
1.  Introduction
River processes are driven by flowing water. Water discharge varies over time, according to the spatial 
and temporal patterns of precipitation in the catchment, its size, and its hydrological properties (e.g., Deal 
et al., 2018). While rivers may respond to this variability by visibly changing their shape over the course of a 
single flood event, over long time scales, it is thought that fluvial incision rates and average river morphol-
ogy depend on some characteristic statistics of the distribution of discharge (e.g., Blom et al., 2017; DiBiase 
& Whipple, 2011; Lague et al., 2005; Molnar, 2001; Molnar et al., 2006; Scherler et al., 2017; Tucker, 2004). 
Describing the relationship between short-term mechanistic processes active in rivers and the long-term 
evolution of river morphology is a central problem in fluvial morphology, both for operational challenges 
such as river training and management, and for the understanding of the evolution of landforms over geo-
logical timescales.

Bedrock rivers are a key component of erosional landscapes such as active mountain belts. On the process 
scale, fluvial bedrock incision is thought to be driven by the impact of moving bedload particles. Numerous 
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incision. In addition to the imposed boundary conditions specifying the upstream supply of water and 
sediment, and the incision rate, the model includes four free parameters, describing the at-a-station 
hydraulic geometry of channel width, the dependence of bedload transport capacity on channel width, 
the threshold discharge of bedload motion, and reach-scale cover dynamics. For certain parameter 
combinations, no solutions exist. However, by adjusting the free parameters, one or several solutions can 
usually be found. The controls on and the feedbacks between the free parameters have so far been little 
studied, but may exert important controls on bedrock channel morphology and dynamics.

Plain Language Summary  Bedrock erosion by rivers is driven by the impact of moving 
sediment particles, chipping away tiny pieces of rocks in their passage. Sediment transport occurs 
infrequently, during floods. Over thousands of years, this slow process shapes the river, sometimes 
leading to the creation of spectacular landforms such as gorges. Mechanistic models of fluvial bedrock 
erosion explicitly take into account the effects of moving sediment particles, while models used for long 
time scales do not. Here, the connection between mechanistic and long-term models is made explicit by 
integrating a mechanistic model over the entire distribution of floods, yielding solutions for the long-term 
erosion rate and the channel bed slope. Some of these solutions are similar to those used previously, but 
other solutions are also possible, showing the rich dynamic behavior that rivers can exhibit. The solutions 
make explicit the role of lithology, channel width, and discharge variability, which were previously hidden 
in a single lumped calibration parameter.
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observations from laboratory experiments and natural streams have by now been reported, demonstrating 
that bedload transport exerts a dominant control on the patterns and rates of erosion (e.g., Beer et al., 2017; 
Finnegan et  al.,  2007; Mishra et  al.,  2018; Shepherd,  1972; Turowski, Hovius, Hsieh, et  al.,  2008; Wohl 
& Ikeda, 1997). A number of sediment-related effects have been identified (e.g., Sklar & Dietrich, 2001; 
Turowski et al., 2013), two of which seem to be most important. The tools effect arises because fluvial bed-
rock erosion is driven by the impacts of moving bedload particles, implying that an increasing number of 
moving particles leads to an increasing number of impacts and therefore higher erosion rates (e.g., Beer & 
Turowski, 2015; Cook et al., 2013; Foley, 1980; Inoue et al., 2014). The cover effect arises because sediment 
residing on the bed can shield the bedrock from impacts, thereby decreasing erosion rates (e.g., Chatanan-
tavet & Parker, 2008; Mishra & Inoue, 2020; Turowski, Hovius, Hsieh, et al., 2008). Yet, in landscape evo-
lution models designed for long timescales, fluvial bedrock erosion is commonly described by the stream 
power incision model (SPIM), in which incision rate is a power function of water discharge and channel 
bed slope (e.g., Barnhart et al., 2020; Seidl & Dietrich, 1992). The SPIM is unable to account for the tools 
and cover effects on the process to decadal time scales, but it remains popular because of its simple form. In 
addition, it explains the widely observed power law scaling between channel bed slope and drainage area, 
and spatial patterns of knickpoint migration speeds (see Lague, 2014, for a summary of field evidence in the 
context of the SPIM).

The gap between mechanistic processes understanding on short timescales, and the popularity of the SPIM 
on long timescales currently represents a central challenge in the study of bedrock channel morphodynam-
ics (Venditti et al., 2020). Diverse temporal scales can be theoretically connected by explicit upscaling, inte-
grating instantaneous process descriptions over the distributions of forcing variables (e.g., Blom et al., 2017; 
Lague et  al.,  2005). Attempts to upscale sediment-flux-dependent incision models in this way have so 
far been scarce, because multiple interacting variables make analytical solutions challenging. Turowski 
et al. (2007) partitioned sediment-carrying and clean flows using a method suggested by Sklar and Diet-
rich (2006) in an analytical model of bedrock channel morphology including both tools and cover effects. 
Lague (2010) included the cover effect, but not the tools effect, into a numerical model of bedrock channel 
evolution, forced by random time series of daily discharge following an inverse gamma distribution (Crave 
& Davy, 2001). None of these attempts captures the entire range of conditions and dynamic behavior that 
can be expected for natural bedrock rivers.

Here, I present analytical solutions for the long-term incision rate and steady state channel morphology 
using a mechanistic incision law including both tools and cover effects. The solutions demonstrate that the 
steady state channel long profile is set by bedload transport rather than bedrock incision processes, and of-
fers insights into the role of thresholds and channel width, and the river's adjustment to variable discharge.

2.  Theoretical Treatment
In this section, I develop a description of a steady state bedrock channel, upscaling from a sediment-flux-de-
pendent erosion law including both tools and cover effects. Several stochastically varying forcing variables, 
including water discharge and bedload transport rate, and dependent variables such as bed cover that may 
exhibit a strong history dependence, are addressed in turn to explain the assumptions made to make an 
analytical solution possible. By the end, solutions for the long-term mean sediment transport rate, bed cover 
and incision rate are obtained.

