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Abstract Free traveling Rossby wave normal modes (RNMs) are often investigated through
large-scale space-time spectral analyses, which therefore is subject to observational availability, especially
in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly
according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses
zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor
radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events
(SSW5s) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days
lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal
wave number m = 1, excepting one 16-day oscillation associated with m = 2. We discuss them =1
oscillations as transient RNMs and the m = 2 oscillation as a secondary wave of nonlinear interaction
between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs,
suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a
similar network at 54°N during 2012-2016. Explored is a manifestation of 5-day wave, namely, an
oscillation at 5-7 days with m = 1), around the onset of SSW 2013, supporting the associations between
RNMs and SSWs.

Plain Language Summary Most detectable atmospheric Rossby waves are associated with
atmospheric intrinsic properties, including the free traveling Rossby wave normal modes and forced
resonant stationary Rossby waves. The former is less understood than the latter because they are relatively
weak and often distorted by the background atmosphere. In the current work, we customize a compact
wave identifying technique to estimate the horizontal wavelength of Rossby wave-like predominant 10- and
16-day oscillations detected by two arctic radars during stratospheric sudden warming events. Results
illustrate that five of the six most oscillations are westward traveling with zonal wave number 1. We explain
the oscillations as free transient Rossby wave normal modes.

1. Introduction

Rossby waves (RWs) were identified initially by Rossby (1939) as solutions of simplified terrestrial atmo-
spheric dynamic equations constrained by the conservation of potential vorticity. RWs are horizontal
transverse waves whose restoring mechanism is provided by the meridian gradient of the Coriolis force,
namely, the beta effect (e.g., Holton & Hakim, 2013). The restoring mechanism resists meridional displace-
ments and drives the waves propagating zonally. Since the beta effect occurs in all types of rotating fluid, RWs
could also be produced in laboratory experiments (e.g., Tajima & Nakamura, 2005) and also develop natu-
rally in various astronomical objects, for example, planetary atmospheres and oceans (e.g., Allison, 1990;
Read et al., 2009), plasma on the Sun (McIntosh et al., 2017), and Keplerian disk (Lovelace et al., 1999).

In the terrestrial atmosphere, the most spectacular RWs are associated with the atmospheric intrinsic prop-
erties, including the free traveling Rossby wave normal modes (RNMs; e.g., Madden, 1979) and forced
resonant stationary Rossby waves (SRWs; e.g., Tung & Lindzen, 1979). RNMs are often referred to with a
pair of numbers (m, n — m), which are referring to the associated Legendre function of degree n and order m
(e.g., Madden, 1979). The most commonly observed RNMs are those with the longest horizontal
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wavelengths, for example, modes (1, 1), (1, 2), (1, 3), which travel westward with periods of 5, 8.3, and
12.5 days, Doppler shifted by the ambient westerly and known as 5-, 10-, and 16-day waves, respectively (e.g.,
Forbes, 1995a; Forbes & Zhang, 2015; Longuet-Higgins, 1968; Salby, 1984; Weber & Madden, 1993). RNMs
could develop in an unbounded or zonally symmetric atmosphere, whereas a zonally asymmetric atmo-
spheric lower boundary due to, for example, topographic or thermal condition gives rise to SRWs, namely,
resonant circulations which are stationary relative to the surface of the Earth (Holton & Hakim, 2013). In the
frame of reference rotating with the mean flow, SRW is traveling westward with phase velocity at the magni-
tude of the flow speed of the background westerly. Note that SRW is not a classic stationary wave (also called
standing waves coined by Melde, 1860) that does also not travel in space but oscillates in time. The most sig-
nificant RNMs and SRWs have planetary-scale horizontal wavelengths. Therefore, RWs, RNMs, and SRWs
are also called planetary waves, traveling planetary waves, and stationary planetary waves, respectively.

