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Abstract Evaporation—a key process for water exchange between soil and atmosphere—is controlled by
internal water fluxes and surface vapor fluxes. Recent studies demonstrated that the dynamics of the
water flow in corners determine the time behavior of the evaporation rate. The internal water flux of the
porous media is often described by capillary flow assuming complete wetting. Particularly, the crucial
influence of partial wetting, that is, the nonlinear contact angle dependency of the capillary flow has been
neglected so far. The focus of the paper is to demonstrate that SiO2‐surfaces can exhibit contact angles of
about 40°. This reduces the internal capillary flow by 1 order of magnitude compared to complete wetting.
First, we derived the contact angle by inverse modeling.We conducted a series of evaporation experiments in
a 2‐D square lattice microstructure connected by lognormal distributed throats. We used an explicit
analytical power series solution of the single square capillary model. A contact angle of 38° ± 1° was derived.
Second, we directly measured the contact angle of the Si‐SiO2 wafer using the Drop Shape Analyzer Krüss
100 and obtained an averaged contact angle of 42° ± 2°. The results support the single square capillary
model as an appropriate model for the description of the evaporation process in an ideal square capillary.

1. Introduction

Evaporation is a key process for water exchange between soil and atmosphere. This complex multiphase
process is determined by the diffusive transport through the soil gas phase and the mass transfer boundary
layer as well as the liquid water transport through the porous media. The evaporation rate exhibits a
two‐stage behavior that is often experimentally observed under low atmospheric demand (<5 mm/day;
Shahraeeni et al., 2012). Stage 1 is characterized by a constant evaporation rate and stage 2 by a falling
evaporation rate (Brutsaert & Chen, 1995). During stage 1, enough water (driven by the atmospheric
demand/atmospheric conditions) is transported from the drying front (interface between saturated and
unsaturated/drying soil) to the soil surface via a continuous water phase cluster, that is, through pores which
are hydraulically connected.

The main water transport mechanism is capillary flow (capillary pumping), where the pore structure and
microstructure of the solid surface (inner surface roughness) determine the water flow from the pore corners
(corner flow; Figure 1) or from the surface cavities (dimension of about 10 μm; thick‐film flow) to the drying
front (Blunt & Scher, 1995; Hashemi et al., 1999; Lehmann et al., 2008; Sahimi, 2011). The complex interplay
of both flow types controls the kinetic interphase mass transfer near the soil surface, where the driving vapor
concentration gradient is determined by atmospheric conditions (wind velocity v∞, temperature T, relative
humidity RH = f (pH2O), pH2O—water vapor pressure), which are usually expressed by one lumped
parameter—the viscous boundary layer thickness δ = f(v∞,T,RH) (Figure 1; Schlichting & Gersten, 2017;
Geistlinger & Leuther, 2018; Peters et al., 2015; Lehmann et al., 2008; Yiotis et al., 2007; Prat, 2002).

Water flows in (i) pore channels (denoted as duct or bulk flow), (ii) corners (corner flow), (iii) along surface
cavities/capillaries (thick‐film flow), and (iv) within thin water films at smooth pore walls (thin‐film flow).
The hierarchy of the flow sequence is determined by the water pressure gradients, given by the difference of
water pressure of the bulk phase and the negative capillary pressure at the flow front (Lenormand &
Zarcone, 1984). For a water‐wet porous medium thin‐film flow starts first (i.e., a SiO2 surface is always
covered by a thin water film; Kibbey, 2013) followed by thick‐film flow, corner flow, and bulk flow
(Geistlinger & Mohamadian, 2015). It has been shown that the contribution of thin‐film flow to
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evaporation from rectangular capillaries is negligible compared to diffusion and corner flow (Eijkel et al.,
2005). Note that the term thick‐film flow is often used to describe corner flow (Lehmann et al., 2008; Yiotis
et al., 2012a).

The evaporation process has been analyzed in numerous experimental (Eijkel et al., 2005; Geistlinger &
Leuther, 2018; Yiotis et al., 2012b, and references therein) and theoretical studies at the pore scale
(Chauvet et al., 2009; Laurindo & Prat, 1996; Prat, 2002; Yiotis et al., 2012a) and representative elementary
volume scale (Lehmann et al., 2008; Shahraeeni et al., 2012).

