RESEARCH PAPER The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) in the Upper Pliensbachian of Germany Gernot Arp • Stephan Seppelt Received: 8 March 2011 / Accepted: 3 June 2011 / Published online: 23 June 2011  The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The morphologically conspicuous bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822), known for its palaeogeographically bipolar distribution, from a limestone bed in the boundary ‘‘Belemniten– Schichten’’/Amaltheenton formation, Lower Jurassic, in N Germany is described. The occurrence of this palaeocea- nographically significant bivalve points to an influx of cool seawater from the Arctic to the North-German Basin at the base of the Upper Pliensbachian, just before the deposition of the Amaltheenton formation. A review of previously reported occurrences on the NW European Shelf indicates two distinct stratigraphic intervals of occurrence of this taxon: the Rhaetian–Hettangian boundary and the Upper Pliensbachian. Whereas the former interval of occurrence may be related to short-term cooling in the course of the end-Triassic extinction event, the latter is interpreted as reflecting the influx of a cool water current to the eastern part of the NW European Shelf, which continued south- wards parallel to the coast of the Bohemian–Vindelician High. Keywords Bivalvia  Germany  Triassic–Jurassic boundary  Pliensbachian  Boreal Kurzfassung Die morphologisch markante, bipolar verbreitete Muschel Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) wird von einer Kalksteinbank an der Grenze ‘‘Belemnitenschichten’’/Amaltheenton-formation, Unterer Jura, Norddeutschland beschrieben. Das Auftreten dieser pala¨oozeanographisch bedeutsamen Muschel deutet auf einen Einbruch ku¨hlen Meerwassers aus der Arktis in das Norddeutsche Becken an der Basis des Oberen Pliensbachiums hin, knapp vor der Ablagerung der Amaltheenton-formation. Eine U¨bersicht bisher publi- zierter Vorkommen auf dem NW-Europa¨ischen Schelf belegt, daß dieses Taxon auf zwei stratigraphische Inter- valle beschra¨nkt ist, und zwar den Rhaetium-Hettangium- Grenzbereich und das Obere Pliensbachium. Wa¨hrend das Vorkommen des ersteren Intervals mit einer kurzfristigen Abku¨hlungsphase im Zuge des Aussterbeereignisses am Ende der Triaszeit stehen ko¨nnte, wird das letztere Vor- kommen als Resultat einer Kaltwasserstro¨mung auf den o¨stlichen Teil des NW-Europa¨ischen Schelfs gedeutet, welche dann weiter su¨dwa¨rts parallel der Ku¨ste des Bo¨h- misch-Vindelzischen Landes verlief. Schlu¨sselwo¨rter Bivalvia  Deutschland  Trias–Jura-Grenze  Pliensbachium  Boreal Introduction Oxytoma (Palmoxytoma) is one of the morphologically most conspicuous Jurassic bivalves. The bivalve resembles ‘‘a stretched wing of a bat’’ (Wetzel in Ho¨lder 1953) and is ‘‘one of the most beautiful morphotypes of England, showing the inequality of valves so conspicuous’’ (Quen- stedt 1867: 616). Oxytoma (Palmoxytoma) is regarded as dwelling in cool-water habitats and has a striking bipolar palaeogeographic distribution pattern in the Hettangian, with restriction to the Boreal Realm later in the Sinemurian G. Arp (&) Geowissenschaftliches Zentrum der Universita¨t Go¨ttingen, Goldschmidtstrasse 3, 37077 Go¨ttingen, Germany e-mail: garp@gwdg.de S. Seppelt Platz 3, 31079 Wrisbergholzen, Germany 123 Pala¨ontol Z (2012) 86:43–57 DOI 10.1007/s12542-011-0113-1 and Pliensbachian (Damborenea 1993, 2002). At that time, i.e., the Sinemurian–Pliensbachian, the NW European Shelf underwent significant palaeoceanographic changes with the opening of a marine strait connecting the Arctic Ocean in the North with the Tethys in the South (Ziegler 1988, 1990; Bjerrum et al. 2001). Although the exact timing of the opening of the Transcontinental Laurasian Seaway is under discussion (Ziegler 1988; Richards 1990; Steel and Ryseth 1990; Dore 1991; Bjerrum et al. 2001), there is clear evidence from palynomorphs of cool water ingression into the Spinatum Zone of the Late Pliensba- chian (van de Schootbrugge et al. 2005). In this paper, we report the discovery of the bivalve Oxytoma (Palmoxytoma) cygnipes (Young and Bird, 1822) in the lowermost Margaritatus Zone of the Upper Pli- ensbachian in Beierstedt, Northern Germany. Although previously found in the Lower Jurassic of Northern Germany by von Seebach (1864) and Brauns (1871), this species is documented for the first time from a distinct stratigraphic horizon of a detailed section, and its palae- oceanographic significance is discussed. Materials and methods Five valves of Oxytoma (Palmoxytoma) cygnipes (Young and Bird, 1822) have been recovered during a sampling campaign in August 2006. Bivalve specimens were pre- pared using a variety of pneumatic preparation chisels and pens. Seventeen thin-sections (7.5 9 10 cm), together covering the complete limestone beds and concretions, were prepared. Repository: The material is stored in the Museum and Collection of the Geoscience Centre, University of Go¨t- tingen (GZG). Location and geological overview The investigated section at Beierstedt (sheet 3931 Jerxheim R: 36 27 000; H: 57 71 650) is located 20 km southeast of Braunschweig, south of the abandoned railway Bo¨rßum- Hedeper-Jerxheim (Fig. 1). The area is located at the eastern margin of the Lower Saxony Basin, a 300 km long and 65 km wide depression with a sedimentary succession from the Lower Permian Rotliegend Group to Tertiary formations (Ziegler 1990) up to 5 km thick. Salt cushions and diapirs rising from the Upper Permian Zechstein Group resulted in numerous salt anticlines and synclines, with a number of unconformities, mainly in the Buntsandstein Group and between Cretaceous formations. The Beierstedt section is located on the southern slope of the Asse- Heeseberg salt anticline (Fig. 1). There, Hettangian to Pliensbachian strata, which are unconformably overlain by Hauterivian strata, dip with an angle of approximately 5 to the SW. To date, no formal formation names have been established for the North-German Lias Group (Mo¨nnig 2005), so traditional, informal lithostratigraphic units are used in this paper. The Pliensbachian section at Beierstedt More than 60 cm of unfossiliferous, bluish–dark grey claystones of the Upper Sinemurian ‘‘Raricostaten– Schichten’’ (equivalent to the South German Obtususton Formation) are exposed at the base of the section at Be- ierstedt (Fig. 2; Table 1). The total thickness of the ‘‘Ra- ricostaten–Schichten’’ at this locality is approximately 21 m, as demonstrated by the Wetzleben drill core (Tho- mas 1924). Above, the Pliensbachian starts with the 45–50 cm thick ‘‘Belemniten–Schichten’’ (equivalent to the South German Fig. 1 Geological map of the study area showing the location of the section Beierstedt and further locations mentioned in the text 44 G. Arp, S. Seppelt 123 Numismalismergel Formation). The lower part of this highly condensed formation is formed by a 15–20 cm thick, highly fossiliferous limestone bed, a bioturbated bioclastic iron-ooid wackestone to packstone (Fig. 3a, b). It contains abundant echinoderm clasts, brachiopod and bivalve shell fragments (among them inoceramid shell fragments with prismatic structure), rotaliid foraminifera, and belemnite rostra bioe- roded by endoliths. The 300–400 lm sized ooids have sider- ite-replaced nuclei with limonitic cortices; locally calcitic cortices with radial crystallites also occur. Most conspicuous are cm to dm-sized grey micritic concretions with round borings 8–10 mm in diameter. These concretions are reworked from the underlying ‘‘Raricostaten–Schichten’’ and indicate a discontinuity at the base of the formation. Besides abundant belemnites, bivalves, gastropods, and brachiopods, well preserved ammonoids occur, which indicate the Bre- vispina to Maculatum Subzones, with a possible lack of the Taylori to Polymorphus