2.1.  General Consideration

In previous treatments, water discharge was assumed to be the only stochastically fluctuating parameter. 
In this case, to upscale instantaneous incision laws to long time scales, we need to integrate over the dis-
tribution of discharge, assumed to follow the inverse gamma distribution (e.g., Crave & Davy, 2001; Lague 
et al., 2005; Molnar et al., 2006)
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Here,   /Q Q Q  is the instantaneous discharge Q normalized by the long-term mean discharge Q, the 
constant k is a measure of the variability of discharge. For natural streams, k takes typical values between 
0.1 and 5 (Molnar et al., 2006). Note that k decreases with increasing discharge variability, that is, k = 0.5 
signifies a channel with highly variable discharge and k = 3 signifies a channel with little discharge vari-
ability. exp{x} denotes the natural exponential function, and Γ(x) denotes the gamma function, defined by

   


  1

0
Γ exp d .xx z z z� (2)

Here, z is a dummy variable. The long-term mean of a particular discharge-dependent quantity X of interest 
can be obtained by integrating over the distribution

      
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pdf d .
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Q
X X Q Q Q� (3)

Here, Qmin and Qmax denote the minimum and maximum discharge considered to be relevant for setting X, 
and the overbar denotes the long-term mean of a parameter, as obtained by the integral in Equation 3. For 
the analysis in the paper, I assume that Qmax is sufficiently high such that the distribution of discharge is 
adequately captured by integrating the right-hand power law tail of the discharge distribution to infinity 
(see Lague et al., 2005, for a detailed discussion of the effects of this assumption). Then, Equation 3 becomes

      
   



    
   


1

2

min

exp d .
Γ 1

k
k

Q

k kX X Q Q Q
k Q

� (4)

When dealing with sediment-flux-dependent incision laws, the bedload transport rate is another driving 
variable affecting incision rates directly via the tools effect and indirectly via the cover effect. Bedload trans-
port rates can fluctuate strongly, and measured rates can scatter over several orders of magnitude for a given 
discharge (e.g., Turowski, 2010). In addition, the amount of sediment residing on the bed, which determines 
bed cover, is a history-dependent state variable. Integrating explicitly over the temporal variation of these 
variables would prevent an analytical treatment and necessitate a numerical solution. To deal with this 
problem, I introduce an intermediate timescale. At this timescale, the short-term fluctuations of bedload 
transport rates and sediment cover are averaged out, and the average can be treated as a deterministic func-
tion of discharge. To clearly distinguish the quantities at the two timescales, I use the term “average” and 
angle brackets <> for the intermediate timescale, and the term “mean” and an overbar for the geological 
timescale.

2.2.  Treatment of Channel Width

A fully dynamic model of bedrock channel width in a sediment-flux-dependent setting is currently not 
available. Commonly, channel width is assumed to depend on discharge according to a power law, using 
standard downstream and at-a-station hydraulic geometry relationships of the form (e.g., Lague et al., 2005)

 ,d
WW k Q� (5)

and

 .aW WQ� (6)

Here, W  is the channel width corresponding to the long-term mean discharge at a particular station, W is 
the instantaneous width varying locally with discharge, and ωd and ωa are dimensionless exponents. Within 
the present treatment, I replace Equation 5 with the steady state width equation obtained from the model 
of Turowski (2018)
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Here, ke is a measure of the bedrock erodibility, Qs is the bedload transport 
rate and I the incision rate, and the sideward deflection distance d is the 
distance by which bedload particles can be deflected in the cross-channel 
direction (Turowski, 2018). Here, d is treated as a constant, which can be 
viewed as a general scaling factor with unit of length within the context 
of long-term channel morphology.

2.3.  Upscaling Bedload Transport

Bedload transport rate can fluctuate strongly even if hydraulic conditions 
stay constant over time (e.g., Turowski, 2010). However, at a given dis-
charge, there exists a well-defined mean transport rate that scales with 
discharge. At the intermediate timescale, I assume short-term fluctua-
tions of transport rates can be neglected, and average bedload supply at 
a given discharge is a function of discharge and slope of the form (e.g., 
Rickenmann, 2001; Smith & Bretherton, 1972)

    BL ct .m m q n
sQ k Q Q W S� (8)

Here, kBL is a dimensional constant, S is the channel bed slope, Qct is the 
critical discharge for the onset of bedload transport m, n, and q are di-
mensionless exponents, and the angle brackets denote the average quan-
tity at a given discharge at the intermediate time scale. Many standard 
sediment transport formulas can be expressed in the form of Equation 8. 
The power function of channel width W is included to make possible 
the modeling of the varying scaling of sediment flux with channel width 

(Carson & Griffiths, 1987; Cook et al., 2020), depending on the sediment transport and flow velocity equa-
tions that are used (Figure 1, Appendix A). Note that, depending on the choice of bedload transport equa-
tion, m, n, and q are not independent of each other (Appendix A). Using the normalized discharge Q*, the 
bedload transport rate can be rewritten as

     BL ct .m m m q n
sQ k Q Q Q W S� (9)

Combining Equation 9 with Equations 6 and 7, we obtain
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Using Equation 4, the long-term sediment flux is then given by
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The integral evaluates to
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Here, FQs is function of the form
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Figure 1.  Illustration of the dependence of bedload transport rate on 
channel width, calculated using a common shear-stress-dependent 
bedload equation (Fernandez Luque & van Beek, 1976; Meyer-Peter & 
Müller, 1948) combined with the Manning roughness equation (solid blue 
line) and the Darcy-Weissbach roughness equation (dashed blue line) (see 
Appendix A). Note that the threshold of motion cuts off the relationship 
both for large width, because flow depth becomes too small for transport 
to occur, and for small width, because shear stress is partitioned from the 
bed to the channel walls (e.g., Turowski, Hovius, Hsieh, et al., 2008). The 
scaling bracketing the relationship for small width, giving q = 5/2 (black 
line), for intermediate width using the Darcy-Weissbach friction equation, 
giving q = 0 (dashed red line), and the Manning equation, giving q = 1/10 
(solid red line), are indicated (see Appendix A). The plot was generated 
using Equations A1, A8, A9, and A10 (Appendix A), with    0.045c , 

