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Abstract Mineral dust is one of the most abundant atmospheric aerosol species and has various far‐reaching
effects on the climate system and adverse impacts on air quality. Satellite observations can provide spatio‐
temporal information on dust emission and transport pathways. However, satellite observations of dust plumes
are frequently obscured by clouds. We use a method based on established, machine‐learning‐based image in‐
painting techniques to restore the spatial extent of dust plumes for the first time. We train an artificial neural net
(ANN) on modern reanalysis data paired with satellite‐derived cloud masks. The trained ANN is applied to
cloud‐masked, gray‐scaled images, which were derived from false color images indicating elevated dust plumes
in bright magenta. The images were obtained from the Spinning Enhanced Visible and Infrared Imager
instrument onboard the Meteosat Second Generation satellite. We find up to 15% of summertime observations
in West Africa and 10% of summertime observations in Nubia by satellite images miss dust plumes due to cloud
cover. We use the new dust‐plume data to demonstrate a novel approach for validating spatial patterns of the
operational forecasts provided by the World Meteorological Organization Dust Regional Center in Barcelona.
The comparison elucidates often similar dust plume patterns in the forecasts and the satellite‐based
reconstruction, but once trained, the reconstruction is computationally inexpensive. Our proposed
reconstruction provides a new opportunity for validating dust aerosol transport in numerical weather models and
Earth system models. It can be adapted to other aerosol species and trace gases.

Plain Language Summary Most dust and sand particles in the atmosphere originate from North
Africa. Since ground‐based observations of dust plumes in North Africa are sparse, investigations often rely on
satellite observations. Dust plumes are frequently obscured by clouds, making it difficult to study the full extent.
We use machine‐learning methods to restore information about the extent of dust plumes beneath clouds in 2021
and 2022 at 9, 12, and 15 UTC. We use the reconstructed dust patterns to demonstrate a new way to validate the
dust forecast ensemble provided by theWorld Meteorological Organization Dust Regional Center in Barcelona,
Spain. Our proposed method is computationally inexpensive and provides new opportunities for assessing the
quality of dust transport simulations. The method can be transferred to reconstruct other aerosol and trace gas
plumes.

1. Introduction
Mineral dust constitutes one of the major aerosol types in the atmosphere by mass fraction (Pósfai &
Buseck, 2010). It has profound direct and indirect effects in the Earth system, for example, by directly affecting
atmospheric radiative transfer, by acting as cloud condensation and ice nuclei, and by providing nutrients to
terrestrial and marine ecosystems, including the fertilization of the Amazon rainforest by North African dust (e.g.,
Bristow et al., 2010; Buseck & Pósfai, 1999; Goudie, 2009; Griffin & Kellogg, 2004; Hoose et al., 2010; Kok
et al., 2023; Mahowald et al., 2017; Pósfai & Buseck, 2010; P. Seifert et al., 2010; Swap et al., 1992; Talbot
et al., 1986). Furthermore, North African dust can be linked to Hurricane activity in the North Atlantic (Evan
et al., 2006; Strong et al., 2018). Mineral dust also provides surfaces for chemical reactions and can, thus, act as a
sink for certain chemical compounds (Buseck & Pósfai, 1999; Pósfai & Buseck, 2010). In addition to these
effects, dust storms have multi‐faceted impacts, including disruption of public services, public events, economic
activity, and air traffic, as well as reducing photovoltaic energy production, adversely impacting public health,
and diminishing agricultural yields (Al‐Hemoud et al., 2017; Goudie, 2014; N. Middleton, 2017; Monteiro
et al., 2022; Stefanski & Sivakumar, 2009). In addition to reduced air quality by particulate matter, adverse public
health impacts also stem from the co‐emission of microorganisms, bacteria, fungi, and viruses with dust particles
(Griffin, 2007). While Europe itself lacks large source regions of mineral dust, dust transported to Europe is
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specifically linked to both adverse impacts on human health, and disruption of transport and public services, but
also linked to an enhanced melting of Alpine glaciers when the dust is deposited (Di Mauro et al., 2019; Gabbi
et al., 2015; Karanasiou et al., 2012; Oerlemans et al., 2009; Monteiro et al., 2022; Q. Wang et al., 2020).

North Africa is by far the largest source region of mineral dust (Huneeus et al., 2011; Kok et al., 2021, 2023;
Tanaka & Chiba, 2006). Due to the sparse ground‐based observations in Northern Africa, studying emissions of
Saharan dust strongly relies on satellite observations. Dust emission and transport processes are frequently linked
with the presence of clouds (e.g., Allen et al., 2013; Ben‐Ami et al., 2009; Bou Karam et al., 2010; Bou Karam
et al., 2014; Fromm et al., 2016; Heinold et al., 2013; Knippertz & Todd, 2012; Roberts & Knippertz, 2014).
Consequently, the full spatial extent of dust plumes as observed by satellite‐borne instruments is often obscured
by clouds. In this study, we propose to resolve the shortcoming with a novel machine‐learning‐based recon-
struction of North African dust plumes, which employs image in‐painting techniques.

Geostationary satellites can provide observations with high temporal resolution. One sensor facilitating this is the
Spinning Enhanced Visible and Infrared Imager (SEVIRI), a passive radiometer and the primary instrument
onboard the Meteosat Second Generation (MSG) satellites (Schmetz et al., 2002). SEVIRI provides measure-
ments of radiance from 12 different spectral channels and one broadband channel every 15 min. The spectral
channels are centered around wavelengths between λ = 0.635 μm and λ = 13.40 μm. By combining the infor-
mation from different instrument channels, false‐color RGB images are created. In RGB color spaces, each color
can be decomposed into red (R), green (G), and blue (B) components. On these RGB images various atmospheric
features, such as different cloud types, air masses, trace gases like SO2, volcanic ash, and mineral dust can be
identified. The RGB product, on which dust features are shown in bright magenta, the Dust RGB, assigns
(differences of) brightness temperatures from three infrared bands, specifically λ = 8.7 μm, 10.8 μm, and
λ = 12.0 μm, to the images' red, green, and blue channels (Banks et al., 2019; Lensky & Rosenfeld, 2008;
Schepanski et al., 2007). This product has been used for studies of dust emission frequencies and transport
pathways (e.g., Allen et al., 2013; Ashpole & Washington, 2012; Bou Karam et al., 2010, 2014; Dhital
et al., 2020; Schepanski et al., 2007, 2012; Solomos et al., 2017; Trzeciak et al., 2017; H. Yu et al., 2021) with the
caveat that dust beneath clouds is not visible.

No attempt to resolve the cloud‐masking of dust plumes in satellite images has been made to date, but approaches
for other cloud‐obscured features have been successfully tested. These features were often stationary and often
subject to only small temporal changes, such as land cover information (Chauhan et al., 2021; Chen et al., 2020;
Czerkawski et al., 2022; Enomoto et al., 2017; L. Liu &Hu, 2021; Li et al., 2020; Pan, 2020; Sarukkai et al., 2020;
Singh & Komodakis, 2018; M. Zhao et al., 2021; Zi et al., 2022). Further examples are for land‐surface tem-
perature (Sarafanov et al., 2020;Weiss et al., 2014; W. Zhao &Duan, 2020), evapotranspiration (Cui et al., 2020),
sea‐surface temperature (Dong et al., 2019), and chlorophyll a (Stock et al., 2020).

A substantial amount of dust emissions and consequently transport might be obscured by clouds. Convection‐
permitting simulations over West Africa indicate a diurnal cycle of dust emission coinciding with cloud cover
in summertime West Africa. Between ∼6% (19:00 local time) and up to 55% (10:00 local time) of dust emissions
in West Africa occur during clear sky conditions in the simulation (Heinold et al., 2013). Unlike cloud‐obscured
features like land cover and chlorophyll a, dust storms as well as clouds co‐develop in time and space. Dust
emission in Northern Africa is frequently linked to outflows from mesoscale convective systems during summer
(Allen & Washington, 2014; Allen et al., 2013; Bou Karam et al., 2014; Heinold et al., 2013; Roberts &
Knippertz, 2014). A significant amount of North African dust transported over the North Atlantic is above and
within the marine boundary layer and interacts with stratiform clouds (Ben‐Ami et al., 2009). Baroclinic storms
are another mechanisms for long‐distance dust transport, which is associated with clouds (Fiedler et al., 2014;
Fromm et al., 2016; Schepanski & Knippertz, 2011).

