Not herbs and forbs alone: pollen-based evidence for the presence of boreal trees and shrubs in Cis-Baikal (Eastern Siberia) derived from the Last Glacial Maximum sediment of Lake Ochaul

FRANZISKA KOBE,1 CHRISTIAN LEIPE,1,2 ALEXANDER A. SCHKETNIKOV,3,4,5,6,7 PHILIPP HOELZMANN,8 JANA GLIWA,9 PASCAL OLSCHENSKI,1,9 TOMASZ GOSLAR,10,11 MAYKE WAGNER,9 ELENA V. BEZRUKOVA,3,4 and PAVEL E. TARASOV1*

1Institute of Geological Sciences, Paleontology, Freie Universität Berlin, Berlin, Germany
2Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan
3A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
4Irkutsk Scientific Center, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
5Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
6Geological Institute, Russian Academy of Sciences, Moscow, Russia
7Laboratory of Geoarchaeology of Baikal Siberia, Irkutsk State University, Irkutsk, Russia
8Institute of Geographical Sciences, Physical Geography, Freie Universität Berlin, Berlin, Germany
9Eurasia Department and Beijing Branch Office, German Archaeological Institute, Berlin, Germany
10Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
11Poznan Radiocarbon Laboratory, Poznan Park of Science and Technology, Poznań, Poland

ABSTRACT: A new accelerator mass spectrometry (AMS)-dated sedimentary record from Lake Ochaul (54°14′N, 106°28′E; 641 m a.s.l.) in Eastern Siberia covers the interval from ca. 27 850 to 20 400 cal a BP at ca. 180-year resolution and contributes to a better understanding of the complex spatial vegetation pattern during the Last Glacial Maximum (LGM). Non-arboreal pollen taxa are abundant in the pollen assemblages (mean value ca. 92.6%), but boreal trees are represented by all major taxa that grow in the lake catchment today, including Betula sect. Alaee (0.6–4.8%), Picea (0.6–2.8%), Pinus sibirica (Haploxylon type) (up to 1.5%), Pinus sylvestris (Diploxylon type) (up to 2%), Larix (up to 0.6%) and Abies (up to 0.6%). Betula sect. Nanaceae/Fruticosae (2–5.2%) and Salix (up to 3.2%) are the most representative boreal shrub taxa. Together with existing modern and fossil pollen data from the wider study region, the current record provides further evidence for the long-debated presence of boreal trees and shrubs in Eastern Siberia throughout the LGM. Our results show that the Upper Lena was a region in which refugia for arboreal taxa existed and that far-distant pollen transport can be ruled out as the source of the detected arboreal pollen.

KEYWORDS: arboreal pollen; biome reconstruction; ostracods; productive vegetation; sediment geochemistry

Introduction

The 21st century brings many environmental threats to forest ecosystems, including different forms of pollution, anthropogenic deforestation and mining activities. A quantitative assessment of global forest changes using Earth observation satellite data revealed forest loss of about 2.3 million km² from 2000 to 2012 (Hansen et al., 2013). Their study also showed that the loss of boreal forests, mainly due to fires and logging, was comparable to that in the tropics in absolute and proportional terms. This trend is particularly alarming given slower regrowth dynamics of boreal conifer trees. Tautenhahn et al. (2016) reported that recent climate change and associated increased fire frequency are also transforming the landscape in the boreal forest regions, and those transformations, in turn, will have an impact on the regional and global climate, which must be better understood.

Knowledge of past forest change helps to gain insight into the climate system, carbon cycle and genetic diversity, and can inform current predictions and conservation strategies (e.g. Prentice et al., 1992; Petit et al., 2008; Tarasov et al., 2009; Williams et al., 2011; Kaplan et al., 2016). There is general agreement that the Earth’s forests underwent substantial decline during the Quaternary glacial intervals (e.g. Melles et al., 2012) and that the Last Glacial Maximum [LGM; ca. 20–18 cal ka BP (Lambeck et al., 2014) or 26.5–20 cal ka BP (Clark et al., 2009)] landscapes in the middle to high latitudes were predominantly treeless (Frenzel et al., 1992; Prentice et al., 2000; Williams et al., 2011; Shao et al., 2018) in response to the maximum spread of ice sheets and corresponding minima in global sea level, northern summer insolation, sea surface temperatures and atmospheric CO₂ concentrations. However, the extent of deforestation and characteristics of the LGM vegetation cover and climate in northern Asia (Fig. 1A), a region that witnessed continuous human habitation during the climatically harshest part of the last glacial (e.g. Fiedel and Kuzmin, 2007) and played a key role in the spread of anatomically modern humans to America, are still debated (e.g. Tarasov et al., 2020).

Botanical records from ice-free high-latitude regions of Eurasia and North America indicate that boreal forests became rather quickly established there during the Lateglacial and the
early Holocene interglacial because of population invasion from southern glacial refugia and local expansion of small tree populations that survived the LGM interval in cryptic refugia (Petit et al., 2008). A multidisciplinary study of the Dyanushka peat section (Fig. 1A) from the Lena River valley (Werner et al., 2010) reported well-preserved and radiocarbon-dated needles and cones of Larix, thus documenting local presence of larch trees 170 km south of the Arctic Circle during the Younger Dryas stadial (ca. 12,500–12,000 cal aBP). Further more, a sediment record from Lake Billyakh (Fig. 1A) situated in the Verkhoyansk Mountains, ca. 80 km east of the Dyanushka site, revealed almost continuous presence of larch pollen through the last 50,000 years (Müller et al., 2010).

Further evidence that small populations of woody taxa grew in climatically favourable habitats comes from radiocarbon-dated wood and charcoal material from archaeological sites in Southern Siberia (Fig. 1A; Vasil'ev et al., 2002) and from ancient DNA (aDNA) analysis of stomach contents and coprolites of large herbivores dating ca. 55,000–21,000 cal aBP (Willerslev et al., 2014). However, due to a lack of directly dated LGM wood macrofossils and high-resolution aDNA and pollen records from the central part of Eastern Siberia, there has been no agreement on whether (and, if so, where?) trees could persist during the coldest phases of the last glacial period (Frenzel et al., 1992; Ray and Adams, 2001; Brubaker et al., 2005; Binney et al., 2009; Tarasov et al., 2009). In the current study, we present a new accelerator mass spectrometry (AMS) dated pollen record supplemented by the results of geochemical and ostracod analyses of the LGM sediment from Lake Ochaul (Fig. 1B), situated in a densely forested taiga zone (Fig. 1C), to fill the gap in the current knowledge and address this problem.