 10Vk ,   4, and D = 0.01 m.
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The upper incomplete gamma function is defined by

   


  1Γ , exp d .x

c
x c z z z� (14)

2.4.  Upscaling Bed Cover

Bed cover C can vary over short timescales, and is dependent on the histo-
ry of sediment supply and hydraulic forcing (e.g., Fernández et al., 2019; 
Lague, 2010; Turowski & Hodge, 2017). However, response timescales of 
bed cover to varying flow conditions are orders of magnitudes smaller than 
those of the adjustment of channel width and slope (Turowski, 2020). As 
a result, similar to bedload transport, cover can be treated to be inde-
pendent of discharge at the intermediate timescale, following a distribu-
tion with a well-defined average for a given discharge. This implies that 
instantaneous cover C can be viewed as independent of discharge, and 
the intermediate-term average cover <C > systematically varies with dis-
charge. Here, the relationship between the average cover and discharge 
is modeled by a power law function with a scaling exponent α (Turowski 
et al., 2013), from hereon called the cover exponent (Figure 2). The bed 
changes from fully to partially covered at a characteristic dimensionless 
discharge 

ccQ . When α > 0, bed cover increases with increasing discharge, 
and the bedrock is exposed during small flows, for   ccQ Q . This is the 
flood-depositing case, for which the cover function is given by


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C Q Q Q
Q

� (15)

When α < 0, bed cover decreases with increasing discharge, and bedrock is exposed during large flows, for 
  ccQ Q . This is the flood-cleaning case, for which the cover function is given by



 
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For convenience, the cover threshold can be written as a multiple b of the threshold discharge 
ctQ  for the 

onset of bedload transport. The ratio b is defined as




 cc

ct
.Qb

Q
� (17)

With the assumptions made so far, the system features two discharge thresholds, one for the onset of bed-
load motion and therefore the activity of the tools effect, the other for the change of fully to partially covered 
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Figure 2.  Illustration of the scaling relationship of cover with discharge 
and the definitions of flood-cleaning and flood-depositing channels 
(adapted from Turowski et al., 2013). For the flood-depositing case, 
where cover exponent α > 0, the covered fraction of the bed increases 
with increasing discharge, implying that the bed is partially covered at 
discharge smaller than the characteristic discharge 

ccQ  and fully covered 
at discharges above it. Bedrock erosion occurs at low and intermediate 
discharges. For the flood-cleaning case, where the cover exponent α < 0, 
the covered fraction of the bed decreases with increasing discharge, 
implying that the bed is partially covered at discharge larger than the 
characteristic discharge 

ccQ  and fully covered at discharges below it. 
Bedrock erosion occurs during floods.
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bed. Together with the two types of cover behavior of the channel (Fig-
ure 2), flood-depositing (α > 0, Equation 15) and flood-cleaning (α < 0, 
Equation 16), we can distinguish four cases, yielding different integrative 
limits and solutions for the long-term results (Table 1). In the flood-clean-
ing case, when  ct ccQ Q (b > 1), erosion occurs for all discharges greater 
than 

ccQ . In the flood-cleaning case, when  ct ccQ Q  (b < 1), erosion oc-
curs for all discharges greater than 

ctQ . In the flood-depositing case, when 
 ct ccQ Q  (b > 1), erosion occurs for all discharges greater than 

ctQ  and 
smaller than 

ccQ . In the flood-depositing case, when  ct ccQ Q  (b < 1), 
no erosion occurs, because bedload moves and tools are only available 
at discharges when the bed is fully covered. For the three cases in which 
erosion occurs at some discharges, Equation 4 can be applied to calculate 
the long-term mean cover. The solutions have the general form

   ct cc, , , , .CC F k Q Q m� (18)

Here, FC is a dimensionless function. Full solutions for FC are given in Appendix B.

2.5.  Upscaling Sediment-Flux-Dependent Incision

A sediment-flux-dependent erosion law, including tools and cover effects, can be given by (Auel et al., 2017; 
Sklar & Dietrich, 2004; Turowski, 2018; Zhang et al., 2015):

  1 .s
e

QI k C
W

� (19)

The dimensional constant ke depends on rock, sediment, and fluid properties, given by Auel et al. (2017) as
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Here, g is the acceleration due to gravity, Y is Young's modulus of the bedrock, σT its tensile strength, kv is 
the dimensionless rock resistance coefficient, and ρs and ρ are the sediment and fluid density, respectively. 
At the intermediate timescale, Equation 19 can be rewritten as

  
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e
QI k C
W

� (21)

Combining Equations 4, 6, 7, 10, 12, 13, 17, 18, and 21, the long-term incision rate can be evaluated by the 
integral
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Here, the limits of integration 
minQ  and 

maxQ  depend on the values of α and b (see Table 1). The full solutions 
for all three cases are given in Appendix C, and take the general form

  
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 
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Here,    
ct cc, , , , , ,I aF k Q Q m q  is a dimensionless function depending on the values of α and b (Appendix C).
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Cover behavior

Cover threshold 
larger than threshold 

of motion

Threshold of motion 
larger than cover 

threshold

 ct ccQ Q  (b1)  ct ccQ Q  (b < 1)

Flood-cleaning α < 0   ccQ Q   ctQ Q

Flood-depositing α > 0    cc ctQ Q Q No erosion possiblea.

aBedload transport occurs and tools are available only at large discharges, 
when the bed is fully covered.