Machine learning methods have been increasingly used for automatic image in‐painting, that is, often the repair of
damaged or deteriorated photos. In‐painting algorithms can be roughly classified into three main types:
sequential‐based algorithms, convolutional neural net‐based algorithms, and generative adversarial networks
(GANs)‐based approaches. Convolutional neural networks (CNNs) typically capture the global structure better
than sequential‐based algorithms (Elharrouss et al., 2020). CNNs have been employed for cloud removal, for
example, by Chen et al. (2020). Another type of artificial neural networks (ANNs) commonly employed in in‐
painting and subsequently cloud‐removal tasks are GANs (Chauhan et al., 2021; Elharrouss et al., 2020; Eno-
moto et al., 2017; Jiao et al., 2019; L. Liu & Hu, 2021; Li et al., 2020; Pajot et al., 2019; Stock et al., 2020; J. Yu
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et al., 2018; Zi et al., 2022). Compared to CNNs, GANs typically require a smaller training data set for in‐painting
or reconstruction tasks, including in‐painting of remote sensing data, and are usually capable of reconstructing
large‐scale features. Reconstructions by GANs appear realistic, but do not necessarily completely match the
ground truth (Dong et al., 2019; Elharrouss et al., 2020; Kadow et al., 2020). Similar to the climate data
reconstruction by Kadow et al. (2020) we ultimately attempt a classification, for which it may be disadvantageous
if the reconstructions do not necessarily match a ground truth. To avoid such disadvantages, we refrained from
using algorithms based on GANs and chose an established CNN‐based method.

G. Liu et al. (2018) proposed an algorithm based on partial convolutions, which successfully repaired irregular
holes in images. Owning to the similarity to convolutional networks for image segmentation, referred to as UNets
(Ronneberger et al., 2015), the algorithm possesses a UNet‐like architecture (G. Liu et al., 2018). Furthermore, the
algorithm was shown to robustly perform regardless of hole size, location, and distance to the image border and
outperformed several other algorithms of all three types. Subsequently, the algorithm was adapted to geophysical
data by Kadow et al. (2020). This adapted algorithm, climatereconstructionAI (CRAI, Inoue et al., 2022), was
successfully used to restore historical temperature anomalies (Kadow et al., 2020). Owning to the robust per-
formance of the original image in‐painting algorithm and the successful adaptation to geophysical data, we use the
CRAI code as the basis of our work.

With the aim of restoring the spatial extent of (partially) cloud‐obscured dust plumes in North Africa, we employ
an ANN, which is described in Section 2.2.1. As illustrated in Figure 1, we train the CRAI algorithm (blue box) on
reanalysis data of the dust aerosol optical depth (AOD) (τdust), which we overlaid with satellite‐based cloud
masks. This reanalysis data was provided by the Copernicus Atmosphere Monitoring Service (CAMS) (Inness
et al., 2019b), indicated by the gray‐framed box. The cloud masks were obtained from the MSG‐SEVIRI cloud
mask product CLM (EUMETSAT, 2009a). The data sets will be described in more detail in Sections 2.1.1 and
2.1.2. To test the trained ANN's performance, we reconstruct reanalysis fields of τdust, to which we applied the
temporally corresponding cloud masks (not shown). The trained ANN is then used to reconstruct the below‐cloud

Figure 1. Schematic illustration of this study's set‐up. This study relies on the publicly available climatereconstructionAI
(CRAI) code (blue box). To train the CRAI we use a combination of dust aerosol optical depth fields provided by Copernicus
Atmosphere Monitoring Service and the Meteosat Second Generation‐Spinning Enhanced Visible and Infrared Imager
(SEVIRI) cloud mask product CLM provided by EUMETSAT (gray‐framed box). Once trained, we provide gray‐scaled
images, we derived from the SEVIRI Dust RGB product, combined with the corresponding cloud mask as input (upper green
box). The CRAI provides reconstructed gray‐scaled images, in which cloud‐masked pixels have been in‐painted as output
(lower green box).
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extent of dust plumes by applying it to gray‐scaled and cloud‐masked images based on the MSG‐SEVIRI Dust
RGB product (EUMETSAT, 2009b, indicated by the green boxes in Figure 1). The gray‐scaling is further
described in Section 2.2.2.

This study's aim is to increase the information on the spatial extent of dust plumes over a large area in North
Africa, thus, capturing dust plumes across scales including synoptic to meso‐scale events. One long‐term goal is
to provide increased means to both constrain and validate dust plume representations from numerical models,
whether they are climate models or forecast models, which currently show large uncertainties (e.g., Evan
et al., 2014; Terradellas et al., 2022; A. Zhao et al., 2022).

2. Methods and Data
2.1. Data Sets

2.1.1. Satellite Data Sets

We obtain observational information about the spatial extent of dust plumes from EUMETSAT's MSG‐SEVIRI
Dust RGB product (EUMETSAT, 2009b). The Dust RGB images were provided by EUMETSAT, reaching back
in time to 1 September 2020. They are operationally created by assigning a different combination of brightness
temperature observations, TB, from different SEVIRI infra‐red channels to each of the RGB channels, as follows
(Lensky & Rosenfeld, 2008):

R =
TB,12.0μm − TB,10.8μm + 4K

6K
(1)

G = (
TB,10.8μm − TB,8.7μm

15K
)

1/2.5

(2)

B =
TB,10.8μm − 261K

28K
(3)

Here the wavelength in the subscripts denotes the wavelength around which the respective channel is centered,
with the full spectral width depending on the channel (Schmetz et al., 2002). As a result and as already mentioned,
the Dust RGB product features dust plumes in bright shades of magenta. Quartz‐mineral‐containing sand surfaces
are seen in light‐blue shades. Depending on the cloud type, clouds may feature in Dust RGB images in brownish
shades, black, and/or dark green (Banks et al., 2019; Lensky & Rosenfeld, 2008).

We select data over North Africa, specifically, the region between the longitudes of 20◦W and 52◦E and the
latitudes of 4◦N and 40◦N. The region is selected such that we obtain a quadratic image that is required for the
ANN‐based algorithm (see Section 2.2.1). The size of each image was reduced to 128 pixels by 128 pixels to
increase the computational throughput. The reduced resolution images were provided by EUMETSAT via its
application programming interface, which is compliant with the OpenGIS® Web Map Server Implementation
(Version 1.3.0, de la Beaujardiere, 2006), a standard defined by the Open Geospatial Consortium. This reduction
in resolution results in each pixel having a dimension of 0.28125◦ in North‐South‐direction and 0.5625◦ in East‐
West‐direction. Thus, each pixel spans roughly 30 km in the North‐South direction and 50–60 km in the East‐
West direction. A pixel's arc length in the East‐West direction decreases with increasing distance to the Equator.

Both the training process and the actual dust plume reconstruction rely on the operational cloud mask product,
called CLM, and provided by EUMETSAT (EUMETSAT, 2009a). The CLM product classifies pixels as either
cloudy or clear. Clear sky pixels are further subdivided according to the surface, that is, land or water surface. This
classification is performed based on multispectral threshold techniques (Lutz, 1999; Schmetz et al., 2002). The
CLM data used here covers the same region of interest with the same horizontal resolution as the Dust RGB
images.

In addition to geostationary satellite data from MSG SEVIRI, we also use satellite data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard the satellites Aqua and Terra for a comparison of our
results. The satellites Terra and Aqua are orbiting the Earth in a sun‐synchronous orbit overpassing the equator in
the morning and afternoon respectively (see e.g., King et al., 2013). Here, we useMODIS Level 3 data (Collection
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6.1) (MODIS Atmosphere Science Team, 2017a, 2017b). The data was retrieved using the Deep Blue algorithm,
which provides AOD (τ) and Ångström exponent (α) data over land surfaces (Hsu et al., 2013; Sayer et al., 2013).

2.1.2. Dust Forecasts and Reanalysis

In addition to satellite data, our study also uses dust forecast and reanalysis data. Reanalysis data provides a
consistent and global overview of τdust. We use the reanalysis of τdust from CAMS (Inness et al., 2019a, 2019b) for
training the ANN (Section 2.2.1). CAMS dust reanalysis data is provided in three‐hourly intervals at the main and
intermediate synoptic times, that is, at 00:00 UTC, 03:00 UTC, and so forth. For additional analysis, we also use
the second Modern‐Era Retrospective analysis for Research and Application (MERRA‐2) from NASA (Gelaro
et al., 2017; Randles et al., 2016, 2017). MERRA‐2 provides hourly data.

We further use the dust forecast data provided by theWorldMeteorological Organization (WMO) Barcelona Dust
Regional Center and the partners of the Sand and Dust Storm Warning Advisory and Assessment System (SDS‐
WAS) for Northern Africa, the Middle East and Europe. These dust forecasts cover a geographical area of in-
terest, which is bound by the longitudes of 25◦W and 60◦E and the latitudes of 0◦N and 65◦N (Terradellas
et al., 2022). The WMO Barcelona Dust Regional Center additionally provides a multi‐model median of the
available forecast data, which is obtained by regridding all other models to a shared grid with 0.5◦ × 0.5◦ hor-
izontal resolution using bilinear interpolation (Basart et al., 2022; Terradellas et al., 2022). Table 1 lists the
models, their horizontal resolution, and data availability in 2021 and 2022. Of the models listed in Table 1 only
CAMS‐IFS, DREAM8‐CAMS, NASA‐GEOS, and MOCAGE employ data assimilation of dust aerosol. MODIS
observations form the backbone of the data assimilation. Thus, the numerical dust forecasts can be considered
independent of SEVIRI observations. Analogously to the processing of the reanalysis data, the WMO's forecast
data was selected for our region of interest and remapped bilinearly to the Dust RGB images' horizontal
resolution.

