
1. Introduction
Significant advances in the understanding of the acceleration of the radiation belt particles have been obtained 
due to historical measurements on CRRES satellite (Johnson & Kierein, 1992) and new measurements provided 
by the Van Allen Probes mission (Mauk et al., 2012). The mechanisms for the acceleration of relativistic elec-
trons were validated by the newly developed codes solving the full three-dimensional Fokker-Planck equation, 
such as ONERA Salammbô code (Varotsou et  al.,  2008), the British Antarctic Survey (BAS) Radiation Belt 
Code (e.g., Allison et al., 2019; Glauert et al., 2014a, 2014b; Kersten et al., 2014), the Versatile Electron Radi-
ation Belt (VERB) code (e.g., Drozdov et al., 2017; Kim et al., 2012; Shprits, Subbotin, et al., 2008; Shprits 
et al., 2009; Subbotin et al., 2010, 2011; Subbotin & Shprits, 2009; Wang et al., 2020; Wang & Shprits, 2019) and 
DREAM-3D code (e.g., Reeves et al., 2012; Tu et al., 2013). Various combinations of 1-D, 2D or combination of 
convection and 2D simulations have also been presented in recent studies (e.g., Fok et al., 2011; Li et al., 2016; 
Ripoll et al., 2019). Advances in modeling and observations have allowed us to significantly advance our under-
standing of the acceleration mechanisms in the radiation belts (Millan & Thorne,  2007; Shprits, Subbotin, 
et al., 2008; Shprits, Elkington, et al., 2008; Shprits et al., 2022; Thorne, 2010). The proposed dominant scat-
tering mechanisms are: scattering by VLF/ELF hiss waves that occur inside the plasmasphere at practically all 
MLT (Lyons & Thorne, 1973) and in the regions of plumes (e.g., Li et al., 2007), whistler-mode chorus waves (Li 
et al., 2007; Miyoshi et al., 2020, 2021; Shprits, Subbotin, et al., 2008; Shumko et al., 2021; Thorne et al., 2005; 
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Tsai et al., 2022; Wang & Shprits, 2019; Zhang et al., 2022), EMIC waves predominantly on the dusk side in the 
regions of plumes or on the edge of the plasmasphere (Thorne & Kennel., 1971) and the loss to the magneto-
pause that drives the outward radial diffusion (Shprits et al., 2006; Staples et al., 2022; Turner et al., 2012; Wang 
et al., 2020). However, the understanding of loss processes is still incomplete. Fundamental questions about the 
loss of electrons remain to be debated and the direct observational evidence for several proposed loss mechanisms 
(Shprits, Subbotin, et al., 2008; Shprits, Elkington, et al., 2008) remains lacking. In particular, it remains unclear 
what loss process dominates the scattering into the atmosphere at MeV energies.

To directly evaluate the loss of electrons from the radiation belts, measurements should be able to accurately 
resolve the loss cone and distinguish between the quasi-trapped, trapped, and precipitating populations, which 
is difficult to achieve from a near-equatorial orbit where recent satellite missions operated. In particular, one of 
the most compelling questions related to loss is where does the scattering of the radiation belt elections occur? 
Answering these questions can help identify the wave modes and physical mechanisms responsible for such 
scattering.

In this study, we utilize the measurements from the electron particle detector (EPD) of the ELFIN-L instrument 
suite (Shprits et al., 2018) that has been flown on the Lomonosov spacecraft. The satellite was launched on 28 
April 2016 into a polar, sun-synchronous orbit. The inclination was 97.3° at a mean altitude of about 485 km. 
The orbit period is 94.2 min. The orbit of the Lomonosov satellite allows us to routinely sample and compare 
the measurements in the vicinity of noon and midnight (11.11 ± 1.64 and 23.27 ± 1.68). EPD was designed to 
have a relatively narrow field of view (22.5°), to be able to differentiate between Drift Loss Cone (DLC), Bounce 
Loss Cone (BLC), and Trapped populations. The data rate is two measurements per second on eight physical 
electron detectors with 12 sub-channels from 21 keV to 4.7 MeV. The data is available from August to November 
2016. Some of the electron detector channels do not show valid measurements, most likely due to insufficient 
particle counts (Shprits et al., 2018). The useable channels are with central energies of 21 keV, 30 keV, 44 keV, 
1.006 MeV, and 1.600 MeV.