1.1. Modeling

There are two groups of evaporation models (i) pore network models (Prat, 2002, 2011) and (ii) semipheno-
menological models which couples the pore scale to the representative elementary volume scale under cer-
tain assumptions. The focus of this paper is on semiphenomenological models. The advantage of these
models is that macroscopic, effective properties of the porous media can be measured (retention curve, unsa-
turated hydraulic conductivity, and evaporation rate) using the multistep outflow method (Durner & Iden,
2011; Vogel et al., 2008) and the HYPROP method (Schindler et al., 2010). This allows to study the complex
interplay and the impact of certain pore scale properties on the interphase mass transfer near the surface,
that is, on the evaporation rate.

Two important semiphenomenological models are shown in Figure 1: (a) the capillary bundle model of eva-
poration (isolated pore evaporation [IPE] model) that is based on the pore size distribution (PSD) of the por-
ous medium and (b) the single square capillary model (SSC model) of evaporation that is based on corner
flow driven by the high capillary pressure of water‐filled corners inside a rectangular geometry of a water‐
wet pore throat or pore body.

IPE model (Figure 1a). The IPE model couples the 2‐D surface model of evaporation (Suzuki &Maeda, 1968)
to the internal water flux neglecting viscous forces. The 2‐D surface model of evaporation captures two key
features of an evaporating water‐saturated porous surface: (1) the discrete nature of the vaporization surface
consisting of numerous isolated pores linked by capillarity with internal liquid reservoir (therefore IPE
model) and (2) the nonlinear vapor diffusive fluxes from isolated pores across air viscous sublayer to the
atmosphere. The mass transfer through the diffusive boundary layer, composed the individual mass fluxes
of the isolated pores, is highly nonlinear. Interference between neighboring active pores results in a reduc-
tion of the diffusive flux from each pore compared to isolated pores, whereas the total flux from the entire

Figure 1. Semiphenomenological models of evaporation: (a) the capillary bundle model is based on capillary pumping
(qw) between active pores represented by the small r1 capillary and inactive pores represented by the large r2 capillary.
Evaporation lengths (drying front depths) L and Lc are shown at two different times t and tc, where Lc is the characteristic
length just before the meniscus recedes into the small capillary (= detachment time; K(θ)—hydraulic conductivity of the
porous medium represented by the orange block, e(t)—evaporation rate, δ—thickness of the viscous boundary layer,
capillary heights hc1 and hc2, gravitational length LG = hc1 ‐ hc2, and PSD—pore size distribution). (b) The single square
capillary model is based on the steady state between corner flow qc within a square capillary (width d0) and diffusion flow
qdiff (= evaporation rate density). The capillary is initially saturated and after a critical time tc (length of stage 1) the tips of
the corner flow detach from the surface and recede into the capillary. At this critical time the “spanning” water cluster
which connects the surface with duct flow region detaches from the surface. The x‐extension of the spanning water cluster
is given by the averaged depth of the percolation front 〈xp〉(tc) shown in Figure 1b. The corner flow region (sometime
denoted as film region) extends from the percolation front xp(y) (duct flow front) and the evaporation front xi(y) (corner
flow front).
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surface increases, since diffusion in lateral direction is suppressed by the “communicating” boundary con-
dition (Lord Rayleigh, 1945). During evaporation the density of active pores decreases, which weakens lat-
eral interference between pores. The diffusive flux of an individual active pore increases, whereas the
total flux from the entire surface decreases. This nonlinearity of the evaporation rate is due to the depen-
dence of the mass transfer rate constant on the ratio of boundary layer thickness and active pore size. The
internal water flux of the porous media is realized by hydraulic connected region of the PSD. The PSD
can be derived from the retention curve (capillary pressure‐saturation relationship; Lehmann et al., 2008)
or measured directly by X‐ray micro‐tomography and image analyses (Geistlinger & Leuther, 2018). The
IPE model is based on the hypothesis that the hydraulically active 3‐D pore network can be approximated
by a bundle of active and inactive capillaries and that its size distribution can be described by the PSD of
the porous medium. Based on the coupling of the 2‐D surface model of evaporation (Suzuki & Maeda,
1968) and the internal water flux, the IPE model describes the whole stage 1 period of evaporation. We pre-
viously tested the IPE model for real soils using a complete set of hydraulic functions measured by the
HYPROP method and found reasonable agreement (Geistlinger & Leuther, 2018). The critical point was
to estimate the hydraulic connected region of the PSD.