Table 1
Overview of Output From Numerical Forecast Models Provided by the World Meteorological Organization Barcelona Dust Regional Center and the Partners of the
Sand and Dust Storm Warning Advisory and Assessment System (SDS‐WAS) for Northern Africa, the Middle East and Europe

Model Domain
Horizontal
resolution

Availability 2021
(days)

Availability 2022
(days) Reference

ALADIN Regional 25 km × 25 km 301 210 Termonia et al. (2018), Mokhtari et al. (2012)

BSC‐DREAM8b Regional 1
3
◦
× 1
3
◦ 176 120 Nickovic et al. (2001), Pérez et al. (2006), Basart et al. (2012)

CAMS‐IFS Global ∼9 kma 324 353 Rémy et al. (2019)

DREAM8‐CAMS Regional 1
3
◦
× 1
3
◦ 328 360 Pejanovic et al. (2010), Nickovic et al. (2016)

EMA‐RegCM4 Regional 45 km × 45 km 299 171 Zakey et al. (2006)

ICON‐ART Regional 20 km × 20 km 304 340 Rieger et al. (2015)

LOTOS‐EUROS Regional 0.5◦ × 0.25◦ 316 353 Manders et al. (2017)

MOCAGE Global 1◦ × 1◦ –b 226 El Amraoui et al. (2022)

MONARCH Regional 1
3
◦
× 1
3
◦ 343 345 Pérez et al. (2011), Klose et al. (2021)

NASA‐GEOS Global 0.25◦ × 0.3125◦ 304 348 Colarco et al. (2010)

NCEP‐GEFS Global 1◦ × 1◦ 324 343 Lu et al. (2016)

NOA Regional 0.19◦ × 0.22◦ 111 235 Flaounas et al. (2017)

SILAM Global 0.5◦ × 0.5◦ 222 339 Sofiev et al. (2015)

WRF‐NEMO Regional 18 km × 18 km 82 251 Kontos et al. (2021)

ZAMG‐WRF‐CHEM Regional 0.2◦ × 0.2◦ –b 198 LeGrand et al. (2019)

MULTI‐MODEL
(median forecast)

– 0.5◦ × 0.5◦ 360 365 Basart et al. (2019), Terradellas et al. (2022)

Note.Model names are as indicated by WMO Barcelona Dust Regional Center. MULTI‐MODEL denotes the median forecast as provided by the WMO Barcelona Dust
Regional Center. Note that after 29 September 2022, no further operational forecasts were provided by the BSC‐DREAM8b model. aCAMS‐IFS uses a octahedral
reduced Gaussian grid (O1280) with a horizontal distance of 8–10 km between grid points (Malardel et al., 2016). bForecasts are only available in 2022.
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Both reanalysis data and numerical dust forecasts were remapped to the Dust RGB images' resolution of 128
pixels by 128 pixels with bilinear interpolation using CDO, version 2.0.4 (Schulzweida, 2021). The two‐
dimensional fields at a given time will be referred to as images.

2.2. Dust Plume Reconstruction

2.2.1. ANN and Training Description

We stated in Section 1, we used the publicly available CRAI algorithm (Inoue et al., 2022; Kadow et al., 2020),
which is a UNet‐like algorithm based on partial convolutions. The original in‐painting algorithm, on which the
CRAI algorithm is based, was applied to restore irregular holes in photos. To do so, G. Liu et al. (2018) chose a
network architecture based on the prior work by Iizuka et al. (2017) and replaced all convolutional layers with
partial convolutional layers. The partial convolutional layers were combined mask updates, which provide input
for the next partial convolutional layer. In the course of adapting the algorithm to geophysical data, Kadow
et al. (2020) reduced the number of partial convolutional layers from seven to three and modified the algorithm
further, so it only outputs data on a single channel. The ANN was trained on τdust data provided by CAMS,
introduced in Section 2.1.2. The cloud masks were derived from the temporally corresponding MSG‐SEVIRI
product. To be more specific, we applied the available CLM clouds masks for a given time to the correspond-
ing reanalysis field of τdust for this same time step. This is indicated in the gray box in Figure 1. We chose to use
observed cloud patterns and refrained from using synthetic clouds for training purposes, since the latter may
introduce unrealistic patterns during the training process (Enomoto et al., 2017). In addition, both the dust
outbreak and the cloud cover are subject to the same atmospheric state, especially the pressure and wind fields.
Combining cloud‐free satellite images with a set of different cloud masks, thus, would pose the risk of training the
ANN on non‐physical combinations of cloud and dust patterns. We eliminate such risks by using masks of
satellite‐observed clouds.

The training was performed on the German Climate Computing Center's (Deutsches Klimarechenzentrum,
DKRZ) cluster Levante. Specifically, we used the cluster's GPU partition, on which each node consists of two
CPUs equipped with AMD 7713 processors and four Nvidia A100 GPUs. The training required ∼13 hr of wall‐
time.

For initial tests, the trained neural network was applied to the CAMS reanalysis fields of τdust from 1 January 2022
to 30 June 2022. Data from this period was exclusively used for these initial tests. Analogously to the training data
set, the reanalysis was masked with the MSG‐SEVIRI cloud mask product. Figure 2 shows two‐dimensional
histograms of the mean CAMS reanalysis on the x‐axis and the mean reconstruction on the y‐axis. The
different panels represent different sizes of the training data set. The first training data set consists of a total of
16 months, spanning from 1 September 2020 to 31 December 2021 (Figure 2a). For three‐hourly time steps as
dictated by the reanalysis data with occasionally missing cloud‐mask data from SEVIRI, we obtained 3,843 pairs
of masks and reanalysis “images.” This training data set was augmented by rotating the images by 90◦, thus
quadrupling the data set size to a total of 15,372 images (Figure 2b). Additional non‐augmented training data sets
comprised half a year each, and are shown for summer: 1 April 2021 to 30 September 2021 (1,422 images,
Figure 2c) and winter: 10 January 2020 and 31 March 2021 (1,449 images, Figure 2d). While previous work on
cloud removal has employed augmentation to increase the training data set (e.g., Li et al., 2020), the satellite
images covered a smaller area. The simple augmentation technique of rotation of the quadratic images, which
cover a considerable spatial extent, by 90◦ may pose the risk of introducing combinations of spatial cloud and dust
patterns, which are unlikely to be representative of true atmospheric motion. This risk is not directly mitigated
and, thus, may counteract potential improvements gained from an increased size of the training data set.

As can be inferred from Figure 2 and the values of root mean squared error (RMSE), mean absolute percent error
(MAPE), and r, there is generally good agreement between the mean reconstructed τdust and the mean τdust from
reanalysis.

While the ANN trained for summer marginally outperforms the non‐augmented training data set of 16 months
with respect to RMSE, MAPE, and r, we chose the ANN trained on the data set with 16 months of reanalysis and
corresponding cloud mask data (Figure 2a) since it covers more than a full year, which captures some seasonal
differences in spatial patterns of τdust.

AGU Advances 10.1029/2023AV001042

KANNGIEßER AND FIEDLER 6 of 27



Since domain averages of τdust may obscure differences in the information on the spatial patterns in the original
and reconstructed reanalysis fields of τdust, we calculated the structural similarity index measure (SSIM) between
the original and the reconstructed reanalysis fields. The SSIM quantifies the perceived differences in structural
information between two images (Z. Wang et al., 2004). It is a composite measure of means (or luminance),
standard deviations (or contrast), and correlation coefficient (or structure) (Brunet et al., 2012; Palubinskas, 2014;
Z. Wang et al., 2004). The SSIM takes values between − 1 and 1. The higher the agreement of two images, the
closer the SSIM is to 1. Several studies on image in‐painting and cloud removal applications have used SSIM as
an evaluation criterion (e.g., Chauhan et al., 2021; Czerkawski et al., 2022; Qin et al., 2021; Li et al., 2020; G. Liu
et al., 2018; Zi et al., 2022). We calculate SSIM using the implementation in the software package scikit‐image
(van der Walt et al., 2014).

To further validate the reconstruction, we also calculated the anomaly correlation coefficient (ACC) as defined by
Jolliffe and Stephenson (2011) between the original and the reconstructed reanalysis. The ACC, a tool used for
validating numerical forecasts, calculates the Pearson's correlation coefficient between the anomalies of a forecast
and an analysis of a climatological value. Here, we considered the reconstructed reanalysis field as our forecast
and the original reanalysis as our analysis. For each day and time, we calculated the 15‐year mean of τdust from
CAMS reanalysis between 1 January 2005 and 31 December 2019. The distribution of the ACC values for the four
training data sets is shown in Figure 3 in the form of a violin plot (Hintze & Nelson, 1998). While for individual
pairs the ACC can take values as low as ∼0.1, both the median and the mean value of the ACC, indicate high
agreement between the reconstructed and the original reanalysis. The distribution of values of SSIM also indicates
a high agreement in terms of structural information between the reconstructed and the original reanalysis fields.
The mean and median values are show above the corresponding distribution as med (ACC) (and med (SSIM) )
and ACC (and SSIM) respectively.