Figure 1. Maps showing: (A) locations of the Lake Baikal region (LBR: black rectangle) and the sites with published pollen or/plant macrofossil records from northern Eurasia discussed in the text (white dots) and with radiocarbon-dated Last Glacial Maximum wood and charcoal material (red dots) from archaeological sites in Siberia and the Russian Far East (Vasil'ev et al., 2002); (B) main topographic features, hydrological network, and locations of Lake Ochaul and Lake Kotokel in the LBR; and (C) AVHRR-derived percentage values of modern tree cover (DeFries et al., 2000). Elevation in A and B is based on 90-m resolution Shuttle Radar Topography Mission (SRTM) v4.1 data (Jarvis et al., 2008). [Color figure can be viewed at wileyonlinelibrary.com].

Study site and environmental setting
Lake Ochaul (54°14’N, 106°28’E; 641 m a.s.l.) is a relatively small freshwater lake situated in the upper reaches of the Lena...
River, about 100 km north-west of Lake Baikal (Fig. 2A). Ochaul located in the Upper Lena region, rich in archaeological sites assigned to the Upper Palaeolithic, Neolithic and Bronze Age periods, was selected as one of the key study sites for a new phase of the Baikal Archaeology Project (BAP), a long-term interdisciplinary research project focused on detailed reconstructions of hunter-gatherer culture and environmental dynamics (Weber et al., 2013; https://baikalproject.artsrn.ualberta.ca/). The lake has a maximum length of ca. 2.7 km, a maximum width of ca. 1.2 km and a water surface area of ca. 2.6 km² (Boyarkin, 2007). The lake is rather shallow (Fig. 2B) and its bottom is overgrown with aquatic vegetation. A maximum water depth measured in summer 2018 in the central part of the lake was about 2.5 m, although traces of 2–3-m-high palaeoshorelines observed in the eastern part of the lake, ca. 100–300 m from its modern coastline, indicate that the lake occupied a larger area at some time in the past (Kobe et al., 2020). Dating these former shorelines may contribute to a better understanding of the lake history. However, due to the archaeological sites located on the lake shore, any geomorphological field work is prohibited.

Lake Ochaul (Fig. 2B) occupies the central part of a trough-shaped valley with a flat and marshy bottom and slopes rising to 200–250 m above the lake level (i.e. 850–900 m a.s.l.). The Malaya Anga River, flowing through the lake, carries its waters to the Bol’shaya Anga, which flows into the Lena River near Kachug (Fig. 2A), a small town and county centre, founded in 1686.

The valleys of the Malaya and Bol’shaya Anga rivers are part of the larger Cis-Baikal Depression (Kobe et al., 2020), which stretches parallel to Lake Baikal from the Angara River in the south-west to the Kirenga River in the north-east (Fig. 1B) and has a tectonic origin (Alpat’ev et al., 1976). The Primorskii (1658 m a.s.l.) and the Baikal’skii (2588 m) mountain ranges separate the depression from Lake Baikal, while the Lena–Angara Plateau borders it from the north-west. The bedrocks of the lake drainage area are represented by sedimentary rocks of the Middle–Upper Cambrian Verkholenskaya suite, including dolomite marls, often with anhydrite, gypsum, as well as mudstones, siltstones and sandstones (Vinogradov et al., 2011). The reddish-brownish colours of the underlying rocks are transmitted in the process of lithogenesis.
to the overlying Cenozoic sediments, primarily on the slopes and in the lake basins.

The regional climate is continental with relatively warm but short summers and cold long winters (Alpat'ev et al., 1976). The climate averages from Kachug show a mean temperature of -25.5 °C in January, 17.1 °C in July, an annual precipitation of 339 mm (https://ru.climate-data.org/) and a period of continuous snow cover of 167 days (Galaziy, 1993; Kobe et al., 2020). In contrast to the low precipitation values registered in the Cis-Baikal Depression, the neighbouring mountain ranges receive up to 1000–1200 mm annually (Galaziy, 1993). This and low evaporation losses explain the well-developed river network of the region (Fig. 2A).

The study region belongs to the southern and species-richest part of the taiga vegetation zone of Eastern Siberia (Alpat'ev et al., 1976) and the plain areas outside the human settlements and mountains are densely forested (Fig. 1C). The regional vegetation is dominated by deciduous [e.g. larch (Larix sp.) and birch (Betula sect. Albae)] and evergreen [e.g. Siberian pine (Pinus sibirica), Scots pine (Pinus sylvestris), spruce (Picea obovata) and fir (Abies sibirica)] trees. The undergrowth is represented by diverse shrubs, including heath (Ledum palustre, Vaccinium vitis-idaea, V. uliginosum), alder (Alnus fruticosa), willow (Salix sp.) and birch (Betula sect. Fruticosae and B. sect. Nanae) as well as various herb, grass and moss species (Belov et al., 2002). In the catchment area of Lake Ochaul, larch forests with admixture of Siberian pine, spruce and birch trees are densely forested in the undergrowth dominate (Belov et al., 2002; Kobe et al., 2020), while Scots pines are not as common as in other regions, e.g. Trans-Baikal, the Angara River valley and Central Yakutia (Alpat'ev et al., 1976), where subsurface permafrost is not affecting their root system (Shumilova, 1960). Large elevation differences (i.e. 455–2201 m a.s.l.) and complex topography in the study region (Fig. 2A) cause very variable climatic and micro-climatic conditions (Galaziy, 1993), which explain the patchy character of vegetation distribution and high diversity of plants (Belov et al., 2002) representing different vegetation types or biomes such as taiga, cold deciduous forest, steppe and tundra (Demske et al., 2005; Tarasov et al., 2019; Kobe et al., 2020).

Materials and methods

Core sediment and age determination

Lake Ochaul was cored in summer 2018 using a UWITEC percussion piston corer and coring platform (Kobe et al., 2020). The sediment core Och18-II (Fig. 3) was retrieved from the central part of the lake (54°13′58.4″N, 106°27′53.8″E; Fig. 2B) at a water depth of ca. 2.5 m. Once coring was completed, the core sections in closed thin-wall plastic liners of 63-mm diameter were transported to the Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences in Irkutsk and stored under constantly low temperature. In March 2019, the tubes were opened by cutting in two halves, the sediments were photographed, described, documented and subsampled for further analyses using the double-L channel (LL-channel) technique (Nakagawa, 2007).

The Och18-II core revealed a 7.24-m-long sediment column (Kobe et al., 2020), which consists of two major units. The topmost one (0–213 cm) is represented by water-rich soft organic gyttja, rich in freshwater mollusc and ostracod shells, partly laminated, coloured in various shades of brown (Fig. 3B), with a pungent smell of hydrogen sulphide (Kobe et al., 2020). A transitional layer of gyttja and laminated silty clay of olive-grey to blackish colour separates it from the underlying thick unit (236–724 cm) represented by massive viscous silty clay, partly finely laminated, light grey to dark grey in colour in the upper part, and reddish to brown massive viscous clay with coarse silt and fine sand in the bottom part of the core (Fig. 3B).