2. Data Processing
To understand the loss of electrons, we, first of all, need to understand if the instruments are measuring stably 
trapped fluxes, locally precipitating fluxes or particles that will be lost within one drift orbit in the region where 
the magnetic field will be weak enough so that the mirror point will be lowered to the level of the atmosphere. 
Such particles that are lost during one drift orbit are referred to as particles in the drift loss cone (DLC), and 
particles that will precipitate locally on the time scale of one bounce are referred to as particles in the bounce loss 
cone (BLC). To identify the BLC, the magnetic field where particle mirrors Bm should be calculated from the 
instrument look direction and the spacecraft local magnetic field which is estimated by using the IGRF model. 
The mirror point magnetic field should be compared to an estimated magnetic field at the top of the atmosphere 
or footprint of the field line Bfoot, which for this study, we assume to be at 100 km. If Bm is lower than Bfoot the 
particle will mirror above the atmosphere where the magnetic field is lower than in the atmosphere and will not 
be lost during the bounce. If Bm is higher than Bfoot, the particle will be lost during the bounce motion and should 
be labeled as BLC.

To identify the DLC measurements the magnetic field at the mirror point (e.g., Roederer & Zhang, 2014), which 
is conserved along the drift path due to the conservation of the second adiabatic invariant, should be compared 
with the minimum magnetic field that the particle will encounter along the entire drift motion. If the mirror point 
magnetic field Bm is greater than the minimum value of the magnetic field at 100 km for a given L-shell Bdrift_min, 
then the particle will be lost over the drift orbit and should be labeled as DLC. If Bm is smaller than Bdrift_min the 
particle will be stably trapped and in the absence of pitch angle diffusion, will not be lost from the system.

We have pre-calculated Bfoot as a function of McIlwain Lm (McIlwain,  1961) and quasi-dipole longitude 
(QDLON) using International Geomagnetic Reference Field (IGRF) 12 (Thébault et  al.,  2015) geomagnetic 
model. The field lines are traced using International Radiation Belt Environment Modeling (IRBEM) library 
version 6.1.2 (Boscher et al., 2013). The minimum between the northern and southern hemispheres of Bfoot, is 
shown on Figure 1.

The method was validated by reproducing the previously published results in (Tu et al., 2009), see Figure S1 in 
Supporting Information S1. The Geodetic coordinates (GDZ) are calculated from the Geographic Coordinate 
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system (GEO) using the IRBEM library. Position in these coordinates is used to calculate the QDLON using 
the “apexpy” which is a Python wrapper for the Apex Fortran library based on Richmond (1995) and Emmert 
et al. (2010). For the calculation of Lm we use McIlwain's look-up table (McIlwain, 1961), which calculates Lm 
from invariant I and Bm values. Bm can be calculated using the IRBEM library. For the calculation of invariant and 
tracing field lines, we use an approach by Orlova and Shprits (2011). Using the pre-calculated Bfoot and McIlwain 
Lm and QDLON at each satellite position and pre-calculated table as discussed above, we determine if we meas-
ure particles in the DLC.

To compare dawn and dusk-side scattering, we need to compare measurements on the day and night sides at the 
same geographic location. The DLC measurements on the day and night side can only be observed in the Alaska 
geographic sector, and for this study, we focus on measurements over this geographic location. Another complica-
tion comes from the fact that the instrument has a finite field of view, and each corner of the instrument's aperture 
is associated with a slightly different pitch angle. The estimates that are usually done for the central angle of the 
instrument field of view may be deceptive as even a small amount of trapped particles may by far outnumber the 
measured drift loss cone or bounce loss cone particles and can significantly contaminate the measurements. As 
the focus of this study is the drift loss cone population, we chose the most conservative estimates and checked that 
all four corners of the instrument satisfy the DLC condition when determining the measurements that we assigned 
to DLC. The same conservative approach is applied to the determination of the BLC. We consider a measurement 
to be in the BLC only when all four vectors go through the corners of the instrument point into the BLC.