To further assess the quality of the reconstruction examples of the unmasked reanalysis (left column) and the
corresponding masked reanalysis (center column), and reconstruction (right column) are shown in Figure 4. The

Figure 2. Two‐dimensional histograms of the mean non‐masked τdust from Copernicus Atmosphere Monitoring Service
reanalysis and the mean reconstructed τdust. The shading represents the density of the data points in the respective size bin
with white indicating no available data. For each panel, the root mean squared error and the mean absolute percent error of
the reconstruction with respect to the reanalysis are given. Furthermore, the Pearson correlation coefficient r between
reconstructed and original, that is, non‐masked, reanalysis is shown.
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rows represent different examples of reconstructions, showcasing the reconstructions for which we have seen the
best performance as well as the two reconstructions with the poorest agreement with the original reanalysis. The
first row shows the case of 6 January 2022, 6:00 UTC. For this case, the reconstruction and original reanalysis
showed the highest agreement, quantified by both the RMSE and the directed Hausdorff distance. The directed
Hausdorff distance is a measure of image (dis)similarity. A directed Hausdorff distance of zero indicates perfect
agreement. It will be introduced in more detail in Section 3.3. The ACC for this case was 0.9988 and the SSIM
was 0.9918. The reconstruction from 3 February 2022 at 9:00 UTC resulted in an overestimated mean of τdust.
This case is represented by the individual point visible in both top row panels of Figure 2, which is farthest from
the 1:1 line. That difference between reconstruction and reanalysis results in an RMSE of 4.975, the largest
between two individual images. This difference results in an ACC of 0.1370 and a SSIM of 0.9595. Closer in-
spection in Figure 4 reveals, that the deviation can be attributed to a limited number of pixels north of the Madeira
Archipelago filled with high very high values of τdust. The reconstruction for 16 March 2022, 03:00 UTC, which
has the largest value of the directed Hausdorff distance between the reconstruction and the ground truth, an ACC
of 0.7118, and a SSIM of 0.9408, is shown the third row of Figure 4. The trained ANNwas not able to reconstruct
the full spatial pattern of the dust plume, which is the prominent feature of the image's western half. The strong
advection of dust over the Iberian Peninsula was not reproduced in the reconstruction. Such infrequent cases of
strong dust advection, in which the dust plume is largely obscured by clouds extending to the image boundary

Figure 3. Distribution of anomaly correlation coefficients (top panel) between original and reconstructed dust aerosol optical
depth reanalysis. Anomalies were calculated with respect to the 15‐year mean for each day and time, as obtained from
Copernicus Atmosphere Monitoring Service reanalysis from 2005 to 2019. The bottom panels shows the distribution of the
structural similarity index measure between the reconstruction and the corresponding original reanalysis field. Long‐dashed
lines indicate the median value, whereas, short‐dashed lines indicate the first and third quartiles.
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over the ocean, can be considered particularly challenging for reconstruction. However, while the reconstruction
did not fully reproduce the spatial pattern of τdust, the reconstruction added information compared to the cloud‐
masked input. The fourth row shows a case (27March 2022, 18 UTC) from a period of high mean values of τdust in
the study area with an ACC of 0.9928 and a SSIM 0.9711. The case from 12 June 2022, 18 UTC, shown in the fifth
row, was randomly selected from the month of June 2022. The ACC for this case was 0.9680, while the SSIMwas
0.9404.

As demonstrated in Figures 2–4 the trained ANN is capable of successfully reconstructing the cloud‐obscured
values and patterns of τdust during the first half of 2022. The reconstruction's purpose is to classify individual
pixels as dust‐containing or dust‐free. Thus, we consider the error stemming from pixels filled with high values of
τdust during the reconstruction, as for the case of 3 February 2022 at 9:00 UTC (see Figure 4) as negligible.

2.2.2. Gray‐Scaling of Dust RGB Images

Prior to reconstructing the spatial extent of dust plumes, we isolated the dust in the satellite observations. To do so,
the images from MSG‐SEVIRI's Dust RGB product were converted to gray‐scaled images, where gray

Figure 4. Comparison of Copernicus Atmosphere Monitoring Service (CAMS) reanalysis used as ground truth (left column), cloud‐masked CAMS reanalysis, used as
input (center column), and reconstruction (right column) for five different cases, represented by the rows. Note, that rows 2 and 3 represent the reconstructions resulting
in the largest deviations from the ground truth with respect to root mean squared error (Case 3 February 2022, 09:00 UTC) and directed Hausdorff distance (Case 16
March 2022, 03:00 UTC).
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corresponds to pink color shadings assigned to suspended dust in the original
Dust RGB product. In other words, we reduced the satellite images, which
consisted of the three RGB channels, to a gray‐scaled, that is, single channel,
image. The gray‐scaling was based on perceptional color differences. Gray‐
scaling is performed to reduce the complexity of the dust identification in
satellite images by using only a one‐dimensional data in different gray scales.
In addition, the CRAI algorithm used in this study, requires one‐dimensional
or single‐channel data. These perceptional color differences were calculated
according to definitions by the International Commission on Illumination
(Commission Internationale de l’Éclairage, CIE) (Robertson, 1990) in CIE-
LAB color space. To do so the RGB colors in the images provided by
EUMETSAT need to be converted to CIEXYZ color space and further to
CIELAB. The conversion was based on the assumption, that EUMETSAT
uses the sRGB color space, which is the standard for digital online images
(International Electrotechnical Commission, 1999). The conversion to
CIEXYZ was performed analogously to the conversion laid out by Fairman
et al. (1997), Brill (1998), but using the conversion matrix values as defined
by the sRGB standard (International Electrotechnical Commission, 1999).

Each RGB channel has values between 0 and 255. Thus, white would
correspond to (0, 0, 0) and black to (255, 255, 255). In the CIEXYZ color
space, the luminance is encoded in Y and the XZ plane includes all possible
chromaticities at a value of Y. In the CIELAB color space, L* denotes the
lightness, a* represents the green‐red‐oriented axis, and b* represents the
blue‐yellow‐oriented axis. Negative values of a* indicate green, whereas,
negative values of b* indicate blue. The positive values represent red and

yellow on the respective axis (Schanda, 2007). CIELAB forms a Cartesian and nearly uniform color space, which
eases the quantification of perceptional color differences ΔE. ΔE is defined by Robertson (1990)

ΔE = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]
1
2. (4)

ΔL*, Δa*, and Δb* denote the differences between the corresponding values of L*, a*, and b* of the respective
colors.

Equation 4 forms the basis of the conversion of Dust RGB images, in which dust plumes are seen as bright
magenta (pink), to gray‐scale images. In these gray‐scale images, magenta (RGB= (255, 0, 255)) was assigned to
white. Colors exceeding a pre‐defined threshold value of the perceptional color difference ΔE compared to
magenta were assigned black. Gray values were assigned based on values of ΔE below the threshold. We denote
the threshold for identifying dust in the image as ΔEcut.

We identify the value of the threshold based on earlier studies and own sensitivity tests. Banks et al. (2019)
investigated the effect of different environmental conditions, such as column water vapor, surface emissivity, skin
temperature, and dust layer height on the color in the RGBDust product using radiative transfer calculations. This
investigation focused on the months of June and July in 2011, 2012, and 2013. They identified only a limited
number of cases (0.04% of day‐time cases and 5.47% of night‐time cases), which resulted in RGB colors with
values of the blue channel other than 255. Figure 5 shows the colors for a fixed value of the blue component of 255
and variable values of the red (y‐axis) and the green (x‐axis) components. The corresponding values of ΔE with
respect to magenta with RGB = (255, 0, 255) are shown as isolines. Furthermore, Banks et al. (2019) provided an
overview of the mean colors stemming from the combinations of aforementioned conditions. For near‐pristine
cases, the τdust was assumed to take values with τdust ≤ 0.2. For unambiguous cases of dust storms, Banks
et al. (2019) set τdust ≥ 2. Using Equation 4 the perceptional color difference ΔE between these mean colors
reported by Banks et al. (2019) and magenta with RGB = (255, 0, 255) was calculated. For the different mean
pristine cases, the perceptional color difference takes values with 19.4 ≤ ΔE ≤ 129.4, whereas, for mean cases
with a dust load ΔE takes values in the range of 29.7 and 88.0. However, when additionally taking the skin
temperature Tskin into account, the resulting ranges are for cool (Tskin < 300 K), pristine mean cases in

Figure 5. RGB colors as a function of value of the red component (along y‐
axis) and the green component (along x‐axis) for a fixed value of the blue
component of 255. Isolines indicate perceptional color differences ΔE
calculated using Equation 4. For most parts of our study, we set
ΔEcut = 51.9, indicated by the solid line.
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19.4≤ΔE ≤ 92.6, for non‐cool, that is, Tskin > 300 K, pristine cases 60.2≤ΔE ≤ 129.4. For cool dust cases ΔE is
in the range between 29.7 and 72.3 and respectively in the range between 31.0 and 88.0 for non‐cool dust. As a
consequence, the night‐time observations, which are considered to represent the cases of a cool skin temperature
are excluded from the reconstruction. Note, that we use the classification of cases as defined by Banks
et al. (2019). We set the cut‐off threshold in our gray‐scaling algorithm to ΔEcut = 51.9, marked with a solid
isoline in Figure 5. With this choice of ΔEcut, pristine cases are not expected to be falsely considered as dust cases,
while the true number of dust cases is potentially underestimated. Prior to the process of in‐painting (see, Kadow
et al., 2020), the gray‐scaled images are scaled to values between 0 and 1 as opposed to values between 0 and 255.