Table 1 
The Ranges of Q* for Which Erosion is Possible in the Four Cases
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3.  Results
In general, there are four unknown variables, channel bed slope S, the 
long-term cover fraction C (Equation  18; see also Appendix  B, Equa-
tions B3, B6, and B9), the long-term bedload sediment supply sQ  (Equa-
tion 12), and the ratio between the cover threshold and the threshold of 
bedload motion b (Equation 16). The solutions provide three equations. 
The long-term incision rate I  (Equation 23) can be treated as an inde-
pendent variable that is determined by the long-term uplift or baselevel 
lowering rate. Another equation can be obtained from the conditions for 
steady state, when the long-term bedload supply is related to the long-
term incision rate by

 .sQ AI� (24)

Here,   is the long-term mean fraction of sediment that is transported as 
bedload, and A is the drainage area. I further substitute discharge with a 
simple hydrologic relation

 .Q RA� (25)

Here, R is the long-term mean runoff. To illustrate the dependence of 
channel morphology and of the adjustment time scales on control and 
channel morphology parameters, I used parameter values oriented on 
Lushui at the Liwu River, Taiwan (Table 2; see Turowski et al., 2007, and 
Turowski, 2020). The values of reach parameters were either measured in 
the field or estimated using literature data.

3.1.  Steady State Channel Long Profile

Both long-term bedload supply (Equation 12) and long-term incision rate 
(Equation 23) show the same dependence on channel bed slope, while 
long-term mean cover is independent of slope (Appendix B). As a result, 
channel bed slope S can be calculated from the equation for long-term 
bedload supply (Equation 12), which is independent of the cover thresh-
old and of long-term cover. Inverting Equation 12 for S and substituting 
Equations 24 and 25 yields

 
 

     
    

  
 

1/
/21/ 2 2 /22 /2 /

BL
.

n
q nn m q nq n m n

Qs e
IS F k d R A

k
� (26)

For certain combinations of the parameter values, the function FQs may be negative or not give a solution at 
all. In these cases, Equation 26 does not yield a valid solution for the channel bed slope. Parameter combi-
nations without solutions occur mainly for 1 < k < 2.5 (Figure 3).

3.2.  Scaling With Discharge Variability

The controls on channel morphology by discharge variability k are complicated (Figure 4), and depend 
both on the cover scaling exponent α and the width scaling exponent q. For the same discharge varia-
bility k, multiple possible solutions are available for most of the parameter space. The solution for the 
channel bed slope S is independent of α, but strongly dependent on q (Figure 4a). For small values of 
k, S increases with increasing k, for intermediate values of k, no solutions are available (see also Fig-
ure 3), and for large values of k, S decreases with increasing k (Figure 4a). The ratio of cover threshold 
to threshold of motion b (Equation 17), and the long-term mean cover C  can increase or decrease with 
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Parameter Symbol Value

Material properties

Density of water (kg/m3) Ρ 1,000

Density of sediment (kg/m3) ρs 2,650

Young's modulus (MPa) Y 5 × 104

Rock tensile strength (MPa) σT 10

Rock resistance coefficient kυ 106

Constants in the equations

Acceleration due to gravity (m/s2) g 9.81

Flow velocity friction coefficient kV 10

Bedload discharge exponent m 1

Bedload slope exponent n 2

Bedload coefficient (kg/m3) Kbl 11,000

Critical shields stress θc 0.045

Channel reach parameters

Drainage area (km2) A 435

Elevation (m) 410

Channel bed slope S 0.02

Channel width (m) W 36.7

At-a-station width exponent ωa 0.4

Scaling length (deflection length scale) (m) d 0.1

Median grain size (m) D 0.04

Daily average water discharge (m3/s) Q 36

Dimensionless threshold discharge of motion 
ctQ 0.15

Discharge variability parameter k 3

Sediment supply (kg/s) Qs 200

Long-term bedload fraction  0.3

Long-term incision rate (mm/yr) I 1

Table 2 
Parameter Values Used for the Example Calculations, Following Estimates 
for the Liwu River, at Lushui, Taiwan (Turowski, 2020; Turowski 
et al., 2007)
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increasing discharge variability k, depending on the values of q and α 
(Figures 4b and 4c). The threshold ratio b is weakly dependent on k for 
k < 2 and k > 3.5 (Figure 4b). For 2 < k < 3.5, it decreases strongly with 
increasing k when α = 2, and increases weakly when α = −2. The long-
term mean cover is constant for k < 1.5, regardless of the values of q 
and α (Figure 4c). For k > 2.5, it increases when α = −2, but it decreases 
when α = 2.

3.3.  Control of Reach-Scale Cover Behavior

The ratio of cover threshold to threshold of motion b (Equation 17), and 
the long-term mean cover, depends on reach-scale cover behavior, that is, 
whether the channel behaves as flood-cleaning (when the cover scaling 
exponent α < 0) or flood-depositing (α > 0). For flood-cleaning channels, 
b is close to zero or to one, for flood-depositing channels, it is larger than 
one (Figure 5a & 5c). For streams with low discharge variability (high k) 
the long-term mean cover increases for increasing α for flood-cleaning 
channels, and decreases for increasing α for flood-depositing channels 
(Figure 5b). For streams with high discharge variability, the function is 
complicated (Figure 5d)

4.  Discussion
4.1.  Steady State Channel Long Profile

Empirically, the channel long profile of bedrock rivers is often described by a power law function, as has 
been observed in many natural settings (e.g., Whipple, 2004; Whitbread et al., 2015):

 .sS k A� (27)

Here, ks is known as the steepness index and θ is known as the concavity index. While the concavi-
ty index θ typically falls into a narrow range between 0.4 and 0.7 in natural bedrock channels (e.g., 
Lague, 2014; Whipple, 2004), the value of the steepness index ks can vary over several orders of magni-
tude (e.g., Barnhart et al., 2020). The upscaled model yields a similar slope-area scaling (Equation 26; 
Figure 6), in which the steady state channel long-profile is controlled by the mechanics of bedload trans-
port, rather than the mechanics of bedrock incision. This notion is consistent with field observations of 
Johnson et al. (2009). Assuming that the long-term average bedload fraction   scales with drainage area 
A according to

  .Bk A� (28)
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Figure 3.  Space of valid solutions of slope (Equation 26) are shown in 
gray, for a thresholds of motion  ct 1Q . Other choices for 

ctQ  only slightly 
alter the results.