The L3 data set (Shprits & Michaelis, 2023) contains additional information of Bm, Bfoot, Beq as well as flags for 
BLC and DLC.

Figure 1. Calculated (a) northern magnetic footpoint, (b) southern magnetic footpoint and (c) smallest of the northern and 
southern hemisphere magnetic foot point, at the altitude of 100 km as a function of L and quasi-dipole longitude (IGRF).
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3. Results
3.1. Separating Different Populations Near the Edge of the Loss Cone

Using the methodology as discussed above, we have separated all the measurements into BLC, DLC, and trapped. 
Figure 2 shows the DLC and trapped populations. As the ELFIN-L direction is inclined at 60° with respect to 
the plane defined by zenith and satellite velocity, the orientation of the instrument allows us to measure various 
populations of particles at different geographical locations. In the outer belt, trapped fluxes were only observed 
in the southern hemisphere near the minimum in the magnetic field along the lines of constant L-shell. Trapped 
fluxes are also observed in the inner belt and may be contaminated by the highly energetic trapped protons. The 
trapped outer belt fluxes are most clearly seen around longitudes of Africa on the day side. The DLC fluxes can 
be observed in the northern and southern hemispheres. Clearly seen is the trend of increasing fluxes as electrons 
drift eastwards, and more particles can be scattered into the DLC before they are lost in the region close to the 
minimum magnetic field, which is marked by stars on the constant Lm contour white lines.

3.2. Comparison of the Dawn and Dusk-Side Scattering

The orbit of Lomonosov allows for comparing measurements on the night side with the measurements on the day 
side. The measurements of DLC fluxes on the night side will be dominated by particles that were scattered into 
the loss cone on the dawn side, and the measurements on the day side will be dominated by the particles that were 
scattered on the dusk side as electrons are drifting eastward. The exact range of MLT at which electrons may be 
scattered into the DLC will depend on the MLT of the minimum B for a given Lm. In particular, all electrons 
may be scattered in the loss cone westward of the point where the measurement is made and westward of the 
minimum B. The minimum B for a given L-shell we henceforth refer to as South Atlantic Anomaly (SAA) as the 
latitude of the SAA approximately coincides with the minimum B for a given Lm (see stars depicting minimum 
B in Figure 2).

To further confine the region where particles can be scattered into the loss cone, we choose SAA to be on the 
dusk side when we are considering the measurements on the day side so that we can observe the scattering into 
the DLC that occurred on the dawn side. Similarly, when observing the night side DLC fluxes, we only consider 

Figure 2. Scatter plot for ELFIN-L measured differential electron flux at 1,006 keV from August to November 2016. The top row shows drift loss cone measurements 
for (a) day-side, (b) night-side, and the bottom row trapped electrons measured on the day side (c) and night side (d). Gray lines show contours of magnetic field 
intensity, while white lines show contours of Lm. White stars show the location of Bfoot_min along iso-lines of Lm. For DLC on the day side, (a) we focused on the 
northern hemisphere since a clean distinction between DLC and trapped is difficult for the southern hemisphere.
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measurements when SAA is on the dawn side so that we can be sure that the scattering occurred westward of 
the SAA. Figure 3 shows how SAA location is restricted for the day-side and night-side measurements. Such 
selection of SAA does not entirely limit the scattering to the dawn or dusk side. Ideally, SAA should be located 
at noon for the near-midnight measurements and at midnight for the near-dayside measurements. However, such 
restriction would eliminate most of the measurements and would not allow obtaining statistically significant 
results. Such analysis should be possible in the future for longer-term missions such as ELFIN (Angelopoulos 
et al., 2020).