Subzones (Fig. 2; Table 1). The upper part of the ‘‘Belemniten–Schichten’’ is formed by a 26–30 cm thick limestone bed, composed of a bioturbated echinoderm packstone with scattered other bioclasts and rotaliid foraminifera (Fig. 3c, d). Generally, the bioclasts are smaller than in the bed below, and more corroded. Locally, cm-sized, matrix-supported patches occur, indicating biotur- bation. Macrofossils (ammonites, belemnites, bivalves) are generally well preserved, with only minor signs of corrosion, and embedded subhorizontally. The lower bedding plane shows Amaltheus stokesi (Sowerby, 1818), Androgynoceras maculatum (Young & Bird, 1822), and Prodactylioceras davoei (Sowerby, 1822) representing the condensed Maculatum and Stokesi Subz- ones, whereas major parts of the bed contain Amaltheus stokesi (Sowerby, 1818) and Lytoceras salebrosum Pom- peckj, 1896 indicating the Stokesi Subzone. The upper surface of the bed shows limonite impregnation and sharp, discontinuous contact with the overlying marl. The Amaltheenton formation starts with a marly pack- stone consisting of shell debris, belemnites, and echino- derm bioclasts, followed by claystones with thin shell debris layers, and a second shell debris packstone with siderite nodules (Fig. 2). The latter contain Amaltheus gibbosus (von Schlotheim, 1820), the index fossil of the Gibbosus Subzone; together, these shell-debris-rich marls are 40–50 cm thick; there is no indication of the Subnodosus Subzone, and a corresponding discontinuity is assumed for the base of the Amaltheenton formation. Of the remaining approximately 65 m of Amaltheenton (drill core Hornburg; Thomas 1924), only the lowermost 110 cm of bluish–grey, marly claystones with siderite concretions have been exposed in this section (Fig. 2). The three formations were deposited in an open-marine mid-shelf environment, with higher siliciclastic supply in the ‘‘Raricostaten–Schichten’’ and Amaltheenton forma- tion, and strongly reduced siliciclastic influx in the Fig. 2 Columnar section of the ‘‘Belemniten–Schichten’’ at Beierstedt, with the position of Oxytoma (Palmoyxtoma) cygnipes (Young & Bird, 1822) The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 45 123 ‘‘Belemniten–Schichten’’. Contrary to previous assump- tions (Thomas 1924), there is no indication of a high- energy shallow water or coastal environment. A detailed description of the section is given in Table 1. Systematic palaeontology Order Pterioida Newell, 1965 Family Oxytomidae Ichikawa, 1958 Genus Oxytoma Meek, 1864 Subgenus Palmoxytoma Cox, 1961 Type species: Pecten cygnipes Young & Bird, 1822, from the ironstone bands of the aluminous strata, York- shire, by original designation. Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) (Fig. 4a–g) *1822 Pecten cygnipes; Young & Bird: 235, pl. 9/fig. 6 1828 Pecten cygnipes; Young & Bird: 236, pl. 9/fig. 3 1829 Avicula cygnipes; Philipps: 162, pl. 14/fig. 3 1839 Avicula longicostata, Stutch.; Stutchbury: 163, fig. 1856 Avicula cygnipes; Oppel: 179 1857 Avicula cycnipes (Phillips); Dumortier: 7–10, pl. 4/figs. 1–4 1864 Avicula cygnipes Young and Bird; von Seebach: 103 1867 Avicula cygnipes Phill.; Quenstedt: 616, pl. 59/fig. 5 1869 Avicula cycnipes (Phillips); Dumortier: 294–297, pl. 35/figs. 6–9 1871 Avicula cygnipes; Brauns: 359 1876 Monotis cygnipes Young and Bird; Tate and Blake: 370–371 1881 Avicula (Oxytoma) magnifica n.sp.; Lundgren: 19, pl. 5/figs. 2–5 Table 1 Lithologic description of the section Beierstedt Formation Bed No. Thickness Lithology Amaltheenton 7 [110 cm Bluish–grey shaly claystone with disseminated pyrite; topmost 30 cm with reddish–brown siderite nodules 6 10 cm Grey shaly marlstone rich in mollusc and echinoderm debris, numerous belemnites, lignified driftwood; locally reddish-brown siderite nodules up to 10 9 30 cm in size; layer of cm-sized black phosphorite nodules at the top of the bed; Amaltheus gibbosus (von Schlotheim), Ptychomphalus expansus (Sowerby), Harpax spinosa (Sowerby), Myoconcha (Modiolina) sp. 5 20–30 cm Grey shaly clayey marlstone with numerous layers of mollusc and echinoderm debris and slightly corroded small belemnites of the Subhastites group; bioturbated fabric because of small branching burrows 4 5–10 cm Grey shaly marlstone rich in mollusc and echinoderm debris, numerous belemnites; Amaltheus sp.; Harpax spinosa (Sowerby) ‘‘Belemniten– Schichten’’ 3 26–30 cm Grey, weathering yellow–brown, bioturbated bioclastic limestone, divided by a joint into an upper and lower part; upper part with Amaltheus stokesi (Sowerby) and Lytoceras salebrosum Pompeckj; middle joint plane with Amaltheus stokesi (Sowerby), Pleurotomaria sp., Oxytoma (Palmoxytoma) cygnipes (Young & Bird), Eopecten velatus (Goldfuss), Camptonectes subulatus (Mu¨nster in Goldfuss), Pseudopecten equivalvis (Sowerby), Myoconcha (Modiolina) decorata (Mu¨nster in Goldfuss), lignified driftwood; lower bedding plane with numerous ammonoids; Amaltheus stokesi (Sowerby), Androgynoceras maculatum (Young & Bird), Prodactylioceras davoei (Sowerby), Liospiriferina rostrata (von Schlotheim), Pseudopecten equivalvis (Sowerby) 2 15–20 cm Grey, weathering yellow–brown, bioturbated oolitic limestone; ferruginous ooids dominate at the base, calcareous ooids in top parts; highly fossiliferous; lowermost part clayey; erosive undulating lower boundary; Androgynoceras maculatum (Young & Bird) abundant within one lense at the top, Beaniceras luridum (Simpson), Liparoceras (Liparoceras) cheltiense (Murchison); Uptonia sp., Platypleuroceras brevispina (Sowerby. (5 cm above base); Lytoceras fimbriatum (Sowerby), Tragophylloceras loscombi (Sowerby), Liospiriferina rostrata (von Schlotheim), Pseudokatosira cf. undulata (Benz), Pinna hartmanni Zieten, Parainoceramus ventricosus (Sowerby), Entolium lunare (Roemer), Pseudopecten equivalvis (Sowerby), Camptonectes subulatus (Mu¨nster in Goldfuss), Eopecten velatus (Goldfuss), Chlamys textoria (von Schlotheim), ‘‘Avicula’’ calva (Schloenbach), Terquemia difformis (von Schlotheim), Antiquilima succincta (von Schlotheim), Plagiostoma gigantea (Sowerby), Pseudolimea pectinoides (Sowerby), Gryphaea gigantea (Sowerby), Myoconcha (Modiolina) decorata (Mu¨nster in Goldfuss), Astarte sp., Cardinia rugulosa Tate, Pholadomya ambigua (Sowerby), Pleuromya costata (Young & Bird), Pleuromya ovata (Roemer), Pleuromya meridionalis Dumortier ‘‘Raricostaten– Schichten’’ 1 [60 cm Bluish–grey shaly claystone with one layer of reddish-brown siderite nodules ca. 25 cm below top, no macrofossils observed 46 G. Arp, S. Seppelt 123 1888 Avicula scanica L.; Lundgren: 18 1888 Avicula anserina n. sp.; Moberg: 38, pl. 3/fig. 18 1891 Avicula cygnipes; von Gu¨mbel: 379 1891 Avicula cygnipes Phill.; von Ammon in von Gu¨mbel: 690 1906 Avicula cygnipes Phil.; Fugger: 231 v 1907 Avicula cygnipes Phill.; von Koenen: 44 non 1911 Oxytoma inaequivalve Sow. aff. cycnipes Phill. (Y. & B.); Hahn: 541, pl. 20/fig. 2 1913 Avicula (Oxytoma) cf. cycnipes, Phill.; Jeannet: 367, fig. 25 ? 1923 Oxytoma sp.; Trechmann: 272, pl. 12/figs. 6–7 1933 Oxytoma longicostata (Strickland); Arkell: 602, pl. 29/fig. 1 ? 1934 Oxytoma cf. cygnipes Y. et B.; Rosenkrantz: 51, 117 1934 Oxytoma cygnipes Y. et B.; Rosenkrantz: 112 v 1935 Oxytoma cf. longicostata Strickl.; Kuhn: 2, pl. 2/fig. 6 1951 Oxytoma scanica (Lundgren); Troedsson: 201, pl. 10/fig. 15 v 1953 Oxytoma scanica (Lundgren 1888); Ho¨lder: 359, fig. 1 1957 Oxytoma cygnipes Phillips; Frebold: 67, pl. 16/figs. 1–5 1961 Oxytoma (Palmoxytoma) cygnipes (Young & Bird 1822); Cox: 593 1964 Oxytoma cf. cygnipes (Phillips); Ho¨lder: 432, fig. 126 1967 Oxytoma (Palmoxytoma) cygnipes (J. Sow.); Hallam: 400 1968 Oxytoma cygnipes (Young et Bird), 1822; Efimova et al.: 46, pl. 22/figs.11–12 1976 Oxytoma (Palmoxytoma) cygnipes (Young & Bird); Milova: 53, pl. 4/fig. 6, pl. 5/figs. 2–5 1991 Oxytoma (Palmoxytoma) cygnipes (Young and Bird); Poulton: 26, pl. 11/figs. 14–16 ? 