RWs play a significant role in angular momentum processes in the atmosphere and are of most importance
for determining large-scale weather phenomena (Smith, 1985). In particular, the large-scale SRWs, excited
by the zonal gradient of the land-sea thermal condition in the winter polar region, interact nonlinearly
with the mean zonal circulation and generate the most spectacular atmospheric process, namely, the sud-
den stratospheric warming event (SSW; e.g., Matsuno, 1971; Reed, 1963). While SRWs play a crucial role in
initiating SSWs (e.g., Matsuno, 1971), the behavior of RNMs in SSWs is still under debate. The association
between RNMs and SSWs is supported by some studies (e.g., Pancheva et al., 2008; Yamazaki & Matthias,
2019), but not by others (e.g., Sassi et al., 2012). The contradiction is, at least partially, due to difficulties
in the observational identification of RNMs. The identification is typically not straightforward but entails
careful spatial-temporal spectral filtering of measurements covering long distances for a long time. Besides,
the identifications are considerably subject to distortions from the background flow and other atmospheric
oscillations, for example, tides and gravity waves, which are on shorter temporal and spatial scales with
potentially stronger intensities than RWs. These difficulties made the RW be one of the rare atmospheric
phenomena which were predicted theoretically before they were discovered observationally.

Early observational evidence of RNM in the troposphere and lower stratosphere was extracted from glob-
ally distributed meteorological records (e.g., as reviewed comprehensively in Madden, 1979; Salby, 1984).
RNM climatology in the troposphere (Weber & Madden, 1993) and stratosphere (Fedulina et al., 2004) were
investigated using European Center for Medium-range Weather Forecasts analysestECMWF) model and UK
Met Office (UKMO) assimilated data. However, in the mesosphere and low thermosphere (MLT) regions,
RNM evidence has been relatively rarely reported. Space-based MLT observations could capture RNM
(e.g., McDonald et al., 2011) with constraints of both frequency and wave number but are subject to aliasing
associated with the most common slowly precessing polar orbits (e.g., Salby, 1982a, 1982b). Observations
collected by ground-based radars provided long records of MLT winds, but they are only available at a lim-
ited number of sites. Consequently, radars are typically used to explore RNM through spectrum analysis
using single-station techniques without determining horizontal scales. To conquer this problem, the current
study adapts a dual-station technique developed recently by He, Chau, Stober, et al. (2018) to diagnose the
zonal wave number of RNM signatures using two zonally separated radars. Although the technique was ini-
tially developed for diagnosing the wave number of tides, it should be capable of diagnosing RNM signatures
given that the zonal scales of tides are comparable to those of RNMs. In the current work, we demonstrate
this capability.

According to the classical wave theory (e.g., Figure 2 in Madden, 1982b), RNMs are structural in the merid-
ional direction. For a meridional comparison, we collect two dual-station networks, at middle and high
latitudes, respectively. We will check both zonal and meridional wind components as the classical theory
predicts that the meridional structures are different between the two components. Below, after introducing
the approach and data set in section 2, we display the results in section 3, and explain the results and discuss
their implications in section 4.

2. Data Analysis

The current work uses two dual-station networks, as displayed in Figure 1, comprising four specular meteor
radars at Svalbard (78°N, 16°E; cf. Hall et al., 2002), Eureka (80°N, 86°W; cf. Manson et al., 2009), Juliusruh
(54.6°N, 13.4°E; cf. Singer et al., 2013), and Mohe (53.0°N, 122.5°E; cf. Yu et al., 2013). The networks were
used in He, Chau, Hall, et al. (2018) and He, Chau, Stober, et al. (2018), respectively. In the current work, the
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Figure 1. Distribution of radars used for the current work, comprising a high-latitude pair at Eureka (80°N, 86°W) and
Svalbard(78°N, 16°E), and a midlatitude pair at Juliusruh (54.6°N, 13.4°E) and Mohe (54.0°N, 122.5°E).

main results are based on the polar network, which is complemented by the midlatitude network. Hourly
wind observation is available for four winters during 2008-2012 at the polar network (see Figure 2a), and
for five years 2012-2016 at the midlatitude network (see Figure 2a).

Ground-based observations were used to investigate RWs typically through single-station analysis
approaches and therefore were not capable of diagnosing the horizontal scale. Recently, globally distributed
stations were combined to investigate the horizontal structure of RNMs, both the meridional (Jiang et al.,
2008) and zonal (Elhawary & Forbes, 2016). Elhawary and Forbes (2016) analyzed data from two stations that
are located at the same latitude but are separated in longitude by 180°, to diagnose RNMs with zonal wave
number m = 1. Other studies used paired stations that are separated in longitude by arbitrary degrees to
identify m through analyzing the spectral phase of RNM-like oscillations (Clark et al., 2002; Pancheva et al.,
2008; Pogoreltsev et al., 2002) and semidiurnal tides (e.g., Manson et al., 2009; Murphy, 2003). Recently, He,
Chau, Stober, et al. (2018) developed a dual-station approach called phase differencing technique (PDT) to
estimate the wave number of tides as a spectrum within broad ranges of time ¢ and frequency f. PDT is
briefly introduced in Appendix Al. Below we implement PDT to explore RNMs.