Figure 4.  (a) Scaling of slope S (Equation 26) (b) the ratio of cover threshold to threshold of motion b (Equation 17), and (c) of the long-term mean cover 
C  with the discharge variability parameter k. Lines for the cover exponent α = −2 (flood-cleaning), crosses for α = 2 (flood-depositing). Black for the width 
exponent q = 0, blue for q = 1, and red for q = 2.5. Note that channel bed slope is independent of α (Equation 26). For many conditions, there are two solutions 
available, corresponding to the solutions for b smaller (dashed) or larger than one (solid) (see Table 1; Appendices B and C).

A) B) C)



Journal of Geophysical Research: Earth Surface

The concavity index θ is then given by

  


  


2 1 2
.

2
m B q

n
� (29)
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Figure 5.  (a and c) Scaling of the ratio of cover threshold to threshold of motion b (Equation 17) and (b and d) of 
the long-term mean cover with the cover scaling exponent α (see Equations 15 and 16), for a (a and b) low variability 
(k = 3); and (c and d) high variability climate (k = 3). For flood-cleaning streams (α < 0) (cf. Figure 2, Table 1), separate 
solutions are shown for the threshold ratio b (Equation 17), for b > 1 (dashed line) and b < 1 (solid line).

Figure 6.  (a) Slope-area relationship predicted by the model (Equation 26) and (b) corresponding elevation profiles. The concavity index θ was calculated 
using Equation 29. Relationships are shown for m = 2 and n = 1, and B = q = 0 (black line), B = 0 and q = 1 (blue line), B = 0 and q = 2.5 (red line), and B = 1 
(black dashed). The steepness index was calibrated to the conditions at the Liwu (red circle, Table 2), with A = 435 km2, S = 0.02 (Table 2), and elevation 410 m. 
Hack's law A = kHxH was used to convert from drainage area to channel length, with kH = 1.2 and H = 2.
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The bedload fraction typically decreases with increasing drainage when different river catchments are com-
pared (Turowski et al., 2010). Based on field observations in the Himalayas, Dingle et al. (2017) suggested 
that the bedload transport rate in actively eroding rivers is constant along a river, despite increasing drain-
age area, implying B = 1 for a steady state catchment (cf. Equation 24). In the following, I will discuss the 
endmember cases of B = 1 (bedload transport rate independent of drainage area) and B = 0 (bedload frac-
tion independent of drainage area). In the former case, for B = 1, the concavity index is equal to the ratio 
of the discharge and slope exponents in the bedload transport Equation 8, m/n, independent of the value 
of q. In the latter case, for B = 0, a wide range of values can be obtained for concavity index, depending on 
the choices for m, n, and q. In natural rivers, θ is usual within the range between 0.4 and 0.7 (Lague, 2014; 
Whipple, 2004). A value of θ = 5/8 = 0.625 is obtained for m = 1 and n = 2, as in the bedload transport 
equation of Rickenmann (2001) (see also the discussion of Turowski, 2018), and q = 5/2, corresponding to 
the limit behavior for narrow channels (Figure 1; Appendix A). Smaller values of q decrease the concavity, 
with θ = 0 for q = 0, and θ = 1/4 = 0.25 for q = 1. A value of θ = 0.5, a standard choice in many modeling 
exercises, is obtained for q = 2.

The channel long-profile solution of the upscaled model (Equation 26) gives an explicit expression for the 
steepness index in terms of long-term incision rate I , erodibility ke (Equation 20), long-term mean bedload 
fraction  , long-term mean runoff ,R  as well as channel geometry parameters (e.g., the width exponent q) 
and discharge variability k:

 
 

       


   
  

 

1/
/21/ 2 /2 /

BL
.
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q nn q n m n

s Qs e
Ik F k d k R

k
� (30)

Here, FQs is given by Equation 13. The steepness index ks can in principle be calibrated to measurable pa-
rameters (Appendix D). The formulation helps explaining the large variability observed for the steepness 
index in nature. For example, erodibility depends on the inverse square of rock tensile strength (Equa-
tion 20), which varies over more than 2 orders of magnitude for natural rock (e.g., Sklar & Dietrich, 2001). 
In addition, Equation 30 allows stream profile inversions for incision rate (e.g., Wobus et al., 2006) with 
considerably more detail than the commonly used SPIM. However, many of the necessary parameters, such 
as the width exponent q, are not usually known for natural channels, and would require extensive field 
measurements. As a result, no data sets are currently available that include all necessary parameter values 
for natural channels. Therefore, a full test of the model is currently not possible.

The lack of valid solutions for channel bed slope for certain parameter combinations (Figure 4) occurs when 
the sum of four terms including the gamma or incomplete gamma functions in Equation 13 are equal to or 
smaller than zero. The values of the four terms depend on discharge variability k, the discharge exponent m 
in the bedload transport equation (Equation 8), and the product of the width exponent q (Equation 8) and 
the at-a-station hydraulic geometry exponent for width, ωa (Equation 6). This suggests that the river needs 
to adjust its absolute width (which changes the width exponent q) and its at-a-station hydraulic geometry 
for width (i.e., the cross-sectional shape, which changes ωa) to achieve a channel long-profile that is consist-
ent with the condition of grade, in which sediment deposition and entrainment are balanced. The results 
underline the importance of channel width for understanding bedrock channel dynamics.