1991 Palmoxytoma sp.; Riccardi et al.: 166, fig. 4/14 Fig. 3 Microfacies of the ‘‘Belemniten–Schichten’’, condensed Lower Pliensbachian and Stokesi Subzone of Beierstedt. a Overview of bioclastic iron-ooid wackestone to packstone of bed 2, Lower Pliensbachian, with belemnite rostra and bivalve shells. Note intense bioturbation. b Detail of a showing ooids with ferrugineous inner and calcareous outer cortices, bioclasts, and rotaliid foraminifera (arrows). c Overview of bioturbated echinoderm packstone of bed 3. Note cross-section of several belemnite rostra and an Amaltheus stokesi (Sowerby, 1818). d Detail of c showing densely packed echinoderm clasts, a corroded belemnite fragment, and scattered rotaliid foraminifera (arrows) The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 47 123 48 G. Arp, S. Seppelt 123 ? 1992 Palmoxytoma sp.; Damborenea and Mancenido: 132, pl. 1/fig. 1 1992 Oxytoma (Palmoxytoma) cygnipes; Sey et al.: 228 1994 Oxytoma (Palmoxytoma) cf. cygnipes; Aberhan: 35, Text-fig. 16 1997 Palmoxytoma sp.; McRoberts et al.: 82, 87 1998 Oxytoma (Palmoxytoma) cygnipes (Young & Bird 1822); Aberhan: 95, pl. 9/fig. 15–16, 18–19 2002 Palmoxytoma cf. cygnipes (Young & Bird 1822); Damborenea: 23, pl. 1/figs. 6–8 ? 2002 Palmoxytoma n. sp.; Damborenea: 23, Text-fig. 9 2004 Oxytoma (Palmoxytoma) ussurica Voronetz; Kon- ovalova and Markevich, pl. 21/figs. 1–7 2007 Oxytoma (Palmoxytoma) cygnipes (Young & Bird); Rulleau: 82, pl. 52/5 Material: One right complete, three left complete, and one left incomplete valves from bed 3 (Upper Pliensbachian, Stokesi Subzone) of the ‘‘Belemniten–Schichten’’ at Beier- stedt. One incomplete internal mould and corresponding external imprint of a left valve from the ‘‘Gamma-Delta- Grenzbank’’ (Upper Pliensbachian, Stokesi Subzone), top of ‘‘Belemniten–Schichten’’ of Go¨ttingen-Geismar. Description: Shell medium-sized, very inequivalve with left valve convex and right valve almost flat. Shape suborbicular, equilateral to slightly opistocline. Hinge long and straight, with a wing-like posterior auricle and a small anterior auricle. Right valve anterior auricle triangular and separated from valve by deep byssal notch. Ligament groove long and narrow. Right valve with umbo not pro- truding and slightly prosogyrous, faint ornamentation consisting of fine radial striae. Left valve with umbo slightly protruding and ornamentation consisting of 4–6 prominent radial ribs separated by areas with fine radial riblets. Main ribs with ovoid to circular cross-section resting upon a thin ridge. At major growth lines, ribs grade into spines up to 15 mm long and projecting at the disc margin. Measurements These are provided in Table 2. Remarks: The species Oxytoma (Palmoxytoma) cygni- pes (Young & Bird, 1822) is derived from the Carnian- Norian ancestor Oxytoma mojsisovicsi Teller, 1886 (Damborenea 1987: 160, 2002: 22). Early Hettangian representatives have been referred to as Oxytoma (Palm- oxytoma) longicostata (Stutchbury, 1839) (e.g., Arkell 1933; Kuhn 1935). However, the morphological differ- ences between O. (P.) longicostata and O. (P.) cygnipes are gradual, and reflect largely preservational effects (Fig. 4a–g). Specifically, within limestones (e.g., Psilonotenkalk; Ho¨lder 1953) internal moulds and inside views of shells are obtained, and the spiny outer surface remains hidden within the attached matrix. This is true for our specimens also; the long projections and spines are observed only after labo- rious preparation (Fig. 4a, b). Apart from that, Oxytoma (Palmoxytoma) cygnipes (Young & Bird) has, indeed, some variability with regard to the density of ribs and the shape of the disc. Oxytoma cygnipes (Young et Bird) from Eastern Siberia described Fig. 4 Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) from the top of the ‘‘Belemniten–Schichten’’, Stokesi Subzone, Lower Saxony. a, b External view of left valve showing spines. Bed 3, Beierstedt. GZG.INV. 31004. c Internal view of right valve. Bed 3, Beierstedt. GZG.INV. 31005. d Internal mould of left valve with spine-like rib projections. Bed 3, Beierstedt. GZG.INV. 31002. e Internal mould of left valve with spine-like rib projections. Bed 3, Beierstedt. GZG.INV. 31001. f, g Fragmentary internal mould and negative imprint of left valve. Top of ‘‘Belemniten–Schichten’’, Go¨ttingen-Geismar. GZG.INV. 30576 a & b Table 2 Measurements of Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) Specimen Location Material L (mm) H (mm) I (mm) R GZG.INV. 31001 Beierstedt, Northern Germany LV, internal mould 65 65 9 6 GZG.INV. 31002 Beierstedt, Northern Germany LV, internal mould 50 50 9 4 GZG.INV. 31003 Beierstedt, Northern Germany LV, incomplete negative (40) (42) (5) (4) GZG.INV. 31004 Beierstedt, Northern Germany LV, shell 50 47 9 6 GZG.INV. 31005 Beierstedt, Northern Germany RV, shell 35 37 2 – GZG.INV. 30576 a & b Go¨ttingen, Northern Germany LV, internal mould & negative imprint (18) (21) (3) 4 GZG.INV. 30577 a Whitby, Yorkshire LV, internal mould 75 73 8 5 GZG.INV. 30577 b Whitby, Yorkshire LV, internal mould 56 58 7 5 GZG.INV. 30577 c Whitby, Yorkshire LV, internal mould (50) 50 6 5 GZG.INV. 30577 d Whitby, Yorkshire RV, external mould 48 (42) 2 – SMNS 17361 (Kuhn 1935) Nellingen, Southern Germany LV, internal mould 52 (48) 8 7 GPIT 1028/53 (Ho¨lder 1953) Bebenhausen, Southern Germany LV, internal mould 55 54 7 6 Numbers in brackets are approximations L length, H height, I inflation, R number of ribs b The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 49 123 by Efimova et al. (1968) has only four prominent ribs. The umbo is slightly prosogyrous, and the valves are otherwise identical with the specimens described in this paper. Three left valves of Oxytoma (Palmoxytoma) cygnipes (Young & Bird) published by Poulton (1991) are comparatively small, and hence have only four ribs. Apart from that, they are identical with our specimens in shape and ornamentation, including spine-like rib projections. A variety with seven ribs with rather close spacing has been described as Oxy- toma (Palmoxytoma) ussurica Voronetz by Konovalova and Markevich (2004). The specimens have slightly pro- sogyrous umbones but the general shape and ornamenta- tion, including spine-like rib projections, is almost identical with those of Oxytoma (Palmoxytoma) cygnipes (Young & Bird). More pronounced differences from the specimens from the NW European Shelf can be seen in specimens from South America and New Zealand. The internal mould of a right valve of Palmoxytoma cf. cygnipes (Damborenea 2002: pl. 1/8a and Riccardi 1991: fig. 4/14) from Argentina has a very deeply incised byssal notch, not observed in our specimen with shell preservation. An extreme variety from New Zealand, a specimen with only three prominent ribs and curved spines, has been illustrated by Damborenea (1993: fig. 3b, 2002: text-fig. 9) as Palmoxytoma n. sp. In addition, the disc margins between the prominent ribs are curving outward, and are not concave as in the NW European specimens with their umbrella-like appearance (cf. Troedsson 1951: 201). Further specimens of this Oxytoma (Palmoxytoma) variety are required to decide whether the low rib number is a constant feature enabling definition of a new species. Taking these variations into account, the currently available data are consistent with the interpretation of the mentioned specimens as a single species, with morpho- logical variations between specimens from the northern and southern hemispheres. Biogeography of Oxytoma (Palmoxytoma) cygnipes (Young and Bird) on the Lower Jurassic NW European Shelf On the NW European Jurassic Shelf Oxytoma (Palmoxy- toma) cygnipes (Young & Bird, 1822) occurs at two distinct stratigraphic intervals. These are the Rhaetian– Hettangian boundary strata (Pre-Planorbis beds to Planor- bis bed) and the Upper Pliensbachian (base of Marlstone Rock Formation, Staithes Sandstone, and Cleveland Iron- stone Formation, Amaltheenton formation) (Table 3). Rhaetian/Hettangian. From the British Lower Jurassic, one of the stratigraphically oldest records of Oxytoma (Palmoxytoma) cygnipes is that of Stutchbury (1839) from the Saltford Shale (Blue Lias Formation), a long-spined variety initially described as Avicula longicostata Stutch- bury, 1839. A precise bed has not been identified, but the Saltwick Shale is confined to the Planorbis to lower Angulata Zones (Ambrose 2001). Hodges in Cope (1991) mentioned Palmoxytoma from the Pre-Planorbis Beds, i.e. the basal part of the Blue Lias Formation. The precise position below or above the Rhaetian–Hettangian boundary is not clear. In addition, the Bath Royal Literary and Scientific Institution hosts several specimens of O. (P.) longicostata from ‘‘Lower Lias clay with White & Blue Lias Lst.’’, Montpelier, Bristol (col- lection C. Moore). From the same location, Oxytoma longicostata has been illustrated by Arkell (1933) as a characteristic fossil of the Pre-Planorbis beds. A further occurrence from the Rhaetian–Hettangian transition is represented by Palmoxytoma sp. from the Upper Schattwald Shales of Loru¨ns/Vorarlberg (McRo- berts et al. 1997), above the negative d13C excursion pre- ceding the Triassic–Jurassic boundary (von Hillebrandt et al. 2007). Again, it is not clear whether the specimen is still latest Rhaetian or earliest Hettangian. Of lowermost Hettangian age seems to be Avicula (Oxytoma) cf. cycnipes Phill. described and illustrated by Jeannet (1913). He obtained four valves of this taxon from approximately 6 m below the ‘‘Niveau a` Planorbis’’ but still 20 m above typical Rhaetian limestones. Again, the precise position of the Rhaetian–Hettangian boundary is not evident from currently available information. Clearly of Hettangian age are the reports of O. (Palm- oxytoma) from the Swabian Jurassic (South Germany), i.e. findings from the Psilonoten Limestone. These are one fragmentary internal mould assigned to Oxytoma cf. longicostata Strickl. from Nellingen (Kuhn 1935) and one internal mould described as Oxytoma scanica (Lundgren, 1888) from Bebenhausen (Ho¨lder 1953). The latter speci- men is associated with Psiloceras plicatulum (Quenstedt, 1883). Recently, Schweigert and Klaschka (2011) discov- ered a further specimen comparable with Oxytoma (Palmoxytoma) from the Psilonoten Limestone of Beben- hausen. The Psilonoten Limestone is a 30–40 cm thick, condensed transgressive bed including ammonites of the lower Planorbis Zone, Psilonotum and Plicatulum horizons, locally underlain by a Neophyllites horizon (Bloos 1999). These ammonite horizons rest unconformably upon Rhae- tian marine-deltaic sandstones. Possibly younger but still within the Planorbis Zone are the youngest published occurrences from the Hettangian of the Northern Calcareous Alps. From top parts of the Hettangian Kendlbach Formation (still below Psiloceras calliphyllum (Neumayr, 1879) and Psiloceras costosum Lange, 1952) at the Ochsentaljoch section, Karwendel, von 50 G. Arp, S. Seppelt 123 T a b le 3 O cc u rr en ce s o f O xy to m a (P a lm o xy to m a ) cy g n ip es (Y o u n g & B ir d , 1 8 2 2 ) o n th e N W E u ro p ea n S h el f an d ad ja ce n t ar ea s C h ro n o st ra ti g ra p h ic u n it L it h o st ra ti g ra p h ic u n it L o ca ti o n R ef . R h ae ti an – H et ta n g ia n b o u n d ar y P re -P la n o rb is B ed s E n g la n d , B ri st o l A rk el l (1 9 3 3 ): P re -P la n o rb is b ed s, M o n tp el ie r, B ri st o l R h ae ti an – H et ta n g ia n b o u n d ar y P re -P la n o rb is B ed s E n g la n d H o d g es in C o p e (1 9 9 1 ) R h ae ti an – H et ta n g ia n b o u n d ar y o r H et ta n g ia n B lu e L ia s F m ., S al tf o rd S h al e M b r. E n g la n d , S o m er se t S tu tc h b u ry (1 8 3 9 ): li as sh al es at S al tf o rd , b et w ee n B ri st o l an d B at h , S o m er se ts h ir e R h ae ti an – H et ta n g ia n b o u n d ar y F m . d e P la n F al co n S w it ze rl an d , P re´ al p es Je an n et (1 9 1 3 ): H et ta n g ie n in fe ri eu r, P la n -F al co n su r C o rb ey ri er , P re´ al p es R h ae ti an – H et ta n g ia n b o u n d ar y K en d lb ac h F m . A u st ri a, A u st ro al p in e M cR o b er ts et al . (1 9 9 7 ): U p p er S ch at tw al d S h al e, L o ru¨ n s/ V o ra rl b er g L o w er H et ta n g ia n , P la n o rb is Z o n e K en d lb ac h F m . A u st ri a, A u st ro al p in e F u g g er (1 9 0 6 ) ‘‘ g ra u e H o rn st ei n k al k e d er P si lo n o te n -S ch ic h te n , G la se n b ac h k la m m b ei S al zb u rg L o w er H et ta n g ia n , P la n o rb is Z o n e P si lo n o te n to n F m . G er m an y , B ad en -W u¨ rt te m b er g K u h n (1 9 3 5 ): P si lo n o te n k al k , N el li n g en L o w er H et ta n g ia n , P la n o rb is Z o n e P si lo n o te n to n F m . G er m an y , B ad en -W u¨ rt te m b er g H o¨ ld er (1 9 5 3 ): P la n o rb is -B an k , H et ta n g iu m , B eb en h au se n ?U p p er P li en sb ac h ia n N ei ll K li n te r G ro u p , G u le h o rn F m . G re en la n d , Ja m es o n L an d R o se n k ra n tz (1 9 3 4 ): C h ar m o u th ia n , E as t G re en la n d C o n d en se d L o w . P li en sb ac h ia n p lu s S to k es i S u b zo n e ‘‘ B el em n it en – S ch ic h te n ’’ G er m an y , N ie d er sa ch se n B ra u n s (1 8 7 1 ): N iv ea u d es A m m . ce n ta u ru s b ei S ch ep p en st ed t, in d er G eg en d v o n O k er , b ei Je rx h ei m - u n d d es A m m . D av o ei b ei L u¨ er d is se n am It h C o n d en se d L o w . P li en sb ac h ia n p lu s S to k es i S u b zo n e ‘‘ B el em n it en – S ch ic h te n ’’ G er m an y , G o¨ tt in g en , N ie d er sa ch se n v o n K o en en (1 9 0 7 ): M it tl er er L ia s, sa¨ m tl ic h o d er d o ch g ro¨ ß te n te il s au s d er Z o n e d es A m m . D av o ei L o w er /U p p er P li en sb ac h ia n b o u n d ar y ‘‘ B el em n it en – S ch ic h te n ’’ L o w er S ax o n y , H il s sy n cl in e v o n S ee b ac h (1 8 6 4 ): S ch ic h te n d es A m . ca p ri co rn u s b ei L u¨ rd is se n am It h U p p er P li en sb ac h ia n , M ar g ar it at u s Z o n e C le v el an d Ir o n st o n e F m . E n g la n d , Y o rk sh ir e P h il ip p s (1 8 2 9 ): M ar ls to n e S er ie s, B il sd al e, W il to n C as tl e/ Y o rk sh ir e U p p er P li en sb ac h ia n , M ar g ar it at u s Z o n e C le v el an d Ir o n st o n e F m . E n g la n d , Y o rk sh ir e O p p el (1 8 5 6 ): B as is d es M ar ls to n e, u n te r A m m . m ar g ar it at u s, R o b in H o o d s B ay U p p er P li en sb ac h ia n , M ar g ar it at u s - S p in at u m Z o n e S ta it h es S an d st o n e F m ., C le v el an d Ir o n st o n e F m . E n g la n d , Y o rk sh ir e T at e an d B la k e (1 8 7 6 ) Z o n es o f A m . m ar g ar it at u s, S ta it h es , R o ck cl if f, H u m m er se a, H u n tc li ff , B il sd al e, b o tt o m se am o f ir o n st o n e, S la p ew at h , G ro sm o n t, G la iz ed al e; A m . sp in at u s, S ta it h es , E st o n , U p le at h am , G u is b ro ’. U p p er P li en sb ac h ia n , M ar g ar it at u s - S p in at u m Z o n e A m al th ee n to n fm . G er m an y , B av ar ia , B o d en w o¨ h r v o n G u¨ m b el (1 8 9 1 ): S o h le rz d es m it tl er en L ia s m it A m . m ar g ar it at u s u n d sp in at u s, B o d en w o¨ h re r B ec k en U p p er P li en sb ac h ia n , S p in at u m Z o n e C le v el an d Ir o n st o n e F m . E n g la n d , Y o rk sh ir e Y o u n g an d B ir d (1 8 2 2 , 1 8 2 8 ): fr o m th e ir o n st o n e b an d s o f th e al u m in o u s st ra ta U p p er P li en sb ac h ia n , S p in at u m Z o n e L ia s G ro u p Y o rk sh ir e, M id la n d s, E n g la n d , H eb ri d es H al la m (1 9 6 7 ): S p in at u m Z o n e, Y o rk sh ir e (c