SSC model (Figure 1b). A limitation of the IPE model is that it is based on the curvature of the capillary
menisci, that is, only duct flow is considered and corner flow is neglected. Previous work by Lenormand
and Zarcone (1984) solved the corner flow problem using the hydraulic diameter approximation. Dong
and Chatzis (1995) solved the corner flow problem for a general rectangular geometry (corner angle: 0 <
α < 90°) and for partial wetting behavior (contact angle: 0 < θ < 90°). Based on this work, Yiotis et al.
(2012a) coupled corner flow to gaseous diffusion flow and solved the quasi steady state problem (SSCmodel),
that is, corner flow qc equalize diffusion flow qdiff at the mean evaporation front 〈xi〉 (Figure 1b). Note that
the SSC model is based on the mean pore size defined as mean capillary width d0 (Figure 1b), whereas the
IPE model is based on the whole PSD (insert in Figure 1a). Starting with a complete water‐filled capillary,
evaporation needs some time to empty the capillary. The time needed until the water front (hydraulically
connected cluster) detaches from the surface determines the detachment time tc and the length of the stage
1 period. The SSC model describes the evaporation rate also during the stage 2 period, that is, gaseous diffu-
sion flow from the receding mean evaporation front.

Hypotheses of the SSC model. The quasi steady state between corner flow and gaseous diffusion flow deter-
mines evaporation during stage 1 and stage 2. Themean pore size defines the effective capillary of the porous
media, and the detachment time determines the length of stage 1 evaporation.

An experimental test of the SSC model was conducted by Yiotis et al. (2012b) using glass beads packs.
However, the test remained inconclusive in several points:

1. Rectangular geometry. That is, how to map the highly irregular shape of pore channels, which consist of
convex‐ and concave‐curved surface areas to a rectangular geometry of a square capillary.

2. Complete wetting. The theoretical treatment assumes unrealistic complete wetting (zero contact angle)
for the glass beads (the fluid was pentane and not water; the contact angle of pentane on glass is about
30°; Li et al., 2015). It has been shown that contact angles on glass surfaces using standard cleaning meth-
ods lie between 15° and 30° (Iglauer et al., 2014) and that heterogeneous wetting properties can have a
significant influence on capillary trapping (Geistlinger & Ataei‐Dadavi, 2015).

3. Roundness factor. It is not clear why the irregularly shaped pore channels, which are often approximated
by triangular cross sections (Blunt, 2001), should exhibit round corners. To obtain reasonable agreement
between experiment and theory, Yiotis et al. (2012b) used a “roundness factor” as a fitting factor.
However, it should be noted that a finite roundness factor will weaken the capillary pressure of the cor-
ners and has therefore the same influence as a finite contact angle. For instance, roundness factors of 0.4
and 0.7 (definition after Dong & Chatzis, 1995) correspond to contact angles of sharp corners of 12° and
63°, where the cross section of the wetting phase inside the round corner and sharp corner is equal.

The main objective of this paper is to test the fundamental hypothesis of the SSC model by micromodel
experiments using Si‐microfabricated micromodels with lognormal‐distributed “ideal” square channels.
An interval‐based inductively coupled plasma‐deep reactive ion etching (ICP‐DRIE) technology (Küchler
et al., 2003) for microfabrication was applied that results in high edge steepness and a true mapping of the
lattice structure with depth (2° deviation from the vertical line).
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A second objective is to derive the SSC model consequently as a function of the contact angle (θ) and tem-
perature (T) to study the contact angle and temperature dependence on the evaporation process.
Particularly, the study focuses on the impact of partial wetting on the evaporation flux at the surface of a por-
ous structure, for example, the pore network of a soil column.