4.2.  Cover and Thresholds

According to the model, long-term channel dynamics are controlled by at least two discharge thresholds, 
the critical discharge for the onset of bedload motion, and the discharge at which the channel switches from 
a fully to a partially covered bed. The relationship between these two threshold discharges, quantified in 
their ratio b, depends strongly both on the reach-scale cover behavior (quantified by the cover scaling expo-
nent α; see Figure 5a) and discharge variability k (Figure 5b). Often multiple solutions for the channel ge-
ometry are available for the same set of boundary conditions (Figure 4). Turowski et al. (2013) showed that 
both flood-cleaning (α < 0) and flood-depositing (α > 0) bedrock channels exist in nature, and sometimes 
reaches behaving one way or the other alternate in a single stream (e.g., Heritage et al., 2004). It is unclear 
what controls the cover scaling exponent α, and correspondingly, why a particular reach or stream behaves 
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flood-cleaning or flood-depositing. It can be expected that both hillslope processes and in-channel processes 
contribute to this control (cf. Turowski et al., 2013). For example, precipitation amount and intensity control 
hillslope sediment supply to the channel by landsliding or surface wash, but also the in-channel sediment 
transport capacity via their relationship to discharge. Water discharge, in turn, affects upstream sediment 
supply to a given reach, as well as bank and bed erosion rates. The cover exponent α could be related to or 
depend on other parameters such as discharge variability k, and the cross-sectional shape, quantified by the 
at-a-station hydraulic geometry exponent for width, ωa, and the width exponent q. All four of these param-
eters are treated as independent variables in the model, but may adjust their values through yet unknown 
feedback mechanisms. These topics provide starting points for future research. The parameters ωa, k, and 
α can be obtained from field observations. The hydraulic geometry exponent ωa can be constrained from 
parallel measurements of width and discharge (e.g., Turowski, Hovius, Wilson, & Horng, 2008), and the 
cover exponent α from parallel observations of cover and discharge. To estimate the discharge variability 
parameter k, a discharge time series is necessary spanning at least a few years, better decades (e.g., Molnar 
et al., 2006). The deflection length scale d is likely difficult to measure in natural settings, but should be well 
suited for study in laboratory experiments.

The combination of a flood-depositing channel with a threshold discharge for the onset of bedload motion 
that is higher than the discharge at which the bed becomes fully alluviated allows for a solution in which no 
incision occurs. Bedrock channels may evolve to this state when tectonic activity of a mountain belt ceases 
and uplift stops, rather than turning into an alluvial channel.

4.3.  Upscaling Instantaneous and Intermediate Timescale Process Descriptions

In the description of long-term evolution of river channels or entire landscapes, it is common to upscale 
instantaneous or intermediate timescale process descriptions by substituting a representative long-term 
discharge for the instantaneous or intermediate discharge. The upscaled version for bedload transport 
(Equation  12) resembles the process description at intermediate timescales (Equation  8), similar to the 
upscaled version of the SPIM (Lague et al., 2005). There are three key differences: (i) instantaneous and 
intermediate timescale variables are replaced by their long-term equivalents, (ii) the threshold vanishes in 
the long-term equation, and (iii) a dimensionless function, dependent on discharge variability k, channel 
morphology parameters, ωa, and q, and thresholds, such as the threshold of sediment motion Qct, is multi-
plied on (e.g., Equation 13). In contrast, the upscaled equations for bed cover (Equation 18) does not resem-
ble the intermediate timescale version (Equations 15 and 16). In comparison to the instantaneous incision 
rate (Equation 19), in the equation for the upscaled incision rate (Equation 23) the dependence on cover 
is replaced by a different dimensionless function (Appendix C). As such, while equations similar to the in-
stantaneous process law can be used in the long term, the determination of the dimensionless scaling factor 
may be complicated, and depend, for example, on the discharge variability parameter k. Both channel bed 
slope S (Figure 4a) and the threshold ratio b (Figure 4b) become independent of the discharge variability 
parameter k for large k, corresponding to small discharge variability. Consistent with previous notions (cf. 
Deal et al., 2018; Lague et al., 2005), this may imply that discharge variability does not need to be precisely 
known for environments with high k (low variability), when channel slope S is the primary interest. How-
ever, the long-term cover C behaves in the opposite way (Figure 4c), with constant values for small k and 
high variability for large k. Further, the relationship between the threshold ratio b and the cover exponent α 
are strongly modulated by k (Figures 5a and 5c), and slope depends on q even for large k. Again, questions 
about the feedbacks between α, the discharge variability parameter k, the cross-sectional shape, quantified 
by the at-a-station hydraulic geometry exponent for width, ωa, and the width exponent q arise and provide 
starting points for future research.

4.4.  Comparison to the Upscaled Stream-Power Incision Model

The upscaled SPIM (Appendix E; Lague et al., 2005) is able to capture the nonlinear dependence of incision 
rates on discharge variability observed in the Himalaya (DiBiase & Whipple, 2011; Scherler et al., 2017). The 
results obtained from sediment-flux-dependent incision models give similar relationships for flood-cleaning 
channels and a ratio of cover threshold to threshold of motion b that is smaller than one (Figure 7). How-
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ever, they yield several other potential solutions, indicating a larger flexibility of the channel to deal with 
different climatic situations.

The model presented here uses a sediment-flux-dependent bedrock incision models rooted in current 
mechanistic understanding of fluvial bedrock incision. As such, it connects reach-scale to landscape-scale 
approaches in modeling bedrock river dynamics, addressing what Venditti et al.  (2020) called a current 
grand challenge of geomorphology. The channel long profile predicted by the model yields a power-law 
dependence of channel bed slope on incision rate and drainage area similar to the one obtained from the 
stream-power incision model (SPIM) (Equation 26). The SPIM has been claimed to provide a description 
of bedrock channel dynamics on long time scales (e.g., Venditti et al., 2020), even though its mechanistic 
assumption—a direct scaling between erosion rate and stream power (Seidl & Dietrich, 1992)—has been 
falsified on the process time scale (e.g., Beer & Turowski, 2015; Sklar & Dietrich, 2001). Whipple and Tuck-
er (2002) already recognized that a wide range of incision models yield similar or even identical predictions 
for the channel long profile, and concluded that observations of transient dynamics need to be used to 
assess model efficacy. However, studies that have attempted this arrived at conflicting results. For example, 
van der Beek and Bishop (2003) found that all of the tested models could be parameterized to explain their 
observations, while Tomkin et al. (2003) concluded that none of the tested models could be fit to their data 
with physically meaningful parameter values. Valla et al. (2010) found that a transport-limited model better 
described their data, while Attal et al. (2011) argued that a SPIM yielded the best fit, provided a threshold 
of erosion was included. Even though it is limited to steady state channels, the model developed herein 
yields multiple possible solution for a given set of boundary conditions. It has previously been shown that 
sediment-flux-dependent incision models can yield transient behavior that mimics either transport- or de-
tachment-limited conditions or a mixture of both (e.g., Davy & Lague, 2009; Gasparini et al., 2007; Whipple 
& Tucker, 2002). This suggests that sediment-flux-dependent incision models as used here can yield the rich 
transient behavior inferred from observations in natural bedrock channels (cf. Lague, 2014).