2.2.3. Effects of Coarser Spatial Resolutions on Plume Detection

Full‐resolution Dust RGB images and cloud masks have a spatial resolution in nadir direction of 0.041◦ or 4.8 km
(EUMETSAT, 2009a, 2009b; Schmetz et al., 2002). The images used in this study possess a coarser resolution of
0.28125◦ in North‐South‐direction and 0.5625◦ in East‐West‐direction. Due to this coarser resolution compared
to the full resolution images, it is expected that resampling of the satellite products, especially the Dust RGB
product, results in under‐counting the number of dust‐containing pixels in addition to under‐counting due to the
choice of ΔEcut (see above). This is expected to mainly concern dust plumes of small spatial scale in one
dimension. To gauge the effect of the resampling, the images were resampled from a 128‐pixel by 128‐pixel grid
to a 64‐pixel by 64‐pixel grid, that is, each pixel in these coarser resolution images corresponds to 0.5625◦ in
North‐South‐direction and 1.125◦ in East‐West‐direction. Subsequently, we trained another ANN using this
coarser resolution. Note, however, that this additionally trained ANN was only used to gauge the impact of the
image resolution. We will refer to the images with a size of 128 pixels by 128 pixels as high‐resolution images and
to the images with a dimension of 64 pixels by 64 pixels as low‐resolution images.

We test to what extent the spatial resolution of the satellite data might have an influence on the results. To that end,
Figure 6 shows two‐dimensional histograms of the fraction of dust‐containing pixels in low‐resolution images (64
pixels by 64 pixels) and high‐resolution images (128 pixels by 128 pixels). Here, observations and the corre-
sponding reconstructions at 9, 12, and 15 UTC were considered. The left panel refers to the direct observations,
that is, the gray‐scaled, cloud‐obscured Dust RGB images and the right panel refers to the ANN‐based re-
constructions. The dashed line indicates the best fit, which was obtained by linear regression. Regardless of the
resolution, the fraction of dust‐containing pixels is generally maintained, as can be inferred from the equation for
the best fit and the shape of the histograms. This is also reflected by the Pearson's correlation coefficient of
r= 0.94 in the case of the direct observations and of r= 0.93 in the case of the reconstructions. The reconstruction
maintains the general pattern well, as illustrated by the nearly unchanged value of r. Note, that the time required
for training on the low‐resolution images (64 pixels by 64 pixels) required roughly half the time, compared to the
training on the high‐resolution images (128 pixels by 128 pixels). Taking the high‐resolution images as a

Figure 6. Two‐dimensional histograms showing fraction of dust containing pixels in the gray‐scaled, cloud‐obscured Dust
RGB images in coarser and finer resolution (left) and the artificial neural net‐based reconstruction (right). Shading is as in
Figure 2. The dashed line indicates the best fit, obtained by using linear regression.
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reference, the coarser resolution results in a MAPE of the fraction of dust‐containing pixels of 46.59% for the
observations and 55.04% for the reconstructions. Thus, a finer resolution decreases the under‐counting of dusty
areas and improves the reconstruction's quality. As a consequence, there are trade‐offs between the re-
construction's quality and the reduced risk of under‐counting dust‐containing pixels on the one hand and the
training process' computational demand on the other hand. For the remainder of this study, the higher spatial
resolution of 128 pixels by 128 pixels was used to detect more spatial details of dust plumes.

2.2.4. Evaluation Methods

The level of agreement between the dust plume extent from our reconstructions and numerical forecasts was
evaluated using three different criteria, which have previously been employed to quantify image similarity.
Among these criteria is the SSIM, which has been introduced in Section 2.2.1.

Billet et al. (2008) used the directed Hausdorff distance to assess similarities between two images. As mentioned
in Section 2.2.1, the directed Hausdorff distance between two images is the largest distance of a point in the test
image to any point in the reference image. Thus, identical images have a directed Hausdorff distance of 0, and
with increasing differences between the images, the directed Hausdorff distance increases (Huttenlocher
et al., 1993). We calculated the Hausdorff distance of images from our reconstruction and from numerical
forecasts of individual models relative to the image from the median across all available numerical forecasts,
which we chose as a reference. Note, that the directed Hausdorff distance is asymmetric. In other words, the
directed Hausdorff distance from our reconstruction to the median forecast is not necessarily equal to the directed
Hausdorff distance from the median forecast to our reconstruction. In this study the directed Hausdorff distance
was calculated using the implementation in SciPy (Virtanen et al., 2020), which is based on work by Taha and
Hanbury (2015).

Another commonly used performance evaluation metric in image in‐painting and cloud removal studies (e.g.,
Elharrouss et al., 2020; G. Liu et al., 2018; Pan, 2020; Qin et al., 2021; Sarukkai et al., 2020; Zi et al., 2022) is the
peak signal‐to‐noise ratio (PSNR). The PSNR is defined as (Horé & Ziou, 2013)

PSNR = 10 ⋅ log10
max( Iref)

2

MSE
. (5)

Here the mean squared error is denoted as MSE. The MSE between an image I and a reference image Iref, which
both consist of n ⋅ m pixels is calculated by:

MSE =
1

nm
∑
n

i=1
∑
m

j=1
( Iij,re f − Iij)

2
(6)

For the binary images in our study, max(Iref) is equal to 1 and Equation 5 can be simplified to
PSNR = 10 ⋅ log10 MSE− 1. With increasing similarity between two images MSE → 0, and PSNR → ∞.

3. Results
3.1. Case Studies

We first perform two case studies to test our reconstructions and to gauge their ability to serve as a tool for
evaluating numerical forecasts of dust storms. Here we focus on observed dust cases that can be considered as
hard tests of our proposed method. The first case concerns a convective dust storm during summer. The numerical
models (see Table 1) are not expected to accurately forecast the dust plume, since their horizontal resolution is too
coarse to explicitly simulate convection (cf. Weisman et al., 1997). However, this may also present challenges for
the training data set, since the dust reanalysis depends on available satellite observations as well as an underlying
numerical forecast model. The second case study covers a synoptic‐scale dust storm in spring. While the hori-
zontal resolution of the numerical models is not expected to represent a challenge, the satellite image indicates
that a large part of the dust storm is entirely obscured by clouds, thus providing little guidance on the spatial
distribution of the dust plume in the cloudy sky.
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3.1.1. Convective Dust Storm: 22 August 2021, 09 UTC

The Dust RGB image from 22 August 2021 at 09:00 UTC is characterized by a dust plume extending from
Northern Mali to Southern Algeria. Visual inspection of the full‐resolution Dust RGB images reveals that dust
was originally lofted close to a convective cloud system at around 16:00 UTC on 21 August 2021 near the border
between Algeria and Niger. Starting from 23:15 UTC the dust plume decoupled from the motion of the convective
system and now followed an independent track. With the chosen threshold of the perceptional color difference of
ΔEcut= 51.9 the gray‐scaling approach does not identify the entire dust plume, as can be seen in the top left panel.
This serves as an example of potential under‐counting of dust pixels (see Section 2.2.2). In Figure 7, the top left
panel shows the Dust RGB image in 128 pixels by 128‐pixel resolution and highlights by white lines the areas in
which dust was detected. The top right panel shows τ as derived from observations by the MODIS instrument
aboard Terra. Note that this MODIS Level 3 product does not coincide with 09:00 UTC, but represents the closest

Figure 7. Comparison of Spinning Enhanced Visible and Infrared Imager (SEVIRI) and Moderate Resolution Imaging Spectroradiometer (MODIS) observations with
results from numerical dust forecasts, artificial neural net‐based reconstructions and reanalysis data for 22 August 2021, 09 UTC. Top right panel showDust RGB image
in 128 pixel by 128 pixel resolution and dust plumes detected by applying gray‐scaling are indicated by white contours. The top left panel shows τ from MODIS/Terra
observations for coarse particles (α > 0.75) with isolines indicating the different values. The middle panels show the reconstructed dust plumes in dark blue and the
isolines show the forecasted values of τdust. The forecast shown in the left panel was obtained from the DREAM8‐CAMS model and the forecast in the right panel from
the NASA‐GEOS model. The bottom panels show SEVIRI Dust RGB images as in the top right panel. White, hatched contours indicate reconstructed dust plumes,
whereas, isolines indicate the values of τdust from Copernicus Atmosphere Monitoring Service (left panel) and MERRA‐2 (right panel) reanalysis.
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overpass of Terra in time. Terra overpasses the Equator at 10:30 local time (cf., King et al., 2013). The panels in
the center row show a comparison between the spatial extent of the reconstruction (dark blue shading) and
forecasted fields of τdust from two numerical models (isolines). Since the horizontal resolution of the dust forecast
model ensemble (see Table 1) is too coarse to explicitly simulate deep convection on the model grids (Kain
et al., 2008), the forecast models are not expected to accurately predict associated dust plumes (Heinold
et al., 2013).