Figure 3. (A) AMS 14C-based age-depth model and (B) simplified lithology of the Och18-II sediment core. Black dots indicate medians of calibrated radiocarbon dates corrected for reservoir effect (see Table 1 for details). Grey lines in A indicate ±5% uncertainty range of the age model (dashed red line). Vertical black bars indicate section 4 (this study) and section 2 (Kobe et al., 2020) of the Och18-II core. [Color figure can be viewed at wileyonlinelibrary.com].
To estimate the age of the Och18-II core, 35 bulk sediment samples, each representing a 0.5- or 1-cm sediment layer, were sent to the Poznan Radiocarbon Laboratory for AMS dating (Fig. 3A; Table 1). The obtained dates suggest accumulation of the recovered core sediment during the past ca. 32,000 years (Kobe et al., 2020) and helped to select the 157-cm-long section of the Och18-II core (further called Och18-II-4), which represents the composite depth interval between 657 and 500 cm (Fig. 3), for detailed pollen and geochemical analyses of the LGM, discussed in the current study. The first study on the Och18-II core (Kobe et al., 2020), which focused on the Lateglacial and the early and middle Holocene interval (ca. 13,500–4000 cal a BP), suggested that the reservoir effect could be a problem in Lake Ochaul, based on the AMS dating of the topmost sample from the Och18-II core to 615 ± 30 14C a BP and the modern age of this sample obtained using down-core profiles of short-lived 210Pb and 137Cs isotopes. Following Kobe et al. (2020), we subtracted the reservoir age of 600 years from all radiocarbon dates before their calibration to calendar ages using OxCal v4.3 (https://c14.arch.ox.ac.uk/oxcal.html; Bronk Ramsey, 1995) and the IntCal20 curve (Reimer et al., 2020). Using a constant correction value of 600 years for the entire core gave reasonable results. A distinct phase in the regional vegetation development, which is characterized by a noticeable decrease in the pollen content of boreal trees and a parallel increase in the percentages of boreal shrubs in the Och18-II-2 sediment section (Fig. 3A), was dated to ca. 12,650–11,650 cal a BP, which corresponds well to the Younger Dryas stadial (Kobe et al., 2020). The obtained age model (Fig. 3A; Table 1) was applied to the Och18-II-4 records presented in the current study (see also Supporting Information Tables S1 and S2).

Sediment properties

Laboratory analyses of the physical and geochemical properties of sediment samples from the Och18-II-4 core section (Fig. 3) were performed at the Institute of Geographical Sciences (FU Berlin) and at the Institute of Geochemistry (SB RAS, Irkutsk). In the process of sample preparation for grain-size measurements, chemical pretreatment was done to isolate discrete particles of the sample from organic and carbonate cements and to provide an evenly dispersed suspension of individual particles (see Sun et al., 2002 for details of the treatment procedure and references). Organic matter was dissolved with a 10% solution of H2O2 (Allen and Thornley, 2004; Mikutta et al., 2005). The samples placed in test tubes were centrifuged for 15 min at 3000 x r.p.m., then hydrogen peroxide was removed, distilled water was added and the process was repeated. Finally, the samples were dried at 105°C.
Particle size analysis (Fig. 4) was performed using a Fritsch Analysette 22 laser diffraction particle analyser equipped with an ultrasonic bath. The measurements were carried out before and after exposure to ultrasound (the latter measurements are presented here). The particles identified on the laser diffraction analyser were combined into the following groups: <10 µm (clay), 10–50 µm (fine silt) and >50 µm (coarse silt). The fraction of fine-grained sand (0.2–0.5 mm) was determined by standard sieving. This fraction in the samples did not exceed 1.5% or was completely absent. Therefore, it was combined with the coarse silt fraction (Fig. 4). Biogenic silica (SiO2bio) was also measured at 1-cm intervals (Fig. 4) as described in Mortlock and Froelich (1989). Basic geochemical parameters such as elemental analysis of total carbon (TC), total inorganic carbon (TIC), total organic carbon (TOC) and total nitrogen (TN) as well as determination of sulphur (Fig. 4; Table S2) by carbon (TIC), total organic carbon (TOC) and total nitrogen such as elemental analysis of total carbon (TC), total inorganic carbon (TIC), total organic carbon (TOC) and total nitrogen (TN) as well as determination of sulphur (Fig. 4; Table S2) by ICP-OES (inductively coupled plasma optical emission spectrometry) on the base of an aqua regia extraction (DIN EN 2001) as well as portable energy-dispersive X-ray fluorescence spectrometry (P-ED XRF) with an Analyticon NITON XL3t of ground and homogenized samples were conducted for all selected samples. The main mineralogical components were determined by XRD (X-ray diffraction). The XRD results (Fig. 4) are expressed in counts per second (cps), which reflects semiquantitatively the proportion of the minerals. These common analyses are described in detail in Vogel et al. (2016).

Ostracod analysis

For the analysis of ostracods, six sediment samples (about 4 g dry weight), each representing a 1-cm-thick slice, have been taken from the Och18-II-4 core segment in 30-cm intervals (see Table 3). The samples were prepared for ostracod extraction, to test the potential for further in-depth ostracod analysis and to gain an overview of the taxonomic distribution and diversity during the investigated time interval. For the ostracod extraction, the samples were treated with H2O2 (10%) for several minutes to 4 h (depending on the reaction velocity) and wet-sieved with a mesh width of 160 µm under running tap water. Samples were freeze-dried afterwards and ostracods were hand-picked with a fine brush. For species identification, ostracods were sputtered with gold and photographed using a Leica S430 scanning electron microscope at the German Archaeological Institute. Species were identified with the ostracod determination keys published by Meisch (2000) and species descriptions in Bronstein (1947) and Mazepova (1990).

Pollen extraction, identification and visualization

Altogether, 40 sediment samples (each representing a 1-cm-thick slice) were taken in 4-cm steps from the 157-cm-long section 4 of the Och-18-II core with a weight of 2 g each. One tablet with exotic Lycopodium marker spores was added to each sample before chemical treatment to calculate the pollen and other palynomorph concentrations (Stockmarr, 1971).

Following the Sustainability Mission Statement adopted by the Freie Universität Berlin (FU Berlin) in research and teaching as well as EU regulations requiring the substitution of hazardous chemicals such as HF, we applied the extraction method protocol described by Leipe et al. (2019). All samples were first treated with 10% HCl to remove carbonates and to dissolve the calcareous matrix of the Lycopodium tablets, followed by a 10% KOH treatment in a hot water bath to remove humic acids. After removing clayey particles using low-speed centrifugation, dense media separation using sodium polytungstate (SPT) at a density of 2.1 g cm−3 to remove siliceous matter and other heavier particles was applied. After SPT treatment and following acetolysis, the sample residues were washed three times with distilled water and mounted in glycerol for conservation and microscopic analysis.