2. Materials and Methods
2.1. Micromodel Construction/Fabrication

Experiments were conducted in a 2‐D square lattice microstructure (pore network) containing 80 × 80 equi-
distant sites (x‐y‐z dimensions: 80 mm × 80 mm × 0.3 mm) connected by lognormal distributed throats
(Matlab‐generator with a throat width dthroat = 400 ± 62 μm).

A section of the square lattice is shown in Figure 2b. Lattice sites are also called pores, and the half throat
width is denoted as throat radius according to Yiotis et al. (2012a). The open side of the microstructure
(red line in Figure 2a) corresponds to the top side in the figures of the paper.

A microfabrication method involving photolithography, ICP‐DRIE, and anodic bonding was used to fabri-
cate the micromodel in a silicon wafer. An interval‐based ICP‐DRIE technology (Küchler et al., 2003; Zue
et al., 2013) was applied for anisotropic etching. This resulted in high edge steepness and a true mapping
of the lattice structure with depth (Figure 2b), that is, only minimal underetching is produced (1.2° deviation
from the vertical line and maximal deviation from the horizontal bottom line of 10 μm). This 1.2° deviation
was achieved for a ninefold deeper microstructure compared to the microstructure produced by Zue et al.
(2013). Standard methods, like isotropic plasma etching and chemical etching (Vorhauer et al., 2015), lead
to underetching and corner rounding effects, which have to be taken into account for the calculation of
the capillary corner flow (roundness factor; Dong & Chatzis, 1995; Yiotis et al., 2012a).

Briefly, the microfabrication sequence is described as follows: a chromium‐coated soda lime photomask of 7
in. size was patterned based on the Matlab‐generated data. Next, a cleaned p‐type silicon wafer with (100)
orientation, 150‐mm diameter, 675 μm thick, was covered with a 2‐μm‐thick oxide film by wet thermal oxi-
dation and subsequently coated with approximately 8‐μm‐thick resist (AZ9260). The mask pattern was
transferred from the photomask onto the resist using contact lithography and then transferred into the oxide
layer by plasma etching on an SPTS DSi Rapier ICP etcher.

The patterned film stack served as a hard mask for the subsequent deep anisotropic silicon etch. The silicon
trenches were etched to a nominal depth of 300 μm by DRIE carried out on the same DSi Rapier ICP etch
tool. After DRIE, remaining resist was removed by oxygen plasma ashing and the oxide layer by buffered
oxide etching. The structured silicon wafer was cleaned and thermally oxidized by dry oxidation to form a
50‐nm‐thin silicon oxide layer onto the silicon surface to ensure a similar wetting behavior like siliceous sur-
faces. The structured wafer was then covered by a borosilicate glass wafer (Schott Borofloat 33, 150‐mm dia-
meter, 1 mm thick) by anodic bonding (400 °C, 600–800 V). One side of the glass wafer was cut such that it
fitted the open side of the microstructure. This wafer stack was sawn to fit into a 144 × 100‐mm2 rectangle.

Figure 2. (a) Schematic of the micromodel configuration. (b) Rectangular‐shaped geometry fabricated using silicon deep
reactive ion etching (Küchler et al., 2003).
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The schematic of the micromodel is shown in Figure 2a and the rectangu-
lar corner shape of the lattice structure in Figure 2b.

2.2. Contact Angle Measurement

The contact angles were measured at the left and right sides of a droplet of
deionized water both for the Si‐SiO2‐wafer and for the Borofloat cover
glass using the Drop Shape Analyzer Krüss DSA 100. The Si‐SiO2‐wafer
was treated as the micromodel, that is, (i) ICP‐DRIE‐etching of the Si‐
wafer and (ii) deposition of a 50‐nm thermal SiO2 layer. The experimental
values are listed in Table 1. The mean contact angle was 48 ± 2° (Si‐SiO2‐

wafer) and is 23 ± 2° (Borofloat‐cover glass).