The MODIS/Terra observations of τ also indicate the presence of coarse aerosol at and near the Bodélé
Depression in Chad. The DREAM8‐CAMS model forecasts a small dust plume near the Bodélé Depression.
While the Dust RGB image in 128 pixels by 128‐pixel resolution does not indicate the presence of dust plumes at
the Bodélé Depression, however, the full‐resolution Dust RGB images show the presence of a small dust plume in
the Bodélé Depression. As discussed in Section 2.2.2, rescaling Dust RGB images to coarser resolutions leads to
undercounting dust plumes of small spatial extent. Thus, the resulting RGB color values in each pixel may differ
too strongly from magenta, that is, possess large perceptional color differences ΔE. At first, dust emitted by
convective systems is completely covered by clouds. Heinold et al. (2013) estimated based on convection‐
permitting simulations, that up to 90% of afternoon‐to‐evening dust emissions occur in partly cloudy condi-
tions, and up to 60% of afternoon‐to‐evening dust emissions occur during strongly cloud‐covered conditions, with
total cloud cover exceeding 80%. In this case study, dust can first be discerned on the satellite image at 16:00
UTC, making it a prime example of the emission mechanisms discussed by Heinold et al. (2013).

3.1.2. Synoptic‐Scale Dust Storm: 15 March 2022, 12 UTC

During mid‐March 2022 high loads of Saharan dust were transported to Central Europe via the Iberian Peninsula
(cf. A. Seifert et al., 2023). This second case study concerns 12:00 UTC on 15 March 2022 (Figure 8). The region
of interest's western part is dominated by a cyclone and its associated cloud patterns over the Iberian Peninsula
extending southward across Morocco and Algeria. Dust plumes are visible over large areas of Algeria.
Furthermore, magenta colors indicate the presence of dust over Chad, Niger, Burkina Faso, Sudan, and Egypt.
The regional plumes along the border between Burkina Faso and Niger, as well as the ones in Egypt are not
displayed in the gray‐scaled images, with the exception of a small area in Egypt. As stated in Section 2.2.2 the
choice of ΔEcut is such that we use the clearly identifiable dust pixels with intense magenta well aware that this
approach leads to a conservative estimate of number of dusty pixels. Specifically, the dust plumes over Egypt are
organized as thin streaks, which are less prominently visible after resampling the dust RGB images to a grid of
0.28125◦ by 0.5625◦. It is worth pointing out, that the darker magenta of Southern Niger and Northern Nigeria is
likely caused by clouds, as indicated by visual inspection of the full‐resolution images. Thus, these pixels are
correctly identified as dust‐free.

The reconstructed dust plume stretching from the Iberian Peninsula toward the Algerian‐Malian border is
meteorologically plausible. This large dust plume is simulated by the forecasts of both DREAM8‐CAMS and
BSC‐DREAM8b. However, the dust plume's forecasted position over the Mediterranean and the Iberian
Peninsula differs from the reconstruction. In the case of the BSC‐DREAM8b forecast, the dust plume extends
across Mali to the Malian‐Guinean border region. Visual inspection of the original resolution images indicates the
presence of thin low‐level clouds across Mali instead of dust. While the DREAM8‐CAMS dust forecast indicates
some dust in Sudan, both models fail to accurately forecast the dust plumes in Sudan and Egypt. The dust plumes
in Egypt are captured by neither the CAMS reanalysis nor the MERRA‐2 reanalysis. Both reanalysis products,
however, indicate a strong presence of mineral dust with values of τdust > 1.1 in Sub‐Saharan West Africa. This
corresponds to the values observed by MODIS for coarse aerosol particles. The Dust RGB image, including the
full‐resolution image, does not indicate dust this far south. However, as evident from the simulations by Banks
et al. (2019), environmental and surface conditions may mask dust in Dust RGB images. Even though MODIS
observations of coarse aerosol are not necessarily solely attributable to mineral dust, mineral dust may still extend
further south, than indicated by the Dust RGB image. Since both CAMS and MERRA‐2 use MODIS satellite
observations to gain information on aerosol properties (Gelaro et al., 2017; Inness et al., 2019b; Randles
et al., 2016, 2017; Rémy et al., 2019), observations from additional satellite sensors may increase the agreement
between the reanalysis and the reconstructed spatial patterns of mineral dust. Furthermore, this case study il-
lustrates, that synoptic‐scale dust storms are still challenges for numerical forecast models, for example, docu-
mented earlier for another case advecting dust over the Iberian Peninsula (Huneeus et al., 2016).
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3.2. Comparing Reconstructions to Direct Observations

Calculating dust occurrence frequencies for each individual pixel provide an intuitive way of gauging the effect of
the reconstructions. A comparison between reconstructed and directly observed, that is, non‐reconstructed, annual
dust occurrence frequency for 9 (left column), 12 (center column), and 15 (right column) UTC is shown in
Figure 9. While a domain averaged dust occurrence frequency f̄dust, as indicated in the bottom right corner of the
respective panels, does not reflect all the changes, it gives an indication, that a considerable amount of dust is
commonly obscured by clouds. The red shading in the bottom panels indicates that compared to observations
without reconstruction, the reconstructed images indicate an expected higher dust frequency. Differences of more
than 2.5% points (pp, marked by a black isoline) are seen over the Atlantic Ocean and along the Atlantic coast.
During all three times a considerable difference can be noted in the Tanezrouft Basin in the border region of
Algeria and Mali. Furthermore, notable differences occur in the Bodélé Depression in Chad during all three time
steps, however, their spatial extent is rather limited at 9 UTC. At 12 and 15 UTC differences can also be noted in
Nubian Desert in Sudan and the Atlas Mountains and the Mediterranean coast in Algeria. The considerable
differences at 15 UTC on the Arabian Peninsula should be taken with a grain of salt, since during parts of the year
sun set on the Arabian Peninsula occurs earlier.

Figure 8. As Figure 7, but for 15March 2022, 12 UTC. The top right panel shows observations fromModerate Resolution Imaging Spectroradiometer/Aqua. The middle
right panel shows forecasts obtained from the BSC‐DREAM8b model.
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Seasonal dust occurrence frequencies derived from reconstructed gray‐scaled images and from direct observa-
tions (i.e., non‐reconstructed gray‐scale images) are shown for 9 and 12 UTC in Figure 10. Despite a coarser
resolution compared to the full‐resolution satellite images, the spatial patterns of seasonal dust occurrence from
the reconstruction are remarkably consistent with the dust source activation frequency from March 2006 to
February 2007 as reported by Schepanski et al. (2007). The spatial pattern for both 2021 and 2022 combined also
shows consistency with the dust occurrence frequency derived from a combination of MODIS AOD data with
Aerosol Index data from the OzoneMonitoring Instrument for 2005–2019 as reported by Gavrouzou et al. (2021).
However, since we restored cloud‐induced gaps and since we use a coarser resolution, we would expect a dif-
ference in magnitude and, thus, do not perform a quantitative comparison here. Since observations at 15 UTCmay
happen after sunset, as discussed above, the seasonal patterns for 15 UTC are not shown. With exception of
summer (JJA), the reconstruction increases the dust occurrence frequency for both 9 and 12 UTC at the Bodélé
Depression by more then 2.5. Particular high absolute differences over land can be noticed both 9 and 12 UTC
during summer season in West Africa, reaching up to 15 pp at 12 UTC.

For daytime observations, higher values of τdust result on average in colors closer to magenta (Banks et al., 2019,
specifically Figure 6 therein) and are therefore better represented in our reconstruction than weak dust events.
This is consistent with our results, according to which a smaller value of ΔEcut corresponds on average to higher
values of τdust (Figure 11). Dust occurrence frequencies for ΔEcut = 20 corresponds to bright magenta, whereas
the ΔEcut = 51.9 include more faded magenta shades and even faded purple shades (compare Figure 5). Our
studies focuses on ΔEcut= 51.9, which captures most dust events and reduces the risk of misclassifications due to
ambiguity of processes associated with colors that have a less pronounced pink component (see Section 2.2.2).
For comparison the remaining panels of Figure 11 show the dust occurrence frequency obtained from CAMS
reanalysis for dust events with τdust ≥ 0.5 (center left), τdust ≥ 0.65 (center right), τdust ≥ 0.9 (bottom left), and
τdust ≥ 1.1 (bottom right). Visual inspection and calculation of the PSNR indicate that ΔEcut = 20 results in the
closest match with τdust ≥ 0.9 and ΔEcut = 51.9 can be matched with τdust ≥ 0.65. Over ocean surfaces the
perceptional color difference of ΔEcut= 51.9 corresponds to values of τdust of ∼0.5, reflecting the influence of the
surface conditions on the dust retrieval. Note, that based on the results by Banks et al. (2019) the number of dust
events can be under‐counted with a threshold of the perceptional color difference of ΔEcut = 51.9 (see Sec-
tion 2.2.2). Our calculated dust occurrence frequency from the reconstructed dust images is therefore still a
conservative estimate, even though dust underneath clouds is now accounted for.