o m m o n ), M id la n d s (o cc u rs ), S W -E n g la n d (o cc u rs ), H eb ri d es (o cc u rs ) U p p er P li en sb ac h ia n , S p in at u m Z o n e L u m ac h el le a` H ar p ax F ra n ce , R h oˆ n e, Is e`r e D u m o rt ie r (1 8 5 7 ): S t. F o rt u n at au M o n t d ’O r/ R h oˆ n e, C h am ag n ie u / Is e`r e, la p ar ti e su p er ie u r d u li as m o y en U p p er P li en sb ac h ia n , S p in at u m Z o n e L u m ac h el le a` H ar p ax F ra n ce , R h oˆ n e D u m o rt ie r (1 8 6 9 ): G iv er d y , zo n e d u P ec te n ae q u iv al v is U p p er P li en sb ac h ia n , S p in at u m Z o n e L u m ac h el le a` H ar p ax F ra n ce , R h oˆ n e R u ll ea u (2 0 0 7 ): D o m e´r ie n su p e´r ie u r, C ro ix R am p au d , P o le y m ie u x -a u -M o n t- d ’O r The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 51 123 Hillebrandt et al. (2007: fig. 9) illustrated an ‘‘Oxytoma’’, which can be identified as the left valve of O. (Palmoxy- toma) cygnipes. In addition, Fugger (1906) mentioned Avicula cygnipes Phil. from Lower Hettangian siliceous limestones with cherts at the Glasenbachklamm near Salzburg. Taking all these published occurrences into account, Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) seems to have been widespread in the Rhaetian–Hettangian boundary strata of the NW European Shelf and its margin to the Tethys. By contrast, the following Upper Hettangian to Lower Pliensbachian deposits of this area appear to be devoid of this species. Pliensbachian. The type species of Young and Bird (1822) comes from the Upper Pliensbachian Cleveland Ironstone Formation (‘‘hard bands in the alum shale’’), where it is most abundant in the ‘‘Avicula seam’’ (i.e., top of the Subnodosus Subzone; Howarth 1955; Rawson and Wright 1996: 206). This coincides with the descriptions of Harries and Little (1999), who mention Palmoxytoma cygnipes from the upper Staithes Sandstone and Cleveland Ironstone Formations (Stokesi to Apyrenum Subzone) of the Yorkshire coast (Staithes Harbor and Saltwick Nab). Similarly, Hallam (1967) reports Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) from the Spinatum Zone of Yorkshire (common), in addition to the Midlands (occurs), SW-England (occurs) and the Hebrides (occurs). From East Greenland, Oxytoma cygnipes Y. et B. is reported by Rosenkrantz (1934: 112) from the Pliensba- chian (Charmouthian), though without illustration. From the sections described and the few ammonites found, it seems possible that the fossil-bearing strata range into the Upper Pliensbachian. Also, the early reports of Oxytoma (Palmoxytoma) from southern Sweden (Lundgren 1881, 1888) apparently show specimens from the Pliensbachian. The fine-grained sand- stone that contained the Oxytoma (Palmoxytoma) specimen of Moberg (1888) is also most likely Pliensbachian in age (cf. Reyment 1959; Ahlberg et al. 2003). However, a more precise biostratigraphic designation is not available, because the material is derived from glacial till deposits (Brandsberga sandstone, Middle Liassic; Sivhed 1984). In Northern Germany the Lower–Upper Pliensbachian boundary strata yield Palmoxytoma specimens, as noted by von Seebach (1864) and Brauns (1871). These authors mention Avicula cygnipes Young and Bird from the ‘‘Belemniten–Schichten’’ of the Hils syncline and Subh- ercynian syncline and from the margin of the Asse- Heeseberg anticline (von Seebach 1864; Brauns 1871). Unfortunately, these reports are without illustration and without described sections, so the precise stratigraphic position (Davoei Zone or Stokesi Subzone), crucial forT a b le 3 co n ti n u ed C h ro n o st ra ti g ra p h ic u n it L it h o st ra ti g ra p h ic u n it L o ca ti o n R ef . U p p er P li en sb ac h ia n B ra n d sb er g a sa n d st o n e S w ed en , S ca n ia L u n d g re n (1 8 8 1 , 1 8 8 8 ): I d en m ar in a H o¨ rs sa n d st en en , B ra n d sb er g a o¨ o m G el la b er g U p p er P li en sb ac h ia n B ra n d sb er g a sa n d st o n e S w ed en , S ca n ia M o b er g (1 8 8 8 ): L ia sm o ra¨ n v id R o¨ d m o¨ ll a U p p er P li en sb ac h ia n B ra n d sb er g a sa n d st o n e S w ed en , S ca n ia T ro ed ss o n (1 9 5 1 ): B ra n d sb er g a sa n d st o n e (P eb b le ), K o ll eb er g a T o ar ci an N ei ll K li n te r G ro u p , O st re ae lv F m . G re en la n d , Ja m es o n L an d R o se n k ra n tz (1 9 3 4 ): T o ar ci an , E as t G re en la n d 52 G. Arp, S. Seppelt 123 palaeoceanographic interpretations, in these condensed beds remains unclear. Similarly, the precise biostrati- graphic level of Avicula cygnipes Phill. of von Koenen (1907: 44) from the Middle Lias of Go¨ttingen is not clear from this publication. However, the corresponding speci- men is in the GZG collection (‘‘Avicula cycnipes Phill., M. Lias, d d [donum dedit] Wolf, Go¨ttingen-Geismar’’; Fig. 4f, g), preserved within an echinoderm packstone, which is likely to be derived from the top of the ‘‘Bel- emniten–Schichten’’, i.e. the Stokesi Subzone. From Southern Germany, von Ammon (in von Gu¨mbel 1891: 690) lists Avicula cygnipes from the Upper Pli- ensbachian iron ores of Bodenwo¨hr, Eastern Bavaria. These highly condensed, 0.2–1.5 m thick fissile goethite- haematite deposits comprise the Margaritatus and Spina- tum Zones (von Gu¨mbel 1891; Meyer and Bauberger 1998). This is currently the southeasternmost occurrence of Oxytoma (Palmoxytoma) cygnipes. Unfortunately, no cor- responding specimen exists in the Gu¨mbel collection of the Bavarian Geological Survey. Further specimens have been discovered in southeastern France, as already described and illustrated by Dumortier (1857) from the upper part of the Pliensbachian east of Lyon (St Fortuna), and from the Upper Pliensbachian (‘‘Zone du Pecten aequivalvis’’) of Giverdy in the Mont d’Or area (Dumortier 1869). In the region of Lyon, Oxy- toma (Palmoxytoma) cygnipes occurs within a highly condensed limestone bed (Calcaire a` Harpax) together with Gryphaea (Bilobissa) sportella (Dumortier, 1869), Cardi- nia crassissima (Sowerby, 1817) and rare Pleuroceras spinatum (Bruguiere 1789) and Pleuroceras solare (Phil- lips, 1829), pointing to the top parts of the Apyrenum Subzone of the Spinatum Zone (Louis Rulleau, personal communication). In summary, Late Pliensbachian occurrences of the bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) are evident for England, southern Sweden to south- eastern Bavaria, and southeastern France (Fig. 5) whereas specimens are rare or absent on the western shelf parts of NW Europe and the Mediterranean region. Toarcian. The only published occurrence in the Toarcian known to the authors is Oxytoma cf. cygnipes Y. et B. of Rosenkrantz (1934) from Jameson Land, East Greenland, but the taxon has not been illustrated. Discussion The Lower Jurassic sedimentary pattern on the NW European Shelf has predominantly been interpreted on the basis of sea-level changes being the major controlling factor (Brandt 1985; de Graciansky et al. 1998; Hesselbo and Jenkyns 1998). However, changes in the current sys- tems may have played an equally important role. Specifi- cally, the palaeogeographic situation of the NW European Shelf, with a narrow seaway to the North (Viking Corridor: Westermann 1993; Transcontinental Laurasian seaway: Bjerrum et al. 2001) implies that the sedimentary system of the shelf was susceptible to changes in current direction, dependent on the density differences between Arctic and Tethyian seawater (Bjerrum et al. 2001). The Late Pliensbachian has been interpreted as a rela- tively cool period in NW Europe, mainly as a result of general climatic cooling in the Northern Hemisphere (Price 1999; Guex et al. 2001). Alternatively, cool water condi- tions, as reflected in palynomorph assemblages and d18O values from belemnites, were considered to reflect influx of cool water masses from boreal