3. Results

In the current section, we apply PDT to diagnose m of RNM-like oscillations through wavelet and
cross-wavelet analyses using the dual-station networks. The results from the polar network are detailed in
sections 3.1-3.4, whereas those from the middle latitudes are concisely present in section 3.5 for comparison.
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Figure 2. Wavelet spectra Wff 5 and VV(S 0 of the hourly zonal wind at 94 km altitude, observed by specular meteor radars at (a) Eureka (80.0°N, 86.0°W) and

(b) Svalbard (78.2°N, 16.0°E), respectively. (c) The cross-wavelet spectrum between (a) and (b): C¢ 7 = W(Ef* I)W(S o). C y p) reads referring to (d): the
darkness of the map represents its amplitude, whereas the hue of the color represents its phase, and the phase values associated with five zonal wave numbers
(m) are displayed by the vertical dashed line. In (d), the vertical dashed lines indicate the phase difference associated with zonally propagating waves with four
zonal wave numbers. In (a)-(c), the vertical dashed line represents the polar vortex-weakening central day (PVW). The ticks and labels of the x axis represent
the first day of each month. The magenta and green crosses represent the coordinates on which the portions will be compared with the spectra of the meridional

component displayed in Figure 4. Shadowed are intervals missing data or influenced by the edge effect of the discontinuity of finite-length time series.
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Figure 3. (a) Same plot as Figure 2 zoomed into the period of SSW 2009. (b) Butterworth filtered zonal wind during
SSW 2009 at Eureka (magenta, at 80.0°N, 86.0°W) and (b) Svalbard (green, at 78.2°N, 16.0°E). (c, d) Similar plots as
(a) and (b) but for SSW 2010.

3.1. Wavelet Spectra of Zonal Wind

Figures 2a and 2b show the wavelet spectra, W(Ef,t) and W(S by of the hourly zonal wind at 94 km altitude
over Eureka and Svalbard between late 2008 and early 2013, which are the estimations of fi(4,, t) and ii(4,, )
in equation (A1), respectively. Used is a Morlet wavelet with factor 8, namely, a mother function composed
of a complex exponential carrier tailored by a Gaussian envelope (Grossmann et al., 1990). The spectra are
populated with isolated peaks, in both period and time. The isolation in time suggests that the oscillations
are transient while the isolated period was often used as evidence of RNWs. The peaks occur both before
and after the SSW onsets that are represented by the vertical dashed lines in Figure 2c. The onsets refer to

the dates of the polar vortex weakening (PVW Siddiqui et al., 2015; Zhang & Forbes, 2014).

3.2. Cross-Wavelet Spectrum and Wave Number Diagnosis

Figure 2c displays the cross-wavelet spectrum between the spectra in Figures 2a and 2b, C'( = W(E;‘ 5 VV(S 0
which corresponds to the estimation p in equation (A3). The spectrum is color coded referring to the scheme
shown in panel (d) so that the darkness represents the magnitude |€'( .|, whereas the color hue represents
the phase Arg{C;,}. The amplitude quantifies the intensity of co-occurred oscillations, while the phase
measures the phase difference between the radars which further allows estimating the zonal wave number

m. In panel (d), the vertical dashed lines represent the phase difference associated with m € M, where
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Figure 4. Same plot as Figure 2 but for the meridional component.

M, := {-2,-1,0,1,2,3} is defined as the maximum set under the constraints of N and m introduced in
Appendix Al.

In the wavelet spectrum, |C’( 7| maximizes at the period 10 days in early 2009 and at 16 days in early 2010,
as highlighted by the isoline of IC‘( 7.0l =100 m*/s?. Both maxima occur prior to an SRW onset, represented
by the vertical dashed lines in Figure 2c. The phases at both maxima are close to m = 1 among m € M,
which are also the solutions according to the optimization in equation (A3).

3.3. Butterworth Filtering

Figure 3a is a zoomed version of Figure 2c around SSW 2009. For investigating the duration of the 10-day
oscillation, the hourly wind is filtered in the period range between 7 and 13 days using a Butterworth filter.
The filtered wind, displayed in Figure 3b, illustrates that the near-10-day oscillations exist at both stations
with different phases. The oscillation at Svalbard lasts only about three whole periods between 10 December
2008 and 10 January 2009, which suggests the underlying wave is transient.