Figure 9. Dust occurrence frequencies at 9 (left column), 12 (center column), and 15 UTC (right column) derived from reconstructions (top row) and original
observations (center row). The bottom row shows the absolute difference in dust occurrence frequency in percentage points (pp). The black isoline in the bottom row
marks a difference of 2.5 pp.

AGU Advances 10.1029/2023AV001042

KANNGIEßER AND FIEDLER 16 of 27



The local maximum of the dust occurrence frequency from the reconstructed
satellite images in the Nubian Desert (close to Sudan's Red Sea coast) is not
represented by the CAMS reanalysis (see Figure 11). The Nubian Desert is a
known dust source region as identified earlier in SEVIRI images (Schepanski
et al., 2012), and also seen in other aerosol data, for example, the dust
emission index derived from data of the Infrared Atmospheric Sounding
Interferometer (Chédin et al., 2020) and the Aerosol Index using observations
of the Total Ozone Mapping Spectrometer (N. J. Middleton & Goudie, 2001).
Since the local maximum is also present in the dust frequency from non‐
reconstructed observations, the feature is not an artifact of the reconstruc-
tion. The feature is, however, present in dust occurrence frequencies derived
from MERRA‐2 reanalysis (see Figure S1 in Supporting Information S1).
AOD data derived from MODIS sensors (MODIS Atmosphere Science
Team, 2017a, 2017b) for coarse aerosol particles (Figure S2 in Supporting
Information S1) indicates no optically thick, that is, τ ≥ 0.7, dust plumes in the
Nubian Desert during both 2021 and 2022. However, MODIS aerosol data
can be (partially) obscured by clouds.

This difference between CAMS reanalysis and reconstructions indicates, that
the reanalysis cannot provide a ground truth for reconstructions. To further
gauge the impact of the reconstruction, we calculated the SSIM and the PSNR
for dust plumes obtained from reconstructions and the original observations
with respect to a perfectly dust‐free case at 9, 12, and 15 UTC simultaneously,
shown in Figure 12. For both the SSIM and the PSNR the comparison be-
tween reconstruction and original observations indicate, that after the
reconstruction the images become less similar to a perfectly dust‐free case. In
other words, the reconstruction increases the extents the extent of dust
plumes. This is consistent with Figures 9 and 10.

3.3. Comparing the Reconstructions to Forecast Data

Here, we use the reconstructed images for a comparison with the output of
dust forecast provided by the WMO Barcelona Dust Regional Center (see
Section 2.1.2). Since qualitatively reconstructed images of areas with dust and
quantitative forecasts of the dust AOD are not directly comparable, we first
convert both the reconstructed gray‐scale satellite images and the forecasted
fields of τdust to binary images in which 1 represents a “dusty” pixel and 0 a
dust‐free pixel. In the case of the dust forecasts, a pixel is classified as dusty, if
the AOD exceeds a pre‐defined threshold, that is, τ ≥ τthreshold. For this
purpose, we define and test six different thresholds: τthreshold = [0.3, 0.5, 0.7,
0.9, 1.1, 1.3].

Figure 13 compares the dust forecast ensemble with respect to the median
forecast, provided by the WMO Barcelona Dust Regional Center, and the
forecast ensemble with respect to the reconstruction for both 2021 and 2022
combined. The columns represent the synoptic hours of 9 UTC (left column),
12 UTC (center column), and 15 UTC (right column). The evaluation metrics
SSIM, directed Hausdorff distance, and PSNR (Section 2.2.4) are displayed
as violin plots to evaluate the regional performance. As the median forecast is
composed of the other model forecasts within the ensemble, we expect a
larger number of cases with SSIM ≈ 1 when we compare the individual
forecast models against the median of all forecasts than for the reconstruction
compared to the median of all forecasts. For small lower bounds of AOD
(τdust ≥ [0.3, 0.5]) the distribution of SSIM values for forecasts compared to
median forecasts strongly differ from the reconstructions compared to the
median of forecasts. For intermediate AOD bounds (τdust= 0.7) the difference

Figure 10.
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in the value distributions is reduced, although for the reason outlined above the forecasts as a whole yield values
of SSIM closer to 1. For larger values of AOD bounds SSIM→1, however, the forecasts converge faster to 1 than
the reconstructions.

Using the directed Hausdorff distance as an evaluation criterion the reconstruction performs with respect to the
dust forecast ensemble on average as well as the forecast ensemble compared to the median forecast for values of
τthreshold ≥ 0.7. In the case of PSNR, the reconstruction with respect to the forecast ensemble performs best for
τthreshold = 0.7 compared to all model forecasts with respect to the median forecast, although the performance
differences are not large. For τthreshold ≥ 0.9 the median forecast outperforms the reconstruction with respect to the
PSNR.

Figure 10. Seasonal dust frequency obtained from reconstructed gray‐scaled images with ΔEcut = 51.9 at 9 UTC (first column, starting from the left) and from non‐
reconstructed gray‐scaled images (second column). The third column shows the absolute difference between the first two columns. The fourth to sixth column are as the
first to third column, but for 12 UTC. The rows represent the different seasons, from top to bottom winter (DJF), spring (MAM), summer (JJA), and autumn (SON). The
black isoline in the third and sixth row marks an absolute difference of 2.5 pp. See Figure 5 for an interpretation aid of values of ΔEcut. See Figure S3 in Supporting
Information S1 for the corresponding overview with ΔEcut = 20.0.

Figure 11. Comparison of dust occurrence frequency at 12 UTC in 2021 from reconstruction with different values of ΔEcut
(top row) and from Copernicus Atmosphere Monitoring Service reanalysis with different lower bounds of τdust (middle and
bottom row). See Figure 5 for an interpretation aid of values of ΔEcut.
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Considering the SSIM as similarity measure, the reconstructions at 15 UTC are less similar with respect to the
median forecast then the reconstructions at 9 and 12 UTC. While the value of ΔEcut = 51.9 was chosen for day‐
time observations and the parts of the SEVIRI image east of 25.5625◦Emay correspond to conditions after sunset,
there is no discernible difference between the results shown in Figure 13 and the results obtained for the sub‐set of
the study area, which excludes longitude bands in which the sun set occurs before 15 UTC during any time of the
year (shown in Figure S4 in Supporting Information S1).

We use the reconstruction of dust plumes to assess the level of similarity of dust‐plume extents simulated by
individual numerical forecasts over North Africa next. Figure 14 allows us to compare the reconstruction's
performance against the output from individual forecast models at 12 UTC. In 2021 (top row) the models BSC‐
DREAM8b, DREAM8‐CAMS, and WRF‐NEMO agree best with the reconstruction as indicated by the
respective median values of all three metrics. In 2022 (bottom row) the highest agreement in terms of PSNR and
directed Hausdorff distance is seen for DREAM8‐CAMS, MOCAGE, and WRF‐NEMO, and in terms of SSIM
for DREAM8‐CAMS, MOCAGE, NCEP‐GEFS, and ICON‐ART. Only evaluating the spatial patterns, forecasts
by LOTOS‐EUROS and MONARCH show the least agreement with our reconstructions in both 2021 and 2022.
While outperforming LOTOS‐EUROS and MONARCH with respect to all three evaluation metrics, NCEP‐
GEFS showed the third lowest similarity to reconstructed SEVIRI dust plume observations in 2021. In 2022
NOA, which in 2021 narrowly outperformed NCEP‐GEFS, had the third lowest similarity to the reconstructed
plume observations. It should be noted, that among the best‐performing models, both DREAM8‐CAMS and
MOCAGE use data assimilation of dust, while none of the models with comparatively poor performance used
data assimilation techniques to incorporate dust information from observations. It should be stressed, that this
brief evaluation has a focus on the spatial pattern of dust plumes as inferred from SEVIRI Dust RGB images,
which was not done in the past. Typically, dust model forecasts are evaluated by their ability to correctly forecast τ
at monitoring stations, most of which stem from sunphotometers that can only provide data during daytime in
cloud‐free conditions (cf. Huneeus et al., 2011; Terradellas et al., 2022). Hence, our study has demonstrated a new
capability to evaluate simulated dust transport with a first consideration of dust plume shapes, based on
computationally fast reconstructions of dust plumes in satellite images.

4. Discussion and Outlook
In this study, we restored spatial patterns of dust plumes from partially cloud‐obscured satellite observations for
the first time. Since both dust‐aerosol emission and transport and cloud structures are governed by atmospheric
conditions, we combined dust AOD data from CAMS reanalysis with coinciding SEVIRI‐derived cloud‐masks
for the training of the ANN. The trained network was applied to cloud‐masked, gray‐scaled satellite images,

Figure 12. Two‐dimensional histograms of the structural similarity index measure (left panel) and peak signal‐to‐noise ratio
(right panel) of original observations and the reconstruction with respect to a perfectly dust‐free case. Shading as in Figure 2.
The dotted line indicates the 1:1 line.
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derived from MSG‐SEVIRI's Dust RGB product. The reconstruction of dust plumes performs just as well or
better than individual forecasts relative to the median across all forecasts.