regions (Riding and Hub- bard 1999; van de Schootbrugge et al. 2005). In addition, there is increasing geochemical evidence that changes in current directions occurred on the NW European Shelf during the Early Jurassic (Dera et al. 2009). In Germany, major parts of the Upper Pliensbachian are represented by the comparatively thick, monotonous suc- cession of dark marly claystones, the Amaltheenton forma- tion, which is dominated by macrobenthos assemblages of comparatively low diversity (see, e.g., Paleobiology Data- base collection numbers 23624–23628 and 23812–23818), although species listings by Brauns (1871), Monke (1889) and Kuhn (1936) give a contrary impression. By contrast, the Lower Pliensbachian of Germany contains calcareous sedi- ments (marlstone–limestone alternations), with iron–oolitic Fig. 5 Possible seawater current pattern on the NW European Shelf based on the occurrences/non-occurrences of Oxytoma (Palmoyxtom- a) cygnipes (Young & Bird, 1822) and model calculations of Bjerrum et al. (2001). Palaeogeography based on Ziegler (1988) The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 53 123 intercalations in the north and phosphoritic intercalations in the south. The macrobenthos shows more diverse bivalve assemblages (Wollemann 1892). Although these differences in macrobenthos assemblages may be partly explained by substrate changes, the—albeit scattered—occurrence of coralline sponges in the Numismalismergel Formation sug- gest an influx of warmer seawater from Tethyan regions in the Early Pliensbachian. In this context, the new finds of the bivalve Oxytoma (Palmoxytoma) are of palaeozeanographic significance. This taxon has been extensively reviewed by Damborenea (1993, 2002) as a bivalve with a pronounced bipolar dis- tribution, including occurrences from southern South America and New Zealand, and from northern boreal areas (NE Siberia, far-east Russia, Japan, Canada) and England, Sweden, and France. Accordingly, the occurrence of Oxytoma (Palmoxytoma) at the top of the ‘‘Belemniten–Schichten’’ in Northern Germany may indicate an influx of cool seawater to the eastern part of the NW European Shelf at the base of the Upper Pliensbachian (Fig. 5), i.e. just before the onset of the Amaltheenton formation. This carbonate top bed of the ‘‘Belemniten–Schichten’’ consists of echinoderm wacke/ packstones with reduced macrobenthos species richness. Indeed, at Beierstedt this condensed bed contained only five bivalve species, compared with 20 bivalve species in the condensed Lower Pliensbachian carbonate bed below (Table 1). Certainly, these species counts provide only a first hint, and quantitative benthos analysis of sections less affected by time-averaging (Fu¨rsich and Aberhan 1990) are required to verify this trend. This supposed cool water current may have extended (during the upper Margaritatus to Spinatum Zones) farther south to eastern Bavaria and southeastern France, as suggested by the specimens reported by von Ammon in von Gu¨mbel (1891), by Dumortier (1857, 1869) and by Rulleau (2007) (Fig. 5). Continuing cool water conditions during deposition of the Amaltheenton formation in Northern Germany are evident from glendonites, which have been reported from the upper part of the Amaltheenton formation (motorway A 39 at Wolfsburg; Luppold and Teichert 2007), although their significance as an indicator of low temperatures has subsequently been questioned by the same authors (Teic- hert and Luppold 2009). However, the temperature–pres- sure stability field of ikaite, the precursor of glendonites, is well constrained, and the significance of the associated species-rich and supposed thermophile microfauna men- tioned by these authors must be verified. For the Rhaetian–Hettangian boundary, the palaeoenvi- ronmental implications of the Oxytoma (Palmoxytoma) occurrences are more difficult to determine. Assuming a cool water preference of Oxytoma (Palmoxytoma) for this time interval also, the occurrences within the Alpine region may point to a cool deeper-water setting, or alternatively to a global cooling interval. Although the causes of the Tri- assic–Jurassic boundary extinction event are still under discussion (Tanner et al. 2004), climatic fluctuations with a short-term cooling period (induced by aerosols) immedi- ately after the negative d13C excursion, followed by a warming period (induced by increased atmospheric CO2) seem well constrained (reviewed by, e.g., Wignall 2001; Guex et al. 2004; Pien´kowski et al. 2008). Also, the higher extinction rate of tropical than non-tropical genera in the Rhaetian point to a palaeoclimatic factor in the end-Tri- assic mass extinction (Kiessling and Aberhan 2007). A short-term cooling interval may hence be assumed for the English Pre-Planorbis beds and the Southwest German Psilonotenkalk, both deposited in shallow-water settings on the NW European Shelf. However, the occurrence of the coral Isastrea in the Psilonotenkalk (Schweigert et al. 2010), a zooxanthellate warm-water coral rather than an azooxanthellate cool-water coral, challenges this hypothe- sis. Here, further investigations are required to assess faunal mixing by reworking of stratigraphically older material into the transgressive Psilonoten Limestone. Conclusions Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) from the Lower Jurassic of Northern Germany (to be pre- cise, from the basal Upper Pliensbachium), is described and illustrated for the first time. Comparison of published specimens of Oxytoma (Palmoxytoma) suggests there is only one species in the Lower Jurassic, i.e. cygnipes (Young & Bird, 1822). This species ranges from the Rhaetian–Hettangian boundary to the Upper Pliensbachian, probably extending into the Toarcian. A review of pub- lished occurrences on the Early Jurassic NW European Shelf indicates two distinct stratigraphic intervals: the Rhaetian–Hettangian boundary and the Upper Pliensba- chian. The occurrence of Oxytoma (Palmoxytoma) cygni- pes at the base of the Upper Pliensbachian, just before the onset of the Amaltheenton sedimentation, is interpreted as reflecting an influx of cool water from the Boreal Ocean on to the eastern NW European Shelf. This cool water current may have extended southwards as far as Southern Ger- many, with a possible counter current on the western shelf parts. For the occurrences of the species at the Triassic– Jurassic boundary of the NW European Shelf, a short-term cooling interval at the same time as the extinction event might provide an explanation. Acknowledgments We are indebted to Fritz-Hermann Mu¨ller, Be- ierstedt and Joachim Reitner, University of Go¨ttingen, for their gen- erous support of the field campaign at Beierstedt. Alexander Satmari, 54 G. Arp, S. Seppelt 123 Go¨ttingen, prepared the thin-sections. Winfried Werner and Erwin Geiss, Mu¨nchen, carried out a search for Oxytoma (Palmoxytoma) in the Gu¨mbel collection of the Bavarian Geological Survey. Christine Heim, Go¨ttingen, helped with translating Swedish publications. We are indebted to Louis Rulleau, Chasselay, for providing detailed information on the occurrence of Oxytoma (Palmoxytoma) in the region of Lyon. Gu¨nter Schweigert and Philipe Havlik kindly pro- vided access to original specimens in the collections of Stuttgart and Tu¨bingen, respectively. Franz T. Fu¨rsich, Erlangen, and an anony- mous reviewer provided helpful comments, corrections, and suggestions. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which per- mits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References Aberhan, M. 1994. Early Jurassic Bivalvia of northern Chile. Part I. Subclasses Palaeotaxodonta, Pteriomorphia, and Isofilibranchia. Beringeria 13: 3–115. Aberhan, M. 1998. Early Jurassic Bivalvia of western Canada. Part I. Subclasses Palaeotaxodonta, Pteriomorphia, and Isofilibranchia. Beringeria 21: 57–150. Ahlberg, A., U. Sivhed, and M. Erlstro¨m. 2003. The Jurassic of Ska˚ne, southern Sweden. Geological Survey of Denmark and Greenland Bulletin 1: 527–541. Ambrose, K. 2001. The lithostratigraphy of the Blue Lias Formation (Late Rhaetian-Early Sinemurian) in the southern part of the English Midlands. Proceedings of the Geologists’ Association 112: 97–110. Arkell, W.J. 1933. The Jurassic System in Great Britain. Oxford: Clarendon Press. Bjerrum, C.J., F. Surlyk, J.H. Callomon, and R.L. Slingerland. 2001. Numerical paleoceanographic study of the Early Jurassic trans- continental Laurasian Seaway. Paleoceanography 16: 390–404. Bloos, G. 1999. Neophyllites (Ammonoidea, Psiloceratidae) in the earliest Jurassic of South Germany). Neues Jahrbuch fu¨r Geologie und Pala¨ontologie Abhandlungen 211: 7–29. Brandt, K. 1985. Sea-level changes in the Upper Sinemurian and Pliensbachian of Southern Germany. Lecture Notes in Earth Sciences 1: 113–126. Brauns, D.A. 1871. Der untere Jura im nordwestlichen Deutschland von der Grenze der Trias bis zu den Amaltheenthonen, mit besonderer Beru¨cksichtigung seiner Molluskenfauna; nebst Nachtra¨gen zum Mittleren Jura. Braunschweig: Vieweg. Bruguiere, J.G. 1789. Encyclope´die Me´thodique. Histoire Naturelle des Vers. Tome 1. Paris: Panckoucke. Cope, J.C.W. 1991. Discussion on correlation of the Triassic–Jurassic boundary in England and Austria. Journal of the Geological Society 148: 420–422. Cox, L.R. 1961. New genera and subgenera of Mesozoic Bivalvia. Palaeontology 4: 592–598. Damborenea, S.E. 1987. Early Jurassic Bivalvia of Argentina, Pt. 2: Superfamilies Pteriacea, Buchiacea and part of Pectinacea. Palaeontographica A 199: 113–216. Damborenea, S.E. 1993. Early Jurassic South American pectinaceans and circum-Pacific palaeobiogeography. Palaeogeography, Pal- aeoclimatology, Palaeoecology 100: 109–123. Damborenea, S.E. 2002. Early Jurassic bivalves of Argentina, Pt. 3: Superfamilies Monotoidea, Pectinoidea, Plicatuloidea and Dimyoidea. Palaeontographica A 265: 1–119. Damborenea, S.E., and M.O. Mancen˜ido. 1992. A comparison of Jurassic marine benthonic faunas from South America and New Zealand. Journal of the Royal Society of New Zealand 22: 131–152. de Graciansky, P.C., T. Jacquin, and S.P. Hesselbo. 1998. The Ligurian cycle: an overview of Lower Jurassic 2nd order transgressive-regressive facies cycles in western Europe. Special Publication of the Society for Sedimentary Geology 60: 468–479. Dera, G., E. Puce´at, P. Pellenard, P. Neige, D. Delsate, M.M. Joachimski, L. Reisberg, and M. Martinez. 2009. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth and Planetary Science Letters 286: 198–207. Dore, A.G. 1991. The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeoge- ography, Palaeoclimatology, Palaeoecology 87: 441–492. Dumortier, E. 1857. Note sur quelques fossiles peu connus ou mal figure´s du Lias moyen. Annales de la Socie´te´ impe´riale d’agricul- ture, d’histoire naturelle et des arts utiles de Lyon:1–23, 8 pls. Dumortier, E. 1869. E´tude pale´ontologique sur les de´pots jurassiques du bassin du Rhone. Troisie´me Partie. Lias-moyen. 45 pls., Paris: Savy. Eabvoda A.A., B.G. Rbyacod, R.B. Gaparewod, B.B. Gokymonro, >.C. Pegby, and A.C. Laubc. 1968. Gokedoq Ankac >pcroq Aayys b Akops Cedepo-Bocnora CCCP. Cedepo-Bocmoxyoe Opqeya Tpyqodouo Rpacyouo pyaveyb Ueokoubxecroe Egpadkeybe, Vfufqfycrjt Ryb;yjt Bpqamtkmcmdj. [Efimova A.F., Kinasov V.P., Paraketsov K.V., Polubotko I.V., Repin Yu.S. and Dagis A.S. 1968. Field atlas of Jurassic Fauna and Flora of the Northeastern USSR. Northeastern Order of the Red Banner of Labour Geological Institute, Magadan (Magadan book publishing house). In Russian.]. Frebold, H. 1957. The Jurassic Fernie Group in the Canadian Rocky Mountains and Foothills. Geological Survey of Canada Memoir 287: 1–197. Fugger, E. 1906. Die Gaisberggruppe. Jahrbuch der kaiserlich- ko¨niglichen geologischen Reichsanstalt 56: 213–258. Fu¨rsich, F.T., and M. Aberhan. 1990. Significance of time-averaging for palaeocommunity analysis. Lethaia 23: 143–152. Guex, J., A. Morard, A. Bartolini, and E. Morettini. 2001. De´couverte d’une importante lacune stratigraphique a` la limite Dome´rien- Toarcien: Implications pale´o-oce´anographiques. Bulletin de la Socie´te´ vaudoise des sciences naturelles 87: 277–284. Guex, J., A. Bartolini, V. Atudorei, and D. Taylor. 2004. High- resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters 225: 29–41. Hahn, F.F. 1911. Neue Funde im nordalpinen Lias der Achensee- gegend und bei Ehrwald. Neues Jahrbuch fu¨r Mineralogie, Geologie und Pala¨ontologie, Beilage-Band 82: 535–577. Hallam, A. 1967. An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. Philosophical Transactions of the Royal Society of London B 252: 393–445. Harries, P., and C.T.S. Little. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palae- oclimatology, Palaeoecology 154: 39–66. Hesselbo, S.P., and H.C. Jenkyns. 1998. British Lower Jurassic sequence stratigraphy. Special Publication of the Society for Sedimentary Geology 60: 561–581. Ho¨lder, H. 1953. Oxytoma scania (Lundgren) in der schwa¨bischen Planorbis-Zone. Neues Jahrbuch fu¨r Geologie und Pala¨ontologie Monatshefte 1953:358–364, Stuttgart. Ho¨lder, H. 1964. Handbuch der Stratigraphischen Geologie IV: Jura. Stuttgart: Enke. The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 55 123 Howarth, M.K. 1955. Domerian of the Yorkshire Coast. Proceedings of the Yorkshire Geological Society 30: 147–175. Jeannet, A. 1913. Monographie ge´ologique des Tours d’Aı¨ et des re´gions avoisinantes (Pre´alpes vaudoises). 1e`re partie: Stratigra- phie de la nappe rhe´tique, du Trias et du Lias des Pre´alpes me´dianes et de la zone interne. Beitra¨ge zur geologischen Karte der Schweiz, Neue Folge 34(1): 1–466. 7 pls., Bern: A. Francke. Kiessling, W., and M. Aberhan. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33: 414–434. Royodakoda B.B. and G.B. Mapredbx. 2004. >;yoe Gpbvopme. - [d:] Mapredbxa G.B. & Paxapoda >.L. (pelarnops): Tpbac b .pa Cbxon'-Akbyz. Rybua 1. Teppbueyysq rovgkerc: 233–314, Bkalbdocnor (Lakmyayra). [Konovalova I.V. and Markevich P.V. 2004. Southern Littoral.—[In:] Markevich P.V. and Zakharov Y.D. (eds.): Triassic and Jurassic of the Sikhote- Alin.—Book 1 Terrigenous Assemblage: 233–314, Vladivostok: Dalnauka. In Russian.]. Kuhn, O. 1935. Weitere Beitra¨ge zur Fauna des untersten Lias in Schwaben und Franken. Jahreshefte des Vereins fu¨r vaterla¨ndi- sche Naturkunde in Wu¨rttemberg 91: 2–18. Kuhn, O. 1936. Die Fauna des Amaltheentons (Lias d) in Franken. Neues Jahrbuch fu¨r Mineralogie, Geologie und Pala¨ontologie, Beilage-Band 75 (Abt. B Geologie und Pala¨ontologie):231–311. Lange, W. 1952. Der untere Lias am Fonsjoch (o¨stliches Kar- wendelbirge) und seine Ammonitenfauna. Palaeontographica A 102: 49–162. Lundgren, B. 1881. Underso¨kningar o¨fver Molluskfaunan i Sveriges a¨ldre Mesozoiska Bildningar. Sveriges Geologiska Underso¨k- ning 47 [Lunds Universitets A˚rsskrift 17]: 1–57, 6 pls., Lund: Fr. Berling. Lundgren, B. 1888. O¨fversigt at sveriges mesozoiska Bildningar. Lunds Universitets A˚rsskrift, II. Mathematik och Naturvetenskap 24: 1–37. Luppold, F.W., and B.M.A. Teichert. 2007. Glendonite im Jura (Lias, Oberes Pliensbachium) Norddeutschlands. Geowissenschaftliche Mitteilungen (GMIT) 28: 26–27. McRoberts, C.A., H. Furrer, and D.S. Jones. 1997. Palaeoenviron- mental interpretation of a Triassic–Jurassic boundary section from Western Austria based on palaeoecological and geochem- ical data. Palaeogeography, Palaeoclimatology, Palaeoecology 136: 79–95. Meyer, R.K.F. and W. Bauberger. 