Similarly, Figure 3c is azoomed version of Figure 2c around the SSW 2010, and the zonal wind is low-pass fil-
tered with a cutoff period of 10 days and shown in Figure 3d. Instead of the band-pass filter used in Figure 3b,
here low-pass Butterworth filter is used because in Figures 2a and 2b there is not any comparable oscillation
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Figure 5. Same plot as Figure 2 but for the radar pair at the middle latitudes.
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Figure 6. Same plot as Figure 4 but for the radar pair at the middle latitudes.

at lower frequencies. Figure 3d illustrates that the oscillation at Svalbard leads that at Eureka, for exam-
ple, around the end of December 2009. Such a phase leading lasts from about 5 December 2009 to about 20
January 2010, about three periods of 16-day oscillation, suggesting the underlying wave is also transient.

3.4. Wavelet Spectra of Meridional Wind

Figure 4 displays the same plots as in Figure 2 but for the meridional wind v. At first glance, Figure 4 is
similar to Figure 2. The wavelet spectra for the individual radars are populated with significant isolated
peaks in the winters, whereas the cross-wavelet is populated with peaks at mostly periods of 10 and 16 days
around mostly the onsets, most of which are characterized by m = 1 and last for less than 1 month.

Behind the above similarities between u and v there are many differences in the details. In the wavelet
spectra, v peaks are in some cases much stronger than the corresponding peaks in u (e.g., at the magenta
crosses in Figures 2a, 2b, 4a, and 4b), whereas in some other cases, peaks are much stronger in u (e.g., at
the green crosses in Figures 2b and 4b). Not surprisingly, the cross-wavelet spectrum of v in Figure 4c is also
not identical to that of u in Figure 2c. At SSW 2009, the peak in v does not occur synchronously with the
peak in u but delays about 1 month afterward. At SSW 2010, although the peaks in v and u occur almost at
the same time, they are characterized by different wave number, that is, m = 1 and 2, respectively.

3.5. At a Middle Latitude

The above sections presented the results at the polar latitude. For comparison, Figures 5 and 6 present the
same results as Figures 2 and 4 but for the midlatitude network. Figures 5 and 4 span from 2012 to 2016,
overlapping Figures 2 and 4 only for one and a half winters.

In comparison to the spectra at the polar latitude, the amplitudes at the middle latitudes are generally
weaker in both the wavelet and cross-wavelet spectra. The wavelet spectral peaks in Figures 5a, 5b, 6a, and
6b occur very rarely above 12 m/s, whereas those in Figures 2a, 2b, 4a, and 4b are often above 16 m/s. In the
cross-wavelet spectra in Figures 5¢ and 6c, no peak occurs at |C| > 100 m?/s? along the periods of around
10 or 16 days.

4. Discussions

In the previous section, wavelet analysis, cross-wavelet analysis, and Butterworth filtering are used to explore
the mesospheric wind detected at two zonally separated stations at 79°N latitude during four winters. The
wavelet analysis presents isolated spectral peaks in both frequency and time. Co-occurring at both stations
are peaks at onsets of SSWs. The co-occurrence is quantified by the cross-wavelet spectrum, which allows
diagnosing the zonal wave number. The diagnosis results are summarized in Table 1. For a comparison,
multiyear observations from a dual-station network at 54°N were also diagnosed. At the middle latitudes,
the spectra at periods of 10 and 16 days are weaker than those at the polar latitude. Therefore, below we
focus mainly on the polar latitude. Section 4.1 explains the cross-wavelet spectral peaks in terms of RNMs,
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Table 1
m Reads From Figures 2 and 4, at |C| > 100 m?/s®
Year SSW type 10 days 16 days
2009 major m,=1m,=1
2010 major m, =1 m,=1,m,=2
2012 minor
2013 major m, =1

section 4.2 introduces the potential problems of our approach, and 4.3 discusses the potential association of
RNMs with SSWs.