5.  Conclusions
Bedrock channels are thought to evolve toward a steady state in which the long-term incision rate is equal 
to the long-term baselevel-lowering rate (e.g., Lague et al., 2005; Whipple, 2004), but also have the need 
to transport the supplied sediment load (e.g., Turowski, 2020). Upscaling a sediment-flux-dependent inci-
sion model rooted in current mechanistic understanding of fluvial bedrock incision processes yields several 
solutions that are consistent with the requirements for the long-term steady state, but differ in their short 
time dynamics, for example in the relationship of bed cover and discharge, or transport capacity and chan-
nel width. Some of these solutions are similar to the behavior expected in the stream power paradigm, but 
other solutions are also possible. In the stream-power incision model, both in its instantaneous and in its 
upscaled form, the effects of channel width, of sediment supply and transport, and of bedrock erodibility 
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Figure 7.  Comparison of the dependence of incision rate on discharge variability k obtained from the stream power incision model (SPIM, solid line; see 
Appendix E) and the sediment-flux-dependent model used herein (see Appendix C). Calculations were made for values of the width exponent of (a) q = 0 and 
(b) q = 5/2 (see Appendix A), and a threshold of motion   1ctQ .
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are lumped together in a single calibration parameter, usually called the erodibility. In contrast, the model 
presented here makes the relationship of the long-term incision rate and of channel geometry with these 
effects explicit. It thus advances a more detailed picture into the long-term behavior of bedrock channels 
and offers a wider range of testable predictions and assumptions.

For certain parameter combinations, the model does not yield a solution for channel bed slope. However, it 
is in most cases possible to find a solution by adjusting the dependence of the bedload transport capacity on 
channel width (via the exponent q), the cross-sectional geometry (via the at-a-station hydraulic geometry 
exponent for width, ωa), or the reach-scale cover dynamics (via the exponent α). It is unclear what controls 
these parameters in nature and whether they interdepend on each other. Still, the model results suggest that 
the long-term dynamic behavior of bedrock channels is richer than previously thought, and that there are 
controls and feedbacks that have been little explored so far.

The long-term incision rate (Equation 26) is explicitly dependent on bedrock erodibility, channel width, and 
discharge variability, as well as the free parameters determining reach-scale cover behavior and cross-sec-
tional shape. All of these effects have previously been argued to be important factors in setting incision rates 
(e.g., Bursztyn et al., 2015; Cook et al., 2013; Lague et al., 2005; Whitbread et al., 2015). However, within 
the SPIM, they are lumped into a single calibration parameter. The new formulation makes it possible to 
separate all of these effects. This offers rich new possibilities for testing the model using data from natural 
streams.

Appendix A:  Width Dependence of Bedload Transport Rate
A commonly used equation for bedload transport has the form (e.g., Fernandez Luque & van Beek, 1976; 
Meyer-Peter & Müller, 1948)

   


   
       

1/2
3/231 .s

s cQ W g D� (A1)

Here, γ is a dimensionless coefficient and D is a representative grain size. The reach-averaged Shields stress 
  is defined by

 
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Here, τ is the shear stress, given by the DuBoys equation

  .hgR S� (A3)

Here, Rh is the hydraulic radius. The continuity equation for water flow is

 .cQ A V� (A4)

Here, Ac is the cross-sectional area. For a rectangular channel, hydraulic radius and cross-sectional area are 
given by

 ,cA WH� (A5)

and




.
2h

WHR
W H

� (A6)

Here, H is the flow depth. A generic form for the cross-section averaged flow velocity can be written as

 1/2.V hV k R S� (A7)
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Here, kV is a friction coefficient and δ takes the value of 1/2 for the Darcy-Weissbach equation and 2/3 for the 
Manning equation. Eliminating H, Rh, Ac, and V by combining Equations A3–A7, we obtain
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Equation A8 does not permit a closed-form solution for τ (see Figure 1 for a numerical solution). However, 
we can make some statements on scaling. If width is small, the quadratic term in width can be neglected. 
Then

 
1 SW.
2

g� (A9)

For intermediate width, the term independent of width on the left-hand side can be neglected, and scales as
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Applying Equations A10 or A11 to the bedload transport Equation A1, we can obtain sensible values for the 
width exponent q in Equation 8:

    BL ct .m m q n
sQ k Q Q W S� (A11)

Using Equation A10, shear stress τ is independent of discharge (m = 0), and proportional to both slope and 
width, and n = 3/2 and q = 5/2. Using Equation A11, we need to distinguish for the two friction equations. 
For the Darcy-Weissbach equation, when δ = 1/2, this results in m = n = 1 and q = 0, while for the Manning 
equation, when δ = 2/3, this results in m = 9/10, n = 21/20 and q = 1/10. Note that Rickenmann (2001) 
showed that n = 2 gives a better description of field data than the theoretical values given above. He suggest-
ed that this deviation results from the decreasing occurrence and importance of macro-roughness elements 
such as stationary boulders or step-pool sequences when moving downstream.