2.3. Methodology and Experimental Setup

We conducted three vertical evaporation experiments at three different
temperatures: 28.3 °C (Experiment 1), 41.5 °C (Experiment 2), and 60.8
°C (Experiment 3) and one horizontal experiment (Experiment 4) at
20.3 °C. The ambient boundary conditions and the experimental results

are listed in Table 2. Prior to each experiment, the micromodel was saturated with deionized water under
vacuum for 2 hr using an evacuator. During the evaporation/drying process, the micromodel was positioned
vertically (open boundary on top) or horizontally, and the mass of the micromodel and heating plate was
measured by a high‐precision digital balance (Sartorius Secura 1103‐1S, x ± 0.001g) and recorded every 10
s by DasyLab software (version DasyLab 2016).

Themicromodel was mounted on a heating metal plate (meandering heaters at the backside), which ensures
a homogeneous temperature distribution over the micromodel with a spatial deviation (midpoint to bound-
ary point) of 0.5 °C for Exp. 1 and Exp. 4, 1.6 °C for Exp. 2, and 4.2 °C for Exp. 3. The temperature control
works with a 1° tolerance. The surface temperature was measured with an infrared beam device (Trotec
BP25). The relative humidity in the lab during experiments was recorded every 5–10 min by a data logger
(dataTaker DT80 series2). The temperature difference between the micromodel and the heating plate was
taken into account. Images of the fluid distribution were monitored by a high‐resolution digital single‐lens
reflex camera (Canon 5‐DMark IV, lens: Canon EF 100mm F2.8L Marco IS USM) with a resolution of 6,720
× 4,480 pixels at process‐dependent time intervals (early stage 1: 1 min; late stage 2: 30 min). To enhance the
contrast of different fluidic phases, a circular cold lighting source was applied in front of the micromodel. A
miniphotographic studio (white walls around the micromodel; see Figure 3) was used to produce homoge-
neous light conditions and to minimize air convection in the lab.

2.4. Image Processing

The PSD and the fluid patterns were analyzed using Fiji/ImageJ (Schindelin et al., 2012).
2.4.1. PSD
The PSD of the micromodel was analyzed using the maximum‐inscribed sphere method implemented in
the ImageJ plugin “Local thickness.” The PSD is shown in Figure 4 (blue dots). The best fit curve (lognor-
mal distribution, red curve) yields a mean pore radius of 197 μm with a standard deviation of 55 μm. Note

Table 1
Experimental Contact Angles in Degree (Left and Right Sides of the Deionized
Water Droplet) for the Si‐SiO2‐Wafer and for the Borofloat Cover Glass

Exp.

Si‐SiO2 Borofloat glass

Left Right Left Right

1 47.9 47.9 24.8 22.7
2 43.9 44.5 18.9 23.4
3 47.4 45.6 24.9 19.9
4 49.0 48.4 22.0 22.0
5 49.8 50.5 22.6 21.9
6 48.9 49.1 26.2 24.7
7 47.7 48.5 19.5 20.8
8 45.2 45.8 22.4 22.7
9 49.9 48.9 23.9 22.8
10 50.8 49.5 21.3 23.5
Mean 48.0 22.5

Table 2
Boundary Conditions of the Evaporation Experiments and Characteristic Parameters of the Corner Flow Region: Critical
Detachment Time tc and Width of the Spanning Water Cluster xp (= Mean Percolation Front at tc)

Exp. Bo T (°C) RH (‐) tc (s) Xp (tc) (mm) θ (tc) (°) θ (xp) (°) jdiff‐IP (g/m2/s) δ0 (mm)

1 >0 28 42 2,826 3.9 39.4 39.3 2.0 1.5
2 >0 42 44 1,386 4.5 36.0 37.5 4.7 1.4
3 >0 61 40 468 4.2 36.5 36.7 12.8 2.0
4 to horizontal case =0 20 37 2,946 4.6 38.9 38.6 2.2 1.0

Note. Notation: Bo—bond number, T—temperature in degrees Celsius, (RH)—relative humidity, θ (tc)—contact angle
derived from tc, θ (xp)—contact angle derived from xp, jdiff, IP—evaporation flux density derived from image processing
(IP), δ0—boundary layer thickness defined by the molecular vapor diffusion coefficient.
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that the throat distribution is characterized by a mean throat radius of 200 μm and a standard deviation of
31 μm. Since the pores located at the nodes (lattice sites) are always larger than the four neighboring
throats, the PSD exhibits a broader maximum and is shifted to larger pore sizes causing a higher standard
deviation.
2.4.2. Fluid Pattern Analysis
1. Image registration. Prior to image acquisition during the evaporation process, a grains mask image was

taken in dry state to conduct some image calculation. The registration plugin “TurboReg” was applied
to align the grain image with the fluid pattern image.