4.1. Zonal Wave Number Evidence for RNMs

In Figures 2c and 4c around the periods of 10 and 16 days, there are six spectral peaks at |C| > 100
m?/s%. Five of them are associated with m =1, namely, westward traveling zonal wave number 1 structure,
and the last one is m = 2, as summarized in Table 1. The m =1 peaks suggest that the underlying waves are
the RNMs (1, 2) and (1, 3), namely, 10- and 16-day waves (e.g., Forbes, 1995b; Sassi et al., 2012). Also, in the
troposphere 16-day wave was observed before SSW 2010 (e.g., Figure 2 in Madden, 2019). Similarly, mani-
festations of 16-day waves coincided in different atmospheric layers were also reported prior to the onset of
SSW 2003/2004 and explained as vertical wave propagation (Pancheva et al., 2008). The 10-day wave dur-
ing SSW 2009 was reported in space-based observations (Figure 5f in Yamazaki & Matthias, 2019) and in
the global meteorological products issued by an Advanced Level Physics High-Altitude (ALPHA) prototype
of the Navy Operational Global Atmospheric Prediction System (NOGAPS) (Figure 7e in Sassi et al., 2012).
The space-based observations (Yamazaki & Matthias, 2019) also revealed the transiency of the 10-day wave
asrevealed in Figure 3a. According to the classical theory of normal modes (e.g., Madden, 2007; Yamazaki &
Matthias, 2019), the RNMs in the horizontal wind are often not circularly polarized; namely, the amplitudes
in u are different from those in v. This difference contributes to the fact that the spectral peaks in Figure 2c
do not coincide with those in Figure 4c. The classical theory also illustrates that both 10- and 16-day waves
in both u and v are stronger at polar latitudes than those at middle latitudes, which could explain the lati-
tude variations described in the last paragraph of section 3.5. At the middle latitudes, as marked by the black
arrow in Figure 5c, a peak occurs along the period 5-7 days around SSW 2013 at |C| > 100 m?/s?, associ-
ated with m =1. Using the same Mohe radar, Gong et al. (2018) detected the periodicity in a single-station
analysis and explained it as a signature of RNM (1, 1), namely, the 5-day wave. Here, our diagnosis m = 1
supports the occurrence of that RNM. The 5-day wave activity in SSW 2013 was also revealed in satellite
observations (Forbes & Zhang, 2017; Yamazaki, 2018).

As an exception with m #1, the 16-day oscillation with m = 2 at the onset of SSW 2010 in Figure 4c could also
be explained as a normal mode, for example, (2, 3) or (2, 4) (e.g., Hirota & Hirooka, 1984; Kasahara, 1980).
Another potential possibility accounting for the m = 2 sixteen-day oscillation is the wave-wave nonlinear
interaction between the 16-day wave and a SRW with m = 1. The interaction could generate secondary
waves at the period of 16 days with m = 0 or m = 2, according to the resonance conditions in which wave
number m and frequency f of the secondary waves are equal to either the sum or difference of those of
the parent waves (e.g., He et al., 2017). The m = 2 secondary wave might amplify the above mentioned
RNMs (2, 3) or (2, 4) resonantly. Wave-wave interactions occur broadly between global-scale atmospheric
waves, for example, tides, RNMs, or SRWs. In terms of these three types, six categories have been studied,
that is, tide-tide, RNM-RNM, SRW-SRW, tide-RNM, tide-SRW, and RNM-SRW interactions (e.g., Forbes &
Zhang, 2017; He & Chau, 2019; He et al., 2017; Liu et al., 2006; Pancheva et al., 2004; Pedatella & Liu, 2013;
Pogoreltsev, 2001). In the RNM-SRW category, to the authors' knowledge, evidence was reported only for
the interaction between quasi 2-day wave and SRW (Gu et al., 2015). Our result suggests that 16-day wave
could also interact nonlinearly with SRW.

Our m diagnosis also allows distinguishing RNM-associated waves from the multiday disturbances associ-
ated with solar rotation. The disturbances are suggested to arise from solar coronal holes associated with
emission of the high-speed stream (e.g., Krieger et al., 1973; Temmer et al., 2007). Multiple coronal holes
might elongate to lower solar latitudes (e.g., Burlaga et al., 1978) and produce disturbances in solar-terrestrial
space environment at harmonics of the solar rotation period, for example, 7, 9, 13.5, and 27 days, as broadly
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reported from the solar wind to the ionosphere and thermosphere (e.g., He et al., 2011; Lei et al., 2011).
Recently, signatures of such disturbances were also reported in the mesosphere (e.g., von Savigny et al., 2019;
Yietal., 2017). These disturbances are impulsive, recurring every 9, 13.5, or 27 days close to the RNM periods
considered here, but they are not free waves and do not propagate evenly on the time scale of these periods.