Pollen and non-pollen palynomorphs (NPPs) were counted using a light microscope with x400 magnification and taxonomically identified with the help of published atlases (Reille, 1992, 1995, 1998; van Geel, 1978, 2001; Beug, 2004; Demske et al., 2013; Savelieva et al., 2013) and the Section of Paleontology FU Berlin reference collection. Counted pollen sums vary from 313 to 527 terrestrial pollen grains (372 on average) per sample.

In most cases, preservation of palynomorphs was sufficient for identification; however, in some cases tricolpate/tricolporate type pollen grains were corroded and could not be accurately assigned to a certain taxon (i.e. Brassicaceae, Saxifragaceae or Scrophulariaceae). They make up 1–5% of
the total pollen sum and are presented under the name ‘Other herbs’ in the pollen diagram (Fig. 5A). When distinguishing between pollen produced by birch trees (i.e. *Betula* sect. *Albae* type) and birch shrubs (i.e. *Betula* sect. *Nanae/Fruticosae* type), we used morphological criteria such as pollen grain size, wall thickness and pore size following Mäkelä (1996) and references therein. When distinguishing pollen of *Pinus* subgenus *Diploxylon* type (i.e. *P. sylvestris*) from *P. subgenus Haploxylon* type (i.e. *P. sibirica* and *P. pumila*) in the study region, we applied the morphological criteria presented in Beug (2004) and Nakagawa et al. (2000).

Percentage values for all terrestrial pollen taxa were calculated based on the sum of arboreal pollen (AP) and non-arboreal pollen (NAP) taken as 100%. Percentages for aquatic plant and terrestrial cryptogam taxa were calculated based on the terrestrial pollen sum plus the sum of palynomorphs in the corresponding group. NPPs are presented as absolute concentration values. Tilia version 1.7.16 software (Grimm, 2011) was used for calculating taxon percentages and drawing the diagram (Fig. 5A). The Tilia-associated CONISS program for stratigraphically constrained cluster analysis by the method of incremental sum of squares (Grimm, 1987) was used for checking potential pollen zone boundaries (Fig. 5B).

Vegetation reconstruction

An objective method for the assignment of pollen spectra to appropriate major vegetation types or biomes on the basis of the modern ecology, bioclimatic tolerance and geographical distribution of pollen-producing plants was first introduced by Prentice et al. (1996) and then successfully used in several global-scale international projects including the BIOME6000 vegetation mapping project (e.g. Prentice and Jolly, 2000) and the Paleoclimate Modelling Intercomparison Project (e.g. Kageyama et al., 2001). The robustness of this quantitative approach was verified in different regional studies using representative surface pollen datasets from Siberia and from the vast areas around Lake Baikal (Edwards et al., 2000; Müller et al., 2010; Tarasov et al., 1999b, 2005, 2013a; Binney et al., 2017). Successful tests of the method allowed its application for reconstructing the interglacial vegetation dynamics in the Lake Baikal Region (LBR) over the past 500 000 years (Tarasov et al., 2005, 2007, 2009; Prokopenko et al., 2010). However, reconstructions of the LGM biomes and vegetation cover in northern Asia (Tarasov et al., 2000; Williams et al., 2011) and in the LBR (Bezrukova et al., 2010; Müller et al., 2014; Tarasov et al., 2019) are of particular interest for the current study.

Recently, Kobe et al. (2020) applied the biome reconstruction approach to the Lateglacial and early to middle Holocene pollen record of the Och18-II core to discuss the post-glacial vegetation dynamics around Lake Ochaul. Following Kobe et al. (2020), all terrestrial pollen taxa identified in Och18-II-4 were assigned to the corresponding regional biomes. Among them only 31 taxa, which exceed the universal threshold of 0.5% suggested by Prentice et al. (1996), influenced the biome reconstruction (Table 2). Calculations of the biome scores were performed in PPP Base (Guiot and Goeury, 1996). Square root transformation was applied to the pollen percentage values to increase the importance of minor pollen taxa. The biome with the highest affinity score or the one defined by a smaller number of plant functional types (when scores of several biomes are equal) is assigned to each pollen spectrum (Prentice et al., 1996).

Results

Core chronology

A total of 35 radiocarbon dates were obtained on the samples from the Och18-II core (Table 1). After correction of the reservoir effect and calibration, these dates result in calendar ages between 0 and 32 000 cal a BP (Table 1). The age model...
(Fig. 3A) supports continuous sedimentation over this period and shows a fairly clear age–depth relationship despite several well-distinguishable outliers of unknown origin. The age–depth relationship for the Och18-II-4 section discussed in this study was calculated using two linear interpolation functions: \(y = 54.708x – 8089.4 \) (depth below 544.5 cm) and \(y = 28.874x + 5977 \) (depth above 544.5 cm), where \(y \) indicates the estimated age (in cal aBP) of the analysed sample at depth \(x \) (in cm) in the composite core. The accumulation rates are relatively low, i.e. about 2.3 cm of sediment in 100 years (on average). The Och18-II-4 section analysed in this paper dates to the interval between ca. 27 850 and 20 400 cal aBP. The accumulation rate in this part of the core is slightly lower than average, i.e. about 2.1 cm of sediment in 100 years.

Sediment properties

The section Och18-II-4 analysed in this study is composed of viscous silty clay, finely laminated, reddish to brown in colour (Fig. 4A). The TC contents (Fig. 4B) show similar values around 2.9% throughout the section. The TOC values vary around 1.0% between 625 and 500 cm. For the basal part of the section (656–630 cm) the TOC values are slightly lower (0.5%) and consequently the TIC content here is slightly higher (2.4%). The main minerogenic component is quartz (SiO2) that dominates throughout the section. Calcite (CaCO3) is the second most frequent mineral and decreases (according to the TIC contents) from ca. 23% in the lower part of the record (657–625 cm) to 15% in the upper part (625–500 cm). Pyrite (FeS2) is present throughout the section and shows slightly elevated cps values between 580 and 500 cm. Other identified minerogenic components are phyllosilicates (muscovite \([\text{KAl}_{2-x}\text{Si}_{2x-1}\text{Al}_x\text{O}_{10}(\text{OH})_2]\) and chlorite \([\text{Mg}_x\text{Al}_{2-x}\text{Si}_{3-x}\text{Al}_x\text{O}_{10}(\text{OH})_2]\) and silicates (feldspar and amphibole \([\text{Na}_x\text{Al}_y\text{Ca}_z\text{Fe}_m\text{K}_n\text{Mg}_p\text{SiO}_{22}(\text{OH})_4]\) that are all pre-sent throughout the section. SiO2bio percentages (Fig. 4B) are minimal (ca. 0.5%) near the base of the section, but show an increase up to ca. 2% in the middle (620–595 cm) and upper part (560–520 cm) of the record.