Figure 4c shows that the scattering over the dawn side exceeds the scattering over the dusk side. Such a scenario 
is consistent with loss of electrons mostly due to chorus waves. It is difficult to exactly quantify this ratio due to 
the lack of data; some measurements of the dawn side precipitation may be mixed with the dusk side precipita-
tion and vice versa, as discussed above. Similar observations and similar conclusions have been made by Allison 
et al. (2017) but for lower energy electrons using Polar Operational Environmental Satellite (POES) measure-
ments. Exactly the same analysis has been conducted for the NOAA POES-19 measurements and is presented 
in Figure S3 in Supporting Information S1. Additional statistics information about the measurements per bin 
for Figure 4 is shown in Figure S5 in Supporting Information S1 and briefly described in Text S5 in Supporting 
Information S1.

4. Summary and Discussion
In this study, we performed a statistical analysis of the data collected from the ELFIN-L instrument on board 
the Lomonosov spacecraft. The small field of view of the instrument provides a unique opportunity to clearly 
separate the BLC, DLC, and trapped electron fluxes. Separating the populations of BLC, DLC, and trapped is a 

Figure 3. Definition of (a) Dawn and (b) Dusk precipitation with respect to local time location of ELFIN-L and South 
Atlantic Anomaly.

Figure 4. ELFIN-L differential Flux at 1,006 keV in log10((cm 2 × sec × sr × keV) −1) from August to November 2016 over Alaska measuring electrons in the DLC that 
were predominantly scattered in the (a) dawn sector and (b) dusk sector. Panel (c) shows the ratio between Dawn and Dusk precipitation. White lines show contours of 
Lm; gray lines show contours of magnetic field intensity. The noise level has been cut at −0.5 log10((cm 2 × sec × sr × keV) −1).
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technically challenging task and requires careful consideration of the geometry of the instrument and exclusion 
of the geographic locations where all three populations can be simultaneously observed, and measurements are 
difficult to classify as either of these populations as most of them contain a mixture of populations. The observed 
trapped fluxes maximize around the minimum in the magnetic field consistent with the physical expectations. 
The observed statistical DLC fluxes increase as electrons drift eastwards, increasing up to the minimum B along 
the given L-shell before showing a sudden drop close to the minimum B point, also consistent with physical 
expectations. This seemingly obvious sanity check should be performed for similar analysis in future studies to 
verify that the inferred precipitating fluxes are, in fact, realistic and are not contaminated by the trapped fluxes 
that can exceed the precipitating fluxes by several orders of magnitude.

It should be noted that this study focuses on the scattering into the drift loss cone. Very fast scattering can occur 
due to non-linear scattering and bounce loss cone fluxes may even exceed the trapped fluxes (Zhang et al., 2022). 
Such superfast precipitation cannot be identified with the ELFIN-L instrument and requires a spinning spacecraft 
that can observe all pitch angles. A very localized and short-lived very fast scattering on the dusk side may be 
also potentially overlooked by this statistical study.

Our findings show that in a statistical sense, the dawn side scattering into the drift loss cone is much more 
efficient than the dusk side scattering. That is an indication that at the MeV energies, chorus waves that are 
observed predominantly on the dawn side provide more scattering into the drift loss cone than EMIC waves that 
are observed on the dusk side. These findings are also consistent with the conclusions of Shprits et al. (2013,  
2016, 2017, 2022), Drozdov et al. (2015, 2017, 2020, 2022), Aseev et al. (2017), Qin et al. (2019), and Usanova 
et al. (2014) who argued that EMIC waves are most efficient at multi-MeV and not very efficient at MeV ener-
gies. Similar results are obtained using the POES satellite data and presented in Supporting Information S1.

The companion data publications provide all Level 1, 2, and 3 data, including flagged data points that would 
allow to reproduce of this investigation and conduct additional investigations of individual events and conjunction 
studies.

Data Availability Statement
All data used can be found in the accompanying data publications Michaelis and Shprits (2023a, 2023b, 2023c,  
2023d,  2023e), and Shprits and Michaelis  (2023). NOAA POES data that is used in Supporting Infor-
mation  S1 of this study is publicly available and can be obtained from https://www.ncei.noaa.gov/data/
poes-metop-space-environment-monitor/access/l1b/v01r00/.
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