4.2. Limitations of Our Approach and Their Implications

Our phase differencing approach has some limitations. The first is a limitation of all spectral analysis in
which the underlying waves are assumed to be time-invariant on the spectrum-resolved temporal scale.
Spectral analyses cannot deal with time-variant waves. For instance, if an enhancing SRW is superposed
to an identical SRW but weakening with a different zonal phase, the superposition will be detected as a
traveling wave in spectral analyses. Such a superposition of time-variant waves provides a third explanation
for the m = 2 estimation listed in Table 1 as well as for RNM-like structures observed with a wide range of m
(e.g., comparable amplitudes of six wave numbers, m = +3, +2, 1, at the period 16 days; cf. John & Kumar,
2016; Kleinknecht et al., 2014; McDonald et al., 2011). Therefore, RNM-like structures with non-RNM m
might not be signatures of waves.

The second limitation is that our approach uses only two stations, whereas RNMs are global-scale transverse
waves traveling presumptively in the zonal direction. In the real atmosphere, RNMs might be distorted and
not travel exactly zonally and therefor pass only one station but miss the other. This limitation implicates
that our cross-wavelet spectra might not completely capture all RNM signatures. The wavelet spectral peaks
occurring at only one station might also be signatures of RNMs. For example, in Figures 2b, 5a, and 5b,
there are many peaks at the period 20-33 days, which are potentially signatures of the RNM (1, 4), namely,
the 25-day wave (cf. Sassi et al., 2012), although our approach failed in identifying their wave number. In
comparison with 5-, 10-, or 16-day waves, the 25-day wave has attracted less interest (e.g., Branstator, 1987;
Kushnir, 1987; Zhao et al., 2019).

4.3. Association Between RNMs and SSWs

Although SRWs are well known for triggering SSWs (e.g., Matsuno, 1971), there is no consensus on the rela-
tions between RNMs and SSWs. Sassi et al. (2012) found no evidence to associate RNMs with SSW in their
analysis of NOGAPS-ALPHA products for the boreal winters of 2005, 2006, 2008, and 2009. On the con-
trary, the more popular opinion is that there are associations between RNMs and SSWs: RNMs occur either
before or after the SSW onsets. Pancheva et al. (2008) found that during SSW 2003-2004, the MLT was dom-
inated by the 16-day wave before the onset but by waves at longer periods after the onset, through analyzing
observations from eight radar stations, UKMO assimilated winds, and SABER temperatures. However, Stray
et al. (2015) reported that it is after, rather than before, the onset when mesospheric RW-like oscillations
with zonal wave number 1 structure were enhanced, in a statistic study of seven SSWs between 2000 and
2008 using on meridian meteor winds from eight SuperDARN radars. Recently, Yamazaki and Matthias
(2019) noted that the relationship between RNMs and SSW depends on the seasonal timing of the SSW using
measurements from the Aura MLS during 2004-2018.

The four winters explored in Figures 2 and 4 comprise four SSWs (see Table 1) among which SSW 2012
is minor while the other three are major (e.g., Butler et al., 2015). All the major SSWs are accompanied
by at least one predominant RNM signature in our wave number diagnosis, and all of the predominant
RNM signatures occurred in the major SSWs. Therefore, our results suggest that there is an association
between RNMs and major SSWs. However, in Table 1 the occurrences of the 10- and 16-day waves are dif-
ferent from one SSW to another. We argue that to investigate the year-to-year variability of the occurrences
entails more SSWs. After SSW onsets, peaks around 10, 16, and 28 days often occur in the individual wavelet
spectra (Figures 2a, 2b, 4a, and 4b), but not in the cross-wavelet spectra (Figures 2c and 4c). These oscil-
lations might also be signatures of RNMs as discussed in section 4.2. RNM-like waves have been observed
after the onsets of SSWs 2006 and 2012 (e.g., Chandran et al., 2013; Manney et al., 2008; Siskind et al.,
2010) and were termed as “secondary waves” to be distinguished from those existing prior to SSWs. The sec-
ondary RNMs were suggested to arise locally in the mesosphere (e.g., Chandran et al., 2013), unlike RNMs
existing prior to SSWs which occur in both the stratosphere and mesosphere (e.g., Pancheva et al., 2008).
The underlying mechanism is still under debate. Potential hypotheses include zonally asymmetric gravity
wave breaking (Manney et al., 2008), a combination of forcing from below and in situ instability near the
stratopause (Siskind et al., 2010), and planetary wave amplification by stimulated tidal decay (PASTIDE
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He et al., 2017). In PASTIDE, solar migrating semidiurnal tide transport energy to RNMs by nonlinear
interaction with RNMs.