Ostracods

Ostracod shells were found in all six analysed samples, well representing the entire analysed section. In total, five different taxa were identified (Fig. 6). The number of counted ostracod specimens varies from six to 500 valves per sample (Table 3). *Cytherissa lacustris* is the most common species that has been found in all analysed samples, except the lowermost one from 656 to 655 cm depth. This sample is characterized by a very low abundance (six specimens), but relatively high diversity of ostracods (i.e. three species of the subfamily Candoninae) and the occurrence of broken valves. The samples from 628–627, 598–597 and 568–567 cm depth show monospecific assemblages with *C. lacustris*, while in the upper two samples (538–537 and 508–507 cm) *C. lacustris* is found in association with another species of *Candona*. All analysed samples, except the lowest one, show occurrences of juvenile specimens of at least three molting stages.

<table>
<thead>
<tr>
<th>Biome</th>
<th>Taxa included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tundra</td>
<td>Alnus fruticosus, Betula sect. Nanae/Truticosae, Cyperaceae, Ericales, Poaceae, Polemonium, Polygonum, Rumex, Salix, Saxitragaceae, Valeriana</td>
</tr>
<tr>
<td>Cold deciduous forest</td>
<td>Alnus (tree), Betula sect. Albae, Ericales, Larix, Pinus sylvestris (subgen. Diploxylon type), P. pumila (subgen. Haploxylon type), Salix</td>
</tr>
<tr>
<td>Cool conifer forest</td>
<td>Abies sibirica, Alnus (tree), Betula sect. Albae, Ericales, Corylus, Larix, Picea obovata, Pinus sylvestris, P. sibirica (subgen. Haploxylon type), Ribes, Salix, Ulmus</td>
</tr>
<tr>
<td>Desert</td>
<td>Artemisia, Boraginaeae, Chenopodiaceae, Ephedra, Polygonum</td>
</tr>
</tbody>
</table>

Table 2. Terrestrial pollen taxa, exceeding 0.5% universal threshold (Prentice et al., 1996), identified in the late Quaternary pollen records from Lake Kotokel (Tarasov et al., 2009; Bezrukova et al., 2010; Müller et al., 2014) and Lake Ochaul (Kobe et al., 2020) in this study) in the Lake Baikal region and their assignments to the respective biomes.

Figure 6. Ostracod specimens extracted from sediment samples of Och18-II-4: (A) Candona sp. 1, left valve, internal view; (B) Candona sp. 2, right valve, internal view; (C) Candoninae indet., left valve, internal view; (D) Candona sp. 3, right valve, internal view; (E-F) *Cytherissa lacustris* Sars 1863: (E) female, left valve, external view, (F) male, right valve, internal view. Scale bars represent 100 µm.
Pollen analysis and biome reconstruction

Palynological analysis of the 40 samples from Och18-II-4 (see Supporting Information Table S1 for original data set) revealed 59 identified palynomorphs, including 15 AP taxa (i.e. trees, shrubs and dwarf shrubs), 33 NAP taxa (i.e. herbs, sedges and grasses), two aquatic plant taxa, five terrestrial cryptogam taxa (i.e. ferns and allies) and four taxa representing green algae colonies and other NPPs (i.e. Botryococcus, Pediasastrum, Glomus and Chironomidae remains). In total, only 31 terrestrial pollen taxa exceed 0.5% [a universal threshold recommended by Prentice et al. (1996) for calculating biome scores], while others are below this level. Pollen concentration is moderately low throughout the record (Fig. 5A) and fluctuates around a mean value of 17,300 grains g\(^{-1}\).

Visual inspection of the pollen diagram (Fig. 5A) demonstrates slight changes in the pollen taxon composition and percentages during the analysed core interval. The peak in Poaceae (ca. 51%) and the corresponding minimum in Cyperaceae (ca. 18%) percentages registered at a depth of about 645–640 cm is most noticeable. Quantitative CONISS analysis shows that the total sum of squares is <1.5 (Fig. 5B), which confirms close similarity between the pollen spectra.

The diagram (Fig. A) shows that NAP is predominant in the pollen assemblages throughout the Och18-II-4 record and varies between 82 and 97% (mean ca. 92.6%). The most abundant taxa are Poaceae (ca. 20–51%) and Cyperaceae (ca. 7–39%), followed by Brassicaceae (4.5–17.7%), Asteraceae subfamily Cichorioideae (4.6–15.8%), Artemisia (2–13%), Chenopodiaceae (1.8–3.6%), Asteraceae subfamily Asteroideae (1.8–3.5%) and other minor taxa. Boreal trees are represented by all major taxa, including Betula sect. Albae (0.6–4.8%), Picea (0.6–2.8%), Pinus sibirica type (up to 1.5%), Pinus sylvestris type (up to 2%), Larix (up to 0.5%) and Abies (up to 0.6%). Betula sect. Nanus/Fruticosae pollen (2–5.2%) and Salix (up to 3.2%) are the most representative boreal shrub taxa. Aquatics are minor pollen contributors as well as terrestrial cryptogams and their total sum never exceeds 0.7 and 1%, respectively. Among the identified NPPs, Pediasastrum, Botryococcus and Glomus show continuous presence throughout the record (Fig. 5A).

The pollen-based biome reconstruction (Fig. 5C) shows highest scores for the steppe biome (16.5–23.6, ca. 20 on average) with a trend to lower values towards the top of the record. The tundra biome (11.3–16.6, ca. 14.5 on average) demonstrates lower scores than the steppe, but a trend to higher values towards the top. The taiga biome scores are relatively low and vary between 0.7 and 6.2 (2.7 on average).

Discussion

Lake history

The occurrence of freshwater ostracods in the investigated core section suggests the persistence of a lacustrine environment throughout the time interval analysed. The lowest analysed sample (656–655 cm) probably indicates a higher energy depositional environment, as suggested by the absence of juveniles and the presence of broken carapaces. In contrast, the presence of juveniles in the other five samples (all with Cytherissa lacustris) from the upper part of the Och18-II-4 section indicates a lower energy depositional environment with a low degree of post-mortem reworking of carapaces. C. lacustris is an endo-benthic, Holarctic species that prefers oligo- to mesotrophic lakes, where it usually occurs in the profundal to sublittoral zone (Meisch, 2000). Although laboratory experiments show that C. lacustris may tolerate temperatures up to 24 °C for several weeks, field observations and ecological studies demonstrate that the species prefers water temperatures <18 °C (Newrkla, 1985; Danielopoulou et al., 1988). The faunal shift, which occurred in the basal part of the Och18-II-4 section (between ca. 27 750 and 26 300 cal aBP), probably indicates a shift in habitat from a high-energy littoral zone to a relatively deeper sublittoral environment, pointing to an increase in water depth or/and distance from the coring site to the shoreline.