Appendix B:  Solutions for Long-Term Average Cover
For the flood-cleaning case (α < 0) with  ct ccQ Q  (b > 1) we obtain
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Combining with Equation 4, the integral becomes
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The integral evaluates to
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For the flood-cleaning case (α < 0) with  ct ccQ Q  (b < 1), we obtain
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The integral becomes
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Evaluating
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For the flood-depositing case (α > 0) with  ct ccQ Q  (b > 1), we obtain
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The integral becomes
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Appendix C:  Solutions for the Long-Term Incision Rate
For the flood-cleaning case (α < 0) with  ct ccQ Q  (b > 1), we obtain
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For the flood-cleaning case (α < 0) with  ct ccQ Q  (b < 1), we obtain
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For the flood-depositing case (α > 0) with  ct ccQ Q  (b > 1), we obtain
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Appendix D:  Calibrating the Model Using Field Observations of Slope and 
Width
Channel width and slope as well as drainage area and discharge can be measured in the field with common-
ly available methods. Under the assumption that the channel is at a long-term steady state, such measure-
ments can be used to calibrate various free parameters in the equations. From Equations 7 and 24, channel 
width is given by

 
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The slope can be obtained from Equations 12 and 24

     
 
 
 

1/
/ /

BL
.

n
q n m n

Qs

AI
S W Q

F k
� (D2)

Finally, Equation 23 gives a further constraint on erodibility ke in case the long-term incision rate is known.
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From Equation D3, it follows that
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With measurements of slope, width, drainage area, mean discharge, and long-term incision rate, and an 
estimate of the bedload fraction, Equation D2 can be used to calculate kBL. Subsequently, erodibility ke can 
be calculated using Equations D4 and D1 can be used to calculate the deflection length scale d.

Appendix E:  Upscaling the Stream Power Incision Model
Lague et al. (2005) gave a comprehensive discussion of the upscaled stream power incision model (SPIM). 
In a stream with variable discharge, the bedrock incision rate according to the SPIM is given by (cf. Lague 
et al., 2005)
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The integral is given by
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The long-term incision rate is then given by
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Notation	
Functions
exp{x}	 Natural exponential function of x.
FC	 Discharge variability-dependent function for the long-term mean bed cover.
FI	 Discharge variability-dependent function for the long-term mean incision rate.
FQs	 Discharge variability-dependent function for the long-term mean sediment transport rate.
pdf(Q*)	 Probability density function of the dimensionless discharge Q* (Equation 1).
Γ(x)	 Gamma function of x (Equation 2).
Γ(x,c)	 Upper incomplete gamma function of x (Equation 14).

Variables
A	 Drainage area [m2].
Ac	 Cross-sectional area of the flow [m2].
a	 Scaling exponent, C-Q*.
B	 Scaling exponent, β-A.
b	 Coefficient of proportionality,  ct ccQ Q .
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C	 Fraction of covered bed.
<C>	 Average cover at a given discharge.
C	 Long-term mean cover.
D	 Representative grain size (m).
d	 Sideward deflection length scale, reach (m).
g	 Acceleration due to gravity (m/s2).
H	 Water depth (m).
I	 Instantaneous incision rate (m/s).
I 	 Long-term mean incision rate (m/s).
k	 Discharge variability parameter.
kbl	 Bedload transport efficiency (kg m−3m−qsm−1).
ke	 Bedrock erodibility (m2/s).
kSPIM	 Erodibility in stream power model (m1−3m's1−m').
ks	 Steepness index (m2θ).
KV	 Flow velocity coefficient (m1−δ/s).
kW	 Prefactor, downstream hydraulic geometry for width.
kβ	 Prefactor in the relationship of and drainage area (m−2B).
kv	 Rock erodibility coefficient.
m	 Discharge exponent in bedload equation.
m'	 Discharge exponent in the stream power model.
n	 Slope exponent in bedload equation.
n'	 Slope exponent in the stream power model.
Q	 Water discharge (m3/s).
Qmax	 Maximum water discharge at which erosion occurs (m3/s).
Qmin	 Minimum water discharge at which erosion occurs (m3/s).
Q	 Long-term mean water discharge (m3/s).
Q*	 Dimensionless water discharge, normalized by the long-term mean discharge

ceQ 	 Critical discharge for the onset of erosion in the SPIM (m3/s).

ctQ 	 Critical discharge for the onset of bedload motion (m3/s).

ccQ 	 Critical discharge for the change between a fully and partially covered bed (m3/s).

Qs	 Upstream sediment mass supply (kg/s).
sQ 	 Long-term mean bedload supply (kg/s).

Qs	 Upstream sediment mass supply (kg/s).
Qt	 Mass sediment transport capacity (kg/s).
q	 Width dependence of transport rate, scaling exponent, Qs−W.
R	 Runoff (m/s).
Rh	 Hydraulic radius (m).
S	 Channel bed slope.
V	 Water flow velocity (m/s).
W	 Instantaneous channel width [m].
W 	 Channel width at the mean discharge [m].
Y	 Young's modulus of the bedrock [kg m−1s−2].
α	 Scaling exponent, C−Q*.
β	 Fraction of sediment transported as bedload.
 	 Long-term mean of the fraction of sediment transported as bedload.
γ	 Dimensionless bedload transport coefficient.
δ	 Scaling exponent, flow velocity V−Rh.
ρ	 Density of water [kg/m3].
ρs	 Density of sediment [kg/m3].
σT	 Rock tensile strength [kg m−1s−2].
θ	 Concavity index, scaling exponent, S−A.
τ	 Bed shear stress [N/m2].
τ*	 Shields stress.
τc*	 Critical Shields stress at the onset of bedload motion.
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ωd	 Downstream hydraulic geometry exponent for width, scaling exponent <W> − Q
ωa	 At-a-station hydraulic geometry exponent for width, scaling exponent W − Q*

Data Availability Statement
Data were not used, nor created for this research.
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