected to be superior in field applications where several tens of stations can often be found used within an 
area of a few hundred kilometers radius. The degree of heterogeneity in concrete, however, is comparably high 
as can be readily recognized from the waveform shown in Figure 6. A direct wave is not visible in this waveform 
due to scattering and confirmed that the situation in concrete corresponds to those parts of the Earth that exhibit 
strong heterogeneity such as fault zones or volcanoes.

Besides the length scale, our assumptions of 2D geometry and acoustic wave propagation may have implications 
for solid Earth applications. The 2D geometry is similar for investigations of scattering in the crust due to the 
more homogeneous mantle (Sens-Schönfelder et al., 2009). In terms of computational efficiency, the 2D case 
is similar to 3D scattering in spherically symmetric settings like problems. If heterogeneity varies only in a 
single dimension, for example, with depth, the computational demands are even smaller. Lastly the assumption 
of acoustic scattering is often made also in field application to the Earth because scattering leads to a stable 
balance between P and S energy in the scattered wavefield called equipartition (Hennino et al., 2001). In this state 
the wavefield is dominated by shear waves and scattering can be treated as single mode waves in the acoustic 
approximation. Another interesting application that allows to neglect mode conversion in the scattering process 
is the investigation of early teleseismic phases such as Pdiff coda (Earle & Shearer, 2001) and the PKP precursor 
(Sens-Schönfelder et  al., 2021; Thomas et  al.,  2000). For these wavefield the large travel time filters out the 
slower S-wave energy. A very promising application of AET for the future is the construction of a 1D Earth model 
for strength of heterogeneity in analogy to existing reference models for velocity (Dziewonski & Anderson, 1981) 
or attenuation (Montagner & Kennett, 1996). Even improved starting models exist for the heterogeneity that have 
been derived with less inversion strategies (Bentham et al., 2017).

6. Conclusions
This research presents the analysis of an acoustic experiment conducted in a 4 m by 5 m large concrete specimen 
equipped with embedded acoustic sensors. We applied AET to image the distribution of small-scale heterogeneity 
and intrinsic attenuation inside the specimen. To interrogate the structure below the resolution limit of conven-
tional tomography, AET was proposed to invert for the statistical properties of the small-scale heterogeneity as 
complementary information to the deterministic structures that can only be imaged at larger scales. Although 
AET had been successfully tested in numerical experiments, the application to experimental data in the present 
paper increases confidence in the methodology in view of further applications to seismic imaging of the Earth.

We performed this experiment with ultrasonic transmission from embedded transducers in reinforced concrete 
in analogy to seismic wave propagation in the Earth. The data recorded by 19 transducers are compared with 
simulations of energy propagation based on the radiative transfer equation. This forward problem is solved by 
modeling the 2-D multiple nonisotropic scattering in an acoustic medium with spatially variable heterogeneity 
and attenuation using the Monte-Carlo method. The misfit between the observed and modeled envelopes is mini-
mized by iteratively updating the model with the adjoint method. The whole workflow of AET for the real data 
is introduced including the processing of the data and the investigation of background values with the diffusion 
model. The fluctuation strength ɛ and intrinsic quality factor Q −1 respectively representing the spatial variability 
of scattering and absorption are separately inverted from different time windows. On the one side, the absorption 
inversion result shows a strong point-symmetric geometry which we interpret as some large-scale spatially varia-
ble in the specimen, but without a direct evidences for the causative process, for example, temperature, humidity 
or stress.

The inverted distribution of scattering properties shows a more complex structure that can—to some extent—be 
interpreted in terms of the known internal structure of the test specimen. The largest anomaly of increased hetero-
geneity corresponds to a volume containing salt-concrete. Other anomalies are not as clearly linked to the known 
features of the concrete and a strong anomaly of decreased heterogeneity exists at the edge of the specimen that 
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is interpreted as an artifact from envelope fluctuation that are insufficiently averaged at the reflecting boundaries 
of the model domain.

Despite obvious room for improvement in terms of spatial resolution and power to resolve the trade-off between 
scattering and attenuation the present results are encouraging. The spatial variability of attenuation and scattering 
strength improved the data fit by about 35% when averaged over both time windows. This number appears small 
but cannot directly be compared to improvements known from waveform inversion. Two effects contribute to the 
limitation of the data fit. First the observed envelopes are obtained in a real experiment and cannot be averaged 
over an ensemble of test specimens and thus show fluctuations introduced by the interference of scattered waves 
that cannot be fit. Second also the simulated envelopes contain additional fluctuations from the Monte-Carlo type 
simulation.

Future investigations to test the performance of the AET on real data will have to include dedicated test specimens 
with known scattering and attenuation properties. Even though the present concrete block with the embedded 
sensors was well suited for an application of AET, it was already cast and the different types of concrete could 
not be analyzed separately to obtain ground truth. An important field of application for the presented approach 
is the monitoring of medium perturbations with coda waves (Sens-Schönfelder & Brenguier, 2019). The spatial 
sensitivity of coda wave based monitoring depends on the distribution of heterogeneity (Kanu & Snieder, 2015) 
and can thus be improved with the presented method. We hope that AET will contribute to non-destructive testing 
of civil engineering structures and investigations of wave propagation in the Earth.

Data Availability Statement
The code for Monte Carlo simulation, scripts used to calculate the misfit kernels and the processed data of the 
laboratory experiment can be accessed at https://doi.org/10.5281/zenodo.7152278.
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