The sediment description reflects rather stable and uninterrupted sedimentation without strong changes for the entire core section. This is also reflected in the sedimentological and geochemical analyses that only show subtle changes between 657 and 500 cm. Grain-size changes to coarser particles occur only between 657 and 620 cm (coarser) and at 585 cm, pointing to possibly lowered lake levels.

Ti, K, Rb, Zr and Sr indicate minerogenic input to the lake (Kylander et al., 2011). Ti, K and Rb correlate strongly (Supporting Information Figs S1 and S2) and this is interpreted as reflecting detrital clay mineral input. The correlations between Si, Zr and Ti are less positive and suggest a combination of minerogenic (silicate minerals) and biogenic sources (Si as a component of diatom frustules). The biogenic SiO\(_2\) values vary between 0.4 and 2.3%. As the catchment of Lake Ochaul exhibits Ca-bearing sediments (dolomite marls, anhydrite and gypsum within the Middle–Upper Cambrian Verkhoholenskaya suite) the origin of Ca may have allogetic (related to carbonate weathering in the catchment) and authigenic sources (Cohen, 2003). The strong correlation between Ca and Sr throughout the core section (Fig. S3) suggests that primarily authigenic calcite (CaCO\(_3\)) precipitation may be the main Ca source. This is corroborated by the negative correlation between Ca and the elements representing minerogenic input such as K, Rb and Ti (Pleskot et al., 2018). Whereas the close correlation between P and Ca (Fig. S3) may point to mainly biogenically triggered authigenic calcite precipitation, there is no positive correlation between TOC and P. The reason for the latter probably is the rather low TOC content due to TOC decomposition under anoxic conditions. Higher Ca/Ti ratios together with the slightly coarser texture and less TOC possibly point to lake level lowering and unstable conditions during the period between ca. 26 920 and 25 830 cal aBP. Limnic conditions...
prevailed throughout the record, as shown by the presence of ostracods and pyrite (FeS₂) in all analysed samples (Fig. 4). Iron sulphides are authigenic products of reductive diagenesis of magnetite (Fe₃O₄) or, most likely, greigite (Fe²⁺Fe³⁺S₄), which occurs in lacustrine sediments with clays and silts and is formed by magnetotactic and sulphate-reducing bacteria (Anthony et al., 1990).

From the sedimentary proxies and the aforementioned interpretation, we distinguish the following four intervals (I–IV):

I. 657–620 cm (ca. 27 850–25 830 cal a BP): lowest TOC values and coarser detrital input may point to lower lake levels or a more littoral deposition in correspondence to the ostracod analysis that showed a higher energy depositional environment. By contrast, the relatively high and almost constantly increasing Ca/Ti ratios show that lacustrine calcite precipitation occurred. The decrease in mean grain sizes, interpreted as declining detrital input and a lower energy depositional environment, and recorded SiO₂bio fluctuations suggest rather unstable conditions and changes towards more stable, deeper environments during this phase.

II. 620–595 cm (ca. 25 830–24 460 cal a BP): highest concentrations of Chironomidae remains along with relative increase in SiO₂bio percentages, rising TOC values and low detrital input reflect a deeper lake and lowered calcite precipitation (low Ca/Ti ratios) and thus warmer conditions.

III. 595–560 cm (ca. 24 460–22 550 cal a BP): variations in Ca precipitation and thus also in the Ca/Ti ratios may point to a more fluctuating but slightly lower lake level with more detrital input (coarser grain-sizes), while the disappearance of Chironomidae remains and lower SiO₂bio percentages probably indicate colder conditions.

IV. 560–500 cm (ca. 22 550–20 400 cal a BP): this is the period with relatively high SiO₂bio values, lowest calcite production and constantly low Ca/Ti ratios without major changes. Also, the highest clay contents of the entire section point to stable conditions and a higher lake level.

Vegetation history

The analytical results obtained in this study allow discussion of the vegetation and environments around Lake Ochaul during the interval 27 850–20 400 cal a BP, with an average temporal resolution of approximately 180 years. The pollen diagram (Fig. 5A) demonstrates high percentages of herbaceous taxa in the pollen assemblage and indicates predominantly open vegetation in the area around Lake Ochaul. The pollen composition suggests that the vegetation cover contained grasses, sedges and diverse forb species, including Artemisia and other members of the aster family. The highest affinity scores calculated for the steppe and tundra biomes (Fig. 5C) support this qualitative interpretation of the pollen record and suggest that steppe and herbaceous tundra vegetation communities were widely spread in the study area under climate conditions substantially different from the present. This interpretation finds support in other published LGM pollen records that represent the vast area of Siberia (e.g. Edwards et al., 2000; Prentice and Jolly, 2000; Binney et al., 2017; Tarasov et al., 2000, 2020). However, the record from Lake Ochaul presented here differs from the others in that it exhibits a noticeable (i.e. 1.4–9.2%, 3.7% on average) and constant presence of AP taxa (Fig. 7A), representing all dominant species of boreal trees (Fig. 5A) that grow in the region today (e.g. Belov et al., 2002).

The AMS-dated pollen records of the KTK2 core (Bezrukova et al., 2010) and the KTK10 core (Müller et al., 2014) recovered from Lake Kotokel (Fig. 1B), located near the southern border of the modern taiga zone (Fig. 1C), ca. 200 km south-east of Lake Ochaul, also demonstrate the presence of boreal tree taxa in the LGM pollen assemblages (Fig. 7B), albeit in lower proportions than in Och18-II-4 (Fig. 7A). A similar picture (Fig. 7C) emerges when considering the LGM pollen record from Lake Billyakh (65°17′N, 126°47′E, 340 m a.s.l.; Müller et al., 2010) located close to the northern limit of the boreal conifer forest zone, only 140 km south of the Arctic Circle and ca. 1650 km north-east of Lake Ochaul. These and some other robustly dated pollen and plant macrofossil records (e.g. Tarasov et al., 2007; Williams et al., 2011), representing the northern, central and southern part of the boreal forest zone of Eastern Siberia, also demonstrate the presence of tree pollen between ca. 28 000 and 20 000 cal a BP and support the hypothesis that small populations of boreal trees could survive the coldest interval of the last glacial in the refugia, both local (e.g. Bezrukova et al., 2010; Müller et al., 2010; Tarasov et al., 2020) or/and located somewhere in Southern Siberia (e.g. Grichuk, 1984; Crowley, 1995; Petit et al., 2008).