So far parametrizations in numerical models provided a way of gauging the extent of below‐cloud dust plumes,
that is, of “seeing” beneath the clouds. By applying machine‐learning‐based in‐painting methods to geostationary
satellite images, we demonstrated another possibility of estimating the spatial patterns of dust plumes. Compared
to numerical modeling, once the ANN is trained, our approach is computationally much cheaper than numerical
modeling. Provided a SEVIRI Dust RGB image and the corresponding cloud mask are available, gray‐scaling,
data conversions, and subsequent in‐painting for a single image required 30 s on a single core (AMD 7763 CPU,
provided by DKRZ). Note, that this is an upper bound of required resources since the computational set‐up was
not streamlined for (near) real‐time image processing.

Comparing the reconstructed and the directly observed dust occurrence frequencies during 2021 and 2022 for 9,
12, and 15 UTC (see Figure 9) indicates, that previous studies of the dust occurrence frequency and by extension
the dust source activation frequency derived from SEVIRI and other satellite observations underestimate the dust
occurrence and dust source activation due to the presence of clouds (e.g., Chédin et al., 2020; Heinold et al., 2013;

Figure 13. Comparison of the dust forecasts with respect to the median forecast (blue) and with respect to the reconstruction (orange) for 2021 and 2022 combined.
Colors represent the respective quantity's distribution. Long dashed black lines represent the median and short dashed black lines the first and third quartile respectively.
The columns represent the synoptic times of 09 UTC (left column), 12 UTC (center column), and 15 UTC (right column) The rows indicate different quality metrics,
namely the structural similarity index measure (top row), directed Hausdorff distance (middle row), and peak signal‐to‐noise ratio (bottom row).
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Schepanski et al., 2012). Our results suggest that at least 0.78% of observa-
tions in the spatial mean over the entire region of interest miss dust plumes
due to cloud coverage. Regionally and seasonally dust missed due to clouds
can be up to 15% of observations. In extreme cases, all dust plumes occurring
in an individual pixel are obscured by clouds. In 7.3% of pixels, all dust
plumes as obtained by our proposed reconstruction method would be missed
using conventional satellite observations. In 29.5% and 17.7% of pixels at
least a tenth and a half of all dust plumes in the reconstruction, respectively,
coincide with cloud coverage. When considering only the plumes with
τdust ≥ 0.65 (see Figure 11) in the CAMS reanalysis as dust plumes, then for
9.6% of pixels of all dust plumes coincide with a cloud as observed by
SEVIRI. A tenth and a half of dust plumes from CAMS reanalysis coincide
with cloud coverage in 84.3% and 55.4% respectively of the pixels. Owning to
our choice of identifying dust plumes by using gray‐scaling based on
perceptional color differences and due to the resolution of the input images,
our number of dust plumes is still likely to be a conservative estimate, as
indicated by the two case studies. In close proximity to clouds, the under‐
counting of dust‐containing pixels can still be rectified by the ANN‐based
reconstruction method as illustrated in the first case study.

Since a similar Dust RGB composite is provided operationally for observa-
tions by the Advanced Baseline Imager instrument onboard the Geostationary
Operational Environmental Satellite and the Advanced Himawari Imagers
onboard the geostationary Himawari satellite, our approach could be trans-
ferred to other regions of interest (cf. Bessho et al., 2016; Fuell et al., 2016).
While this study was focused on data from geostationary satellites the in‐
painting approach can also be adapted to observations and products from
polar‐orbiting satellites, such as AOD products derived from MODIS. Pro-
vided suitable training data from reanalysis is available the approach can
further be applied to observations of different aerosol species and plumes of
trace gases close to the respective source.

The here proposed method to restore dust plume extents on SEVIRI RGB
Dust images by machine‐learning‐based image in‐painting methods can be
applied to a larger area and to images at a higher temporal resolution of up to
15 min in the case of SEVIRI. Such a spatial extension can facilitate addi-
tional investigations of dust transport to Europe and/or across the Atlantic
Ocean. Using a higher temporal resolution may aid in studying dust transport
mechanisms within North Africa in more detail and help to overcome
observational gaps stemming from sparse ground‐based observations.

There are a number of aspects in our current approach that can be further
refined for future applications. To obtain a consistent spatio‐temporal picture
of suspended dust, including during nighttime, the values of ΔEcut can be
adjusted to the different environmental conditions, such as surface type (sur-
face emissivity), skin temperature, and a climatology of column water vapor
content (see Section 2.2.2 and Banks et al., 2019), for example, via generating
look‐up tables to account for these aspects. Adapting ΔEcut to different envi-
ronmental conditions would also be the next step to develop a link of the Dust
RGB product or derived products, such as our reconstructed images, to τdust.
Currently, there are already retrievals of dust AOD from SEVIRI observations
based on look‐up tables of observed shortwave reflectance (Brindley &
Ignatov, 2006) for retrievals over ocean surfaces and based on longwave

brightness temperatures in conjunction with European Center for Medium‐Range Weather Forecasts' operational
analysis for retrievals over land surfaces (Brindley & Russell, 2009), which could be exploited. Other retrieval
algorithms involve optimal estimation (cf. Rodgers, 2000) based on observed brightness temperatures at both

Figure 14. Comparison of the dust reconstruction with numerical forecasts
with by the individual models in the ensemble provided by the World
Meteorological Organization Barcelona Dust Regional Center for 2021 (top
row) and 2022 (bottom row). The similarity measures shown are structural
similarity index measure (left column), directed Hausdorff distance (center
column), and peak signal‐to‐noise ratio (right column). As for Figure 13 the
colors show the measures' distributions with long dashed black lines
representing the median and short dashed black lines indicating the first and
third quartile. Models marked with * use data assimilation. A full overview
of the quartiles indicated by long‐dashed (second quartile) and short‐dashed
(first and third quartile) lines is given in Tables S1 and S2 in Supporting
Information S1.
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visible and infrared channels (Carboni et al., 2007; Thomas et al., 2009). Following successfully established links
betweenAOD and the color in the RGBDust product, ourmethod can restore the cloud‐obscured fractions of AOD
and subsequently contribute to assimilating further satellite observations into numerical models to better constrain
the forecasts of dust. Accurate forecasts of dust plumes are important for different applications, for example, in the
health and energy sector.

So far, each image has been reconstructed individually. With the help of recurrent neural networks (Che
et al., 2018) the temporal evolution of dust storms can be taken into account explicitly by the network, thus,
potentially further improving the reconstructions. While ground‐based observations of dust in Northern Africa are
sparse, incorporating these observations into the reconstructions provides another avenue for potential im-
provements in dust storm reconstruction for a better understanding of their evolution and accurate warnings of
their impacts.

5. Conclusion
We present to our knowledge the first fast reconstruction of the spatial extent of partially cloud‐obscured
dust plumes from satellite observations. We achieve this by employing machine‐learning‐based image in‐
painting techniques. Once the ANN is trained, the reconstruction of dust plume extents is computationally
inexpensive.

Spatially averaged over North Africa the differences in annual dust occurrence between reconstructions and
classical satellite observations are small, not at last because dust is not present all the time across the entire of
North Africa. However, the number of dust plumes obscured by clouds increases, when considering seasonal and
regional subsets. As a conservative estimate, we find that up to 15% of satellite observations inWest Africa and up
to 10% of satellite observations in the Nubian Desert during 2021–2022 miss dust plumes. Based on the
reconstructed plumes, in 7.3% of pixels, all dust plumes coincide with clouds and would, thus, not be directly
identifiable from classical satellite observations. This roughly corresponds to a geographical area of∼2 ⋅ 106 km2.
Our comparison with reanalysis indicates a somewhat higher fraction of 9.6% of pixels in which all dust plumes
coincide with cloud cover.

The reconstructed dust plumes provide new means to validate and constrain spatial patterns of dust plumes in
simulations from numerical forecast models and Earth system models. They further provide means for more
detailed studies of dust emission and transport mechanisms using satellite observations free of gaps caused by
cloud cover for the first time. The method can be applied to the corresponding dust products obtained from sensors
on other geostationary satellites to compile a global data set. It can also be adapted to different types of aerosols
and trace gases observed from geostationary and low‐earth orbit satellites to broaden the possibilities for model
validation of atmospheric composition in models, for example, as simulated by Earth system models in the
Coupled Model Intercomparison Project or as used for operational air quality forecast models.
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https://disc.gsfc.nasa.gov/datasets?project=MERRA‐2. MODIS level 3 data (MODIS Atmosphere Science
Team, 2017a, 2017b) was provided by NASA and can be obtained from https://ladsweb.modaps.eosdis.nasa.gov.
Access to all datasets requires prior registration. In‐painted images generated in the course of this study, as well
as, trained ANNs are available via Zenodo (Kanngießer & Fiedler, 2024).
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