2. Brightness normalization. The fluid pattern image exhibited a radial
illumination drift because of the circular lighting source. To normalize
the brightness, the mean gray value was subtracted as a function of
radius from the image using the “Math” function yielding a corrected
image with homogenous illumination.

3. Phase separation. Lights irradiating at grains edges reflected back
along its original way in dry pores and water saturated pores. Thus,
bright lines along grain walls in dry pores were observed in the raw
RGB image. In film pores the slope of corner flow eliminates this light
artifact. After the brightness was normalized, a binary image was
computed by the autothreshold method “Otsu.” Subsequently, wall
artifacts were removed by applying the “Dilate”‐“Fill Holes” opera-
tions twice followed by two times the “Erode” operation. The
“Median” filter was applied followed by an “Area opening” with the
MorphoLibJ plugin (Legland et al., 2016) to eliminate
segmentation noise.

4. Fluid pattern analysis. Water saturation was obtained by the “Analyze
Particles” tool summarizing the total pixels of water clusters. The func-
tions “getDimensions” and “getStatistics” yielded the coordinates of
each pixel on the percolation front/evaporation front.

Figure 3. Experimental setup with camera, balance, heating plate, T‐controller, miniphotographic studio, and DasyLab
Notebook data recording.

Figure 4. Pore size distribution (blue dots) of the micromodel and best fit
(red curve, lognormal distribution). The black curve shows the throat size
distribution. The inset shows the spatial distribution of pore sizes for a 4 × 4
lattice section (orange: large radius, purple: small). PSD = pore size
distribution.
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3. Theoretical Background: 1‐D Analytical Theory of the SSC Model

In this section we derive analytical expressions for the time‐dependent mass loss, the evaporation front, and
the percolation front. This will be used for the comparison to the experimental results in the next section.

Evaporation from a saturated porous media is controlled by capillary flows from large to small capillaries.
Hence, the corner flow and water menisci Σ across the pore channel occur first in large capillaries. The basic
assumptions of the SSC model are that (i) the gas‐water interface near the meniscus Σ is stationary and (ii)
that the curvature along the x direction can be neglected when compared to the curvature in y direction (rec-
tangular to the x direction). Hence, the capillary pressure pc of the water meniscus at x = −xΣ must be equal
to the capillary pressure of the gas‐water interface at x = −xp (Figure 5a)

pc −xΣð Þ ¼ σgw·H rx θð Þ; ry θð Þ� � ¼ pc −xp
� �

≅
σgw

ry −xp
� � ; (1)

where H denotes the curvature and rx and ry the radii in principal directions x and y, respectively, θ the con-
tact angle, and σgw (N/m) the interfacial tension of the gas‐water interface. The radius ry is (Dong & Chatzis,
1995; Legait, 1983)

ry x1ð Þ≡rp ¼ r0F
−1ð Þ θð Þ; x1 ¼ −xp; (2a)

with

F θð Þ ¼ θ− π
4 þ cos2θ− sinθ cosθ

cosθ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiπ
4 −θþ sinθ cosθ

p ; (2b)

where r0 is half of the mean capillary width (in the following denoted as radius). Equation (2a) determines
the validity range of the SSC model, that is, the following discussion considers only the range x ≥ −xp. The θ
dependence of the corner flow Qwc (m

3/s; shown by the blue arrows in Figure 5a) is determined by two fac-
tors: (i) a reduced cross section A θð Þ ¼ C* θð Þr2y , (m2) shown in Figure 5b and (ii) a higher flow resistance
β(θ) (‐)