The cases in which AP in low numbers has been identified in LGM sediment samples from northern Eurasia (e.g. Lozhkin et al., 2006; Bezrukova et al., 2010; Müller et al., 2010) are often explained by long-distance pollen transport and very sparse (i.e. desert-like) vegetation cover around the studied sites (e.g. Ray and Adams, 2001; Lozhkin et al., 2006). The latter conclusion is based on lower-than-present pollen concentrations in the analysed sediment samples. In the Och18-II-4 record, the concentration of terrestrial pollen is moderately low and fluctuates around an average value of 17 300 grains g⁻¹ (Fig. 5A). This is much lower than the values of 100 000–150 000 grains g⁻¹ that were recorded in the Holocene samples from Lake Ochaul, between 8000 and 4000 cal a BP (Kobé et al., 2020), but comparable to the pollen concentration recorded by Müller et al. (2010) in the modern surface sample from Lake Billyakh [i.e. 15 300 grains g⁻¹, situated in the larch-dominated forest zone of northern Yakutia (Fig. 1A)], and higher than in the Late Holocene sediment samples from Lake Lama (i.e. < 10 000 grains g⁻¹) located at an altitude of 53 m a.s.l. at the western margin of the Putorana Plateau (Fig. 1A) and surrounded by taiga forest with spruce, larch and birch (Andreev et al., 2004). None of the analysed LGM pollen spectra from Lake Ochaul (Fig. 5A) resemble modern surface pollen spectra collected from an arctic desert or barren environment (Tarasov et al., 2007). The biome reconstruction approach applied to the reference pollen data set from Eastern Siberia showed very good agreement between actual vegetation (i.e. tundra, cold deciduous and taiga forest) and reconstructed biomes, suggesting that long-distance AP transport does not influence results of pollen-based vegetation reconstruction (Müller et al., 2010).

Absence of radiocarbon-dated woody plant macrofossils in the sedimentary records from Siberia assigned to the LGM interval was commonly taken as proof of year-round extremely cold and dry environments similar to that of arctic desert or arctic herbaceous tundra (see Kageyama et al., 2001; Kaplan et al., 2003; MacDonald et al., 2000, 2008; Tarasov et al., 2020 for detailed discussion and references).

The existing palaeontological and archaeological data from Siberia (Tarasov et al., 2020) cannot be explained by a ‘year-round colder-than-present climate scenario’. Although the δ¹⁸O data from Greenland ice cores (Fig. 7G), commonly considered as a high-resolution record of Northern Hemisphere temperature (e.g. Seierstad et al., 2014), indicate substantially lower-than-present mean annual temperature
during the LGM, they do not tell how these changes influenced the summer and winter seasons in the different regions of Eurasia. Indeed, Zech et al. (2010), using alkane biomarker and pollen records from a ca. 240-ka-old loess–palaeosol sequence from the Tumara site in the south-western foreland of the Verkhoyansk Mountains, north-east Siberia (63°36′N, 129°58′E; 120 m a.s.l.), argued that it was not mainly temperature changes, but rather increasing aridity and continentality during the course of the last glacial that favoured the expansion of herbaceous vegetation (i.e. ‘mammoth steppe’). Relatively warm LGM summers with mean July temperatures above 12°C were reconstructed using an indicator-species approach applied to an accurately dated plant macrofossil record from the Bykovsky Peninsula at the
Laptev Sea coast (Kienast et al., 2005) and a chironomid-based reconstruction from Lake Kotokel (Tarasov et al., 2019). Both studies suggest a ca. 3.5°C higher than present summer temperature for the southern part of Eastern Siberia between ca. 24 000 and 22 000 cal a BP. These reconstructions and other recently published data from Siberia (e.g. Ashastina et al., 2018) indicate an extremely continental, relatively dry climate with winters colder and summers distinctly warmer than at present in the eastern Siberian Arctic during the LGM and contradict the ‘cold summer scenario’ with mean August temperatures ca. 6–8°C lower than present across most of Siberia (e.g. Frenzel et al., 1992; Ray and Adams, 2001; Strandberg et al., 2011).

Much more consistent are results of proxy-based reconstructions and climate model simulations of atmospheric precipitation and water budget in the eastern part of Eurasia during the LGM (e.g. Frenzel et al., 1992; Kienast et al., 2005; Yanae and Abe-Ouchi, 2007; Andreev et al., 2011; Strandberg et al., 2011). All cited publications demonstrate a year-round decrease in precipitation leading to a thin snow cover and spread of herbaceous plants to the disadvantage of boreal trees and shrubs (e.g. Prentice and Jolly, 2000; Kaplan et al., 2003; Tarasov et al., 2020). The main differences are in absolute values of reconstructed or simulated variables, but not in the general trend towards a drier-than-present LGM climate. Thus, the pollen-based reconstruction (Tarasov et al., 2013b) derived from the LGM record of Lake Billyakh (Müller et al., 2010) demonstrates a 25% decrease in annual precipitation compared to the modern average of ca. 350 mm. The reconstruction derived from the LGM pollen record of Lake Kotokel (Bezrukova et al., 2010) shows an even more pronounced, i.e. ca. 45%, decrease in atmospheric precipitation during the LGM in the southern part of eastern Siberia (Tarasov et al., 2017). Although qualitative interpretations and quantitative reconstructions derived from various proxies consistently indicate a drier-than-present LGM climate (e.g. Fig. 7F; Cheng et al., 2016) and open, predominantly mosaic vegetation (e.g. Andreev et al., 2003; Kienast et al., 2005; Ashastina et al., 2018) in the Asian high latitudes between Lake Gerditzy (Fig. 1A) in the Polar Urals (Svendsen et al., 2014) and Lake El’gygytgyn (Fig. 1A) on the Chukotka Peninsula (Lozhkin et al., 2006), the published lake and vegetation records (e.g. Tarasov et al., 2020) do not support extreme aridity and a desert-like or ice-covered landscape as suggested in some of the earlier reconstructions (e.g. Ray and Adams, 2001). Moreover, evidence that boreal trees did not disappear from the vegetation cover during the LGM comes from radiocarbon-dated archaeological wood and charcoal pieces collected in the middle latitudes of Siberia and the Russian Far East (Fig. 1A; Vasil’ev et al., 2002). The long pollen record from the Khoi site (Fig. 1A) in the central part of Sakhalin Island reveals high percentages of pine, larch and spruce pollen between 30 and 15 cal ka BP, suggesting that boreal trees still occupied up to 30–40% of the landscape (Leipe et al., 2015).

Here, we use selected results derived from the LGM parts of the Lake Billyakh (Müller et al., 2010), Lake Ochaul (this study) and Lake Kotokel (Bezrukova et al., 2010; Müller et al., 2014) pollen records (Fig. 7A–E), representing the northern, central and southern part of the modern boreal forest zone in Eastern Siberia, to discuss this issue.