1998. Geologische Karte von Bayern 1:25000. Erla¨uterungen zum Blatt Nr. 6739 Bruck i.d.Opf. 1 map, Mu¨nchen: Bayerisches Geologisches Landesamt. Mbkoda, K.B. 1976. Cnpanbupaabz b ldycndopxanse vokk.crb npbacodo-.pcrbx onko;eybq Cedepyouo Gpboxonmz. - Ara- levbz yayr CCCP, LakMyedocnoxysq Hayxysq Weynp, Cedepo- Bocnoxysq rovgkercysq yayxyo-bcckelodanekmcrbq bycnbnyn, Tpyls, Bsgycr 65: 1–108, Bplanekmcndo ‘‘Hayra’’, Mocrda. [Milova, L.V. 1976. Stratigraphy and bivalve mollusks of the Triassic- Jurassic deposits of northern Priokhot’ya. USSR Academy of Sciences, Far-Eastern Scientific Center, Northeast- ern Interdisciplinary Research Institute, Transactions 65: 1–108, Moscow: Nauka. In Russian]. Moberg, J.C. 1888. Om lias i sydo¨stra ska˚ne. Sveriges Geologiska Underso¨kning C 99: 1–86. Monke, H. 1889. Die Liasmulde von Herford in Westfalen. Verhandlungen des Naturhistorischen Vereins der Rheinlande, Westfalens und des Reg.-Bezirks Osnabru¨ck 45(5): 1–114. Mo¨nnig, E. 2005. Der Jura von Norddeutschland in der Stratigra- phischen Tabelle von Deutschland 2002. Newsletters on Stra- tigraphy 41: 253–261. Neumayr, M. 1879. Zur Kenntnis des unteren Lias in den Nordalpen. Abhandlungen der Kaiserlich-Ko¨niglichen Geologischen Reich- sanstalt 7(5): 1–46. Oppel, A. 1856–1858. Die Juraformation Englands, Frankreichs und des su¨dwestlichen Deutschlands. Wu¨rttembergische naturwis- senschaftliche Jahreshefte 12–14:1–857. Phillips, J. 1829. Illustrations of the Geology of Yorkshire. Part 1, The Yorkshire Coast. London: Murray. Pien´kowski, G., M.E. Schudack, P. Bosa´k, R. Enay, A. Feldman- Olszewska, J. Golonka, J. Gutowski, G.F.W. Herngreen, P. Jordan, M. Krobicki, B. Lathuiliere, R.R. Leinfelder, J. Michalı´k, E. Mo¨nnig, N. Noe-Nygaard, J. Pa´lfy, A. Pint, M.W. Rasser, A.G. Reisdorf, D.U. Schmid, G. Schweigert, F. Surlyk, A. Wetzel, and T.E. Wong. 2008. Jurassic. In The geology of Central Europe. Volume 2: Mesozoic and Cenozoic, ed. T. McCann, 823–922. Geological Society London. Poulton, T.P. 1991. Hettangian through Aalenian (Jurassic) guide fossils and biostratigraphy, northern Yukon and adjacent North- west Territories. Geological Survey of Canada Bulletin 410: 1–95. Price, G.D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews 48: 183–210. Quenstedt, F.A. 1867. Handbuch der Petrefaktenkunde. 2nd ed., 86 pls, Tu¨bingen: Laupp. Quenstedt, F.A. 1883–1885. Die Ammoniten des Schwa¨bischen Jura. Band 1: Der Schwarze Jura (Lias). 54 pls, Stuttgart: Schweizerbart. Rawson, P.F., and J.K. Wright. 1996. Jurassic of the Cleveland Basin, North Yorkshire. In Field geology of the British Jurassic, ed. P.D. Taylor, 173–208. London: Geological Society. Reyment, R.A. 1959. On Liassic ammonites from Ska˚ne, southern Sweden. Stockholm Contributions in Geology 2(6): 103–157. Riccardi, A.C., S.E. Damborenea, M.O. Mancen˜ido, and S.C. Ballent. 1991. Hettangian and Sinemurian (Lower Jurassic) biostratigra- phy of Argentina. Journal of South American Earth Sciences 4: 159–170. Richards, P.C. 1990. The early to mid-Jurassic evolution of the northern North Sea. Geological Society, London, Special Pub- lications 55: 191–205. Riding, J.B., and R.N.L.B. Hubbard. 1999. Jurassic (Toarcian- Kimmeridgian) dinoflagellate cysts and paleoclimates. Palynol- ogy 23: 15–30. Rosenkrantz, A. 1934. The Lower Jurassic rocks of East Greenland, Part I. Meddelelser om Grønland 110: 1–150. Rulleau, L. 2007. Biostratigraphie et pale´ontologie de la Re´gion lyonnaise. Tome II: du Socle au Lias moyen. 57 pl., Section Ge´ologie et Pale´ontologie du Comite´ d’Entreprise Lafarge Ciments (Dedale Editions). Schweigert, G., and J. Klaschka. 2011. Eine Schwanenfuß-Muschel zu Gast im Schwa¨bischen Jura. Fossilien 28(4): 223–226. Schweigert, G., T. Balle, and H. Miksche. 2010. Einsame Koralle. Fossilien 27(6): 348–353. Sey, I.I., Y.S. Repin, E.D. Kalacheva, T.M. Okuneva, K.V. Paraket- sov, and I.V. Polubotko. 1992. Eastern Russia. In The Jurassic of the circum-Pacific. World and regional geology 3 (International Geological Correlation Programme project 171), ed. G.E.G. Westermann, 225–245, Cambridge: Cambridge University Press. Sivhed, U. 1984. Litho- and biostratigraphy of the Upper Triassic- Middle Jurassic in Scania, southern Sweden. Sveriges Geolog- iska Underso¨kning C 806: 1–28. Sowerby, J. 1812–1822. The mineral conchology of Great Britain. Vols. 1–4: pls. 1–383, London. Steel, R., and A. Ryseth. 1990. The Triassic-Early Jurassic succession in the northern North Sea; megasequence stratigraphy and intra- Triassic tectonics. Geological Society, London, Special Publi- cations 55: 139–168. Stutchbury, S. 1839. Description of a new fossil Avicula, from the Lias Shale of Somersetshire. Magazine of Natural History (New Series) 3: 163–164. 56 G. Arp, S. Seppelt 123 Tanner, L.H., S.G. Lucas, and M.G. Chapman. 2004. Assessing the record and causes of Late Triassic extinctions. Earth Science Reviews 65: 103–139. Tate, R., and J.E. Blake. 1876. The Yorkshire Lias. London: John von Vorst. Teichert, B.M.A. and F.W. Luppold. 2009. Glendonite formation in Early Jurassic dark shales: Evidence for methane seepage in northern Germany. Geochimica et Cosmochimica Acta 73(13, Suppl 1):A1319. Thomas, E. 1924. Genetische Betrachtungen u¨ber die Lias-und Neokomablagerungen am Fallstein und ihre Eisenerze. Jahrbuch des Halleschen Verbandes fu¨r die Erforschung der mitteldeuts- chen Bodenscha¨tze und ihrer Verwertung 4: 74–155. Trechmann, C.T. 1923. The Jurassic rocks of New Zealand. Quarterly Journal of the Geological Society London 79(3): 246–286. Troedsson, G. 1951. On the Ho¨gana¨s Series of Sweden (Rhaeto-Lias). Lunds Universitets A˚rsskrift N. F. 2, 47(1):1–268. van de Schootbrugge, B., T. Bailey, Y. Rosenthal, M.E. Katz, J.D. Wright, S. Feist-Burkhardt, K.G. Miller, and P.G. Falkowski. 2005. Early Jurassic climate change and the radiation of organic- walled phytoplankton in the Tethys Ocean. Paleobiology 31: 73–97. von Gu¨mbel, C.W. 1891. Geognostische Beschreibung des Koenigr- eichs Bayern. 4. Abtheilung, Geognostische Beschreibung der Fra¨nkischen Alb (Frankenjura) mit dem anstossenden fra¨nkis- chen Keupergebiete. Kassel: Fischer [Reprint 1998 Pfeil-Verlag Mu¨nchen]. von Hillebrandt, A.v., L. Krystyn, and W.M. Kuerschner. 2007. A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section, Karwendel Mountains, Tyrol, Austria). ISJS Newsletter 34(1): 2–20. von Koenen, A. 1907. Erla¨uterungen zur geologischen Specialkarte von Preussen und den Thu¨ringischen Staaten. Blatt No. 28 Go¨ttingen. 2nd ed. Berlin: Schropp. von Schlotheim, E.F. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung verstein- erter und fossiler U¨berreste des Thier- und Pflanzenreichs der Vorwelt erla¨utert. 15 pls., Gotha: Becker. von Seebach, K. 1864. Der Hannoversche Jura. 10 pls., Berlin: Hertz. Westermann, G.E.G. 1993. Global bio-events in mid-Jurassic amm- onites controlled by seaways. Systematics Association Special Volume 47: 187–226. Wignall, P.B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53: 1–33. Wollemann, A. 1892. Verzeichnis der im Eisenstein des Lias c von Rottorf am Kley bei Helmstedt bisland gefundenen Versteinerungen. Ver- handlungen des naturhistorischen Vereins der preussischen Rhein- lande, Westfalens und des Reg.-Bezirks Osnabru¨ck 49: 107–147. Young, G. and J. Bird. 1822. A geological survey of the Yorkshire coast: describing the strata and fossils occurring between the Humber and the Tees, from the German Ocean to the plain of York. 17 pls., Whitby. Young, G. and J. Bird. 1828. A geological survey of the Yorkshire coast: describing the strata and fossils occurring between the Humber and the Tees, from the German Ocean to the plain of York. 2nd ed., 17 pls., Whitby. Ziegler, P.A. 1988. Evolution of the Arctic-North Atlantic and the Western Tethys. American Association of Petroleum Geologists Memoir 43: 30 enclosures, Tulsa. Ziegler, P.A. 1990. Geological atlas of western and central Europe. 2nd ed., 56 enclosures, Den Haag: Shell Internationale Petro- leum Maatschapij B.V. The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) 57 123