5. Summary

Mesospheric wind detected by two zonally separated radars at about 79°N latitude between 2009 and 2013 is
used to explore RNMs through PDT. Wavelet spectra of the wind illustrate that oscillations at the periods of
10 and 16 days often occur in winters. Butterworth filtering demonstrates that the oscillations last for a few
whole-circle periods. The six most significant oscillations occur around onsets of SSWs 2009, 2010, and 2013.
The phase difference analysis suggests that five of the six are characterized by m = 1 (westward traveling
zonal wave number 1), whereas the sixth is characterized by m = 2. We explain the m = 1 oscillations as
signatures of the RNMs, 10- and 16-day waves, and discuss three possibilities for the m = 2. The possibilities
are (1) a normal mode, (2) secondary waves of nonlinear interactions of RNMs and SRW, and (3) mixing or
transition of multi waves. In addition, we also explored similar observations between 2012 and 2016 collected
by two radars at about 54°N for comparison. Signatures of 10- and 16-day waves at 54°N are significantly
weaker than those at 79°N. At 54°N, a significant spectral peak at the period of 5-7 days occurs at the onset
of SSW 2013. Our diagnoses illustrate the peak associated with m =1, suggesting the underlying wave is the
RNM, 5-day wave. The occurrences of the above RNMs suggest associations between RNMs and SSWs.

Appendix A: Phase Differencing Technique

A zonally propagating wave at frequency f = /2z and zonal wave number m could be represented as
(A, t) = fiye@+mY where 1 denotes the longitude. For two longitude 4, and A,, there is a time-independent
function,

DAy, Ay) 1= W (A, DAy, 1) = ||~ h) (A1)

Here, &i* represents the complex conjugate of ii. Therefore,

arg {p} + 2Nz = m(4, — 4;) (A2)

Here, arg {p} in the range from —z to z excluding — itself denotes the argument of p, and N € Z is an
integer, representing the whole-cycle ambiguity. Assume p has an observational estimation p. Then, under
some constraints of N and potentially m, m could be determined through an optimization,

M = argmin | arg {p} + 2Nz — m(4, — A,)| (A3)
N.m

To estimate p observationally entails the so-called single-wave assumption, namely, only one wave exists
within the resolved ranges of frequency and time. Under this assumption, p could be estimated through
spectral analyses (e.g., cross-wavelet analysis and least squares spectral analysis, respectively He, Chau, Hall,
etal., 2018, 2020). The current work uses cross-wavelet analyses (e.g., Grinsted et al., 2004; He, Chau, Stober,
et al., 2018). Besides, to deal with the whole-cycle ambiguity in the optimization of equation (A3), a con-
straint N = 0 was broadly used, either specified explicitly (e.g., Walker et al., 2004) or used implicitly (e.g.,
Pancheva et al., 2008). The constraint implies that the underlying wave's wavelength is assumed to be longer
than twice the radar spacing and therefore was called the long-wave assumption. The N = 0 constraint could
be relaxed, for example, according to prior knowledge about the underlying waves (e.g., He, Chau, Stober,
et al., 2018) or using additional stations (e.g., He et al., 2020). For instance, He, Chau, Stober, et al. (2018)
relaxed N = 0 to N € {-1,0,1} by implementing a second constraint that m € Z is an integer accord-
ing to prior knowledge. Similarly, in diagnosing RW-like oscillations, the current study uses the constraints
of N € {-1,0,1} and m € Z according to the prior knowledge from existing publications on RWs (e.g.,
Kleinknecht et al., 2014; Madden, 2007; Sassi et al., 2012).

Visualizations of the optimization of equation (A3) could be found in Figure 2 in He, Chau, Stober, et al.
(2018) and Figure 3 in He, Chau, Hall, et al. (2018). These figures present the visualizations in complex
planes, in which one radial solid line denotes the phase difference m(4, — 4,) associated with one candidate
of m, while each arrow denotes one f) The task of the optimization is, for each arrow, to search a line from
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the m candidates so that the cross angle between the arrow and the line minimizes. Readers are referred to
the relevant discussions in He, Chau, Stober, et al. (2018) and He, Chau, Hall, et al. (2018) for details.
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