As shown in the original publications and in Fig. 5 of this study, none of the three records indicates extreme aridity, but continuous lacustrine sedimentation, virtual absence of desert indicator taxa and very low percentages of Chenopodiaceae pollen commonly associated with desert and/or barren environments. Therefore, a contribution of Artemisia pollen is the most common and reliable indicator of steppe vegetation and climate aridity in Eurasia (Prentice et al., 1996; Tarasov et al., 1998a). The southernmost record of Lake Kotokel shows the highest percentages of Artemisia pollen (40–80%, ca. 60% on average), while its contribution in Lake Billyakh does not exceed 20% and in Lake Ochaul 15% of the total pollen sum (Fig. 7D). These data indicate a steep moisture gradient between areas south and north of Lake Baikal and suggest that the area around Lake Ochaul represents the least dry environment of the three representative sites. This conclusion is supported by the highest and continuous contribution of boreal tree and shrub pollen to the Ochaul record (Fig. 7A).

In the biome–taxon matrix suggested for the pollen-based vegetation reconstruction in northern Eurasia (Prentice et al., 1996; Tarasov et al., 1998a, b), Cyperaceae represents the tundra biome and therefore can be regarded as a zonal indicator of colder environments. The northernmost record of Lake Billyakh shows highest percentages of Cyperaceae pollen (40–50% on average), moderately high percentages are recorded in the Lake Ochaul (ca. 30% on average) and the lowest of all (ca. 10% on average) in the Lake Kotokel record (Fig. 7E). These data primarily reflect the temperature gradient across Eastern Siberia, indicating coldest conditions in the north and warmest in the south. The selected pollen records (Fig. 7A–E) indicate that this part of Eastern Siberia, including the Upper Lena region, was one of the areas that served as a refugium for boreal trees during the LGM. We argue that pollen of boreal trees in the Ochaul record probably represents local tree populations and not pollen transported from far-distant regions in the south. In the latter case, the AP content in the LGM spectra from Lake Kotokel would be more significant than it currently is (Fig. 7B).

Directly dated evidence of LGM woody plants from the study region is still rare. Results of microcharcoal analysis at the archaeological sites Kovrižka III and IV (Fig. 1A) in the lower Vitim River valley (Baikal–Patom Highlands) north-east of Lake Baikal (57°49′N, 113°55′E) reveal growth of trees and shrubs there during the LGM (Henry et al., 2018). The modern vegetation composition of the valley resembles that of Lake Ochaul. Forests are dominated by larch (Larix gmelinii) and birch (Betula platyphylla) with less frequent occurrence of spruce (Picea obovata), pines (Pinus sibirica and Pinus sylvestris) and fir (Abies sibirica), and abundant birch and willow shrubs occupying swampy floodplain areas. The charcoal assemblage AMS-dated to ca. 19 250–18 350 cal a BP reveals remains of Salix, Larix/Picea, Betula, Juniperus and undetermined conifers (Henry et al., 2018), suggesting that Upper Palaeolithic hunter-gatherers collected wood for their fires.

Conclusions

Published pollen and plant macrofossil records from the northern and southern part of the taiga zone in Siberia demonstrate that boreal forests – the most characteristic feature of Eurasian vegetation – quickly established there during the Lateglacial and early Holocene interval, suggesting that small tree populations could have survived the generally colder- and drier-than-present glacial period somewhere in the region. However, due to a lack of high-resolution pollen and radiocarbon-dated macrofossil data from the vast central regions of Eastern Siberia, there is no agreement on if and where boreal trees could have survived during the LGM. The current study presents a sedimentary record from Lake Ochaul in the Upper Lena region and contributes to a better understanding of the complex spatial vegetation pattern across Siberia ca. 28 000–20 000 cal a BP. Together with existing modern and fossil pollen data from the wider study region, the current record provides further evidence for the long-debated presence of boreal trees and shrubs and the dominance of productive herbaceous vegetation in Eastern Siberia throughout the LGM. Our results show that the Upper Lena was another region in which refugia for arboreal taxa existed and that

© 2021 The Authors. *Journal of Quaternary Science* Published by John Wiley & Sons Ltd
far-distant pollen transport can be ruled out as the source of the detected AP. Comparison of the Artemisia and Cyperaceae records from different sites in Eastern Siberia allows us to reconstruct gradients in available moisture and temperature, respectively. During the LGM, regions south/south-east of Lake Baikal were warmer and drier than those in the north/north-west (including Cis-Baikal), which provides an explanation for the absence of trees in the Trans-Baikal region. Our study emphasizes that moisture availability rather than thermal conditions probably played a decisive role for tree and shrub growth during the coldest stage of the last glacial.

Supporting information
Additional supporting information may be found in the online version of this article at the publisher’s web-site.

Acknowledgements. The research presented here was financially supported via research grants from the Russian Foundation for Basic Research (RFBR No. 19-05-00328 and No. 20-05-002247), the German Research Foundation (DFG TA 540/5, MU 3181/1), the Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences (project No. 0350-2017-0026), the Russian Science Foundation (project No. 19-17-00216, geomorphology), the Government of The Russian Federation (project No. 075-15-2019-866), Siberian Branch of the Russian Academy of Sciences (Integration Project No. 0341-2017-0001) and by the Baikal Archaeology Project (BAF: https://baikalproject.artem.ualberta.ca/). The doctoral stipend of F. Kobe at the Freie Universität Berlin (FU Berlin) is financed via a grant from the Social Sciences and Humanities Research Council of Canada (SSHRC Partnership grant No. 4803-2018-1004). The work of J. Gliwa contributes to the research project ‘Ground Check in Northeast Asia’ of the German Archaeological Institute (DAI). The authors’ special thanks go to I. A. Filinov, I. O. Nechaev and M. A. Krasnov (Institute of Geochemistry, Irkutsk) for their valuable assistance in organizing field work and drilling Lake Baikal. We also thank two anonymous reviewers for their valuable comments and suggestions. Open Access funding enabled and organized by Projekt DEAL.

Data availability statement
All data generated or analysed during this study are included in this published article.

Abbreviations. AMS, accelerator mass spectrometry; cps, counts per second; Indet, indeteminated; LBR, Lake Baikal Region; LGM, Last Glacial Maximum; P-ED XRF, portable energy-dispersive X-ray fluorescence spectrometry; rpm, revolutions per minute; TC, total carbon; TIC, total inorganic carbon; TOC, total organic carbon; XRD, x-ray diffraction; aDNA, ancient DNA; AP, arboreal pollen; NAP, non-arboreal pollen; NPP, non-pollen palynomorph; SEM, scanning electron microscopy; SRTM, shuttle radar topography mission; TN, total nitrogen.

References
Demske D, Tarasov PE, Nakagawa T et al. 2013. Atlas of pollen, spores and further non-pollen palynomorphs recorded in the

Pretzke C, Guo J, Huntley B et al. 1996. Reconstructing biomes from palaeoecological data: a general method and its application to...

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd

J. Quaternary Sci., 1–16 (2021)