Qwc x; t; θð Þ ¼ −
C* θð Þ
μwβ θð Þ·r

4
y x; tð Þ ∂pw

∂x
þ ρwg

� �
¼

¼ −
σgwr3p

3μwα θð Þ·
∂
∂x

ρ3 x; tf g−Bo·Iðx; x2Þ
� �

;

(3a)

with the integral

Figure 5. (a) Conceptual evaporationmodel of a square capillary (width d0). Shown is the critical transition point (stage 1/
stage 2 transition), during which the tips of the corner flow detach from the surface. The corner water flow Qwc (four blue
arrows) within a small volume element dV= A · dx equalizes the water vapor flux Qev (evaporation rate, red arrow) across
the surface x = 0 (mean evaporation front). Notations: Σ—water meniscus at −xΣ, mean percolation front at −xp, surface
at x = 0, δ—viscous boundary layer thickness. (b) Contact angle (θ) dependence of the cross section A(θ) (light blue area)
and of the curvature of gas‐water interface Igw (θ= 0: solid line, (θ= 30: dashed line). ry denotes the radius of curvature for
θ = 0, which is determined by the Laplace equation (7a).
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I x; x2ð Þ ¼ 3
rp

∫
x2
x dexρ4 ex ; tð Þ: (3b)

μw (Pa·s) denotes the dynamic viscosity of the water phase,α θð Þ ¼ β θð Þ
C* θð Þ the

rescaled flow resistance (see Figure 6), ρ = ry/rp the normalized radius of
curvature, and Bo ¼ ρwgr

2
p=σgw the bond number. Typical bond numbers

for the evaporation experiments are in the order of 10−3. The θ‐dependent
constant C* is given by (Dong & Chatzis, 1995)

C* θð Þ ¼ 4
cos θcos π

4 þ θ
� �

sin π
4

� � −
π
4
−θ

	 

: (4)

As the evaporation process is a slow drainage process (capillary number
Ca = μwuw/σgw ≅ 4 × 10−8 for Exp. 3, uw—velocity of the receding perco-
lation front), the steady state between water flow and averaged evapora-
tion flux 〈Qev〉 is always established. The mass balance over a small
volume dV = A · dx (Figure 5a) at the evaporation front x = x2 ≡ −xi is

∂mw

∂t
¼ 0 ¼ −ρw

∂Qwc

∂x
·dx− Qevh i·dx; (5)

where mw denotes the water mass of the liquid phase in the volume element dV and ρw the water density.
The averaged evaporation flux is given by first Fick's law

Qevh i ¼ Ag jdiffx

� �
≅−AgD

eff
g

ΔC
Δx

; (6a)

where Ag denotes the cross section of the gas phase at the evaporation front. We approximate Agby A0
g ¼ d20,

because the water saturation near the surface (only four small tips of the corner flow) is approximately 0.

jdiffx

� �
(kg/m2/s) denotes the mass evaporation rate density and Deff

g (m2/s) the effective gas phase diffusion

coefficient of the water molecules inside the porous media. For Deff
g the Millington‐Quirk tortuosity model

(Millington & Quirk, 1961) is used, that is, Deff
g ¼ D0

gτ Sg
� �

(D0
g—gas phase diffusion coefficient of the water

molecules). The tortuosity τ = (ϕ)1/3(1 − Sg)
7/3 (ϕ—porosity, Sg—gas saturation). The temperature depen-

dence of the molecular diffusion coefficient is D0
g Tð Þ ¼ 2:31×10−5 T

T0

	 
1:81
m2=s (T in K; Shahraeeni et al.,

2012). ΔC(x)= C3–C2 is the difference of the vapor concentrations (kg/m
3) x3= δ (boundary layer thickness)

and x2 (mean evaporation front). The positive x direction is parallel to the normal surface vector (Figure 5).
The steady‐state evaporation rate for stage 1 and stage 2 is determined by the following concentration
gradients:

stage 1 : t≤tc : x2 ¼ 0; x3 ¼ δ;C2 ¼ Cs;C3 ¼ Ca →
ΔC
Δx

¼ Ca−Cs

δ
; (6b)

stage 2 : t>tc : x2<0; x3 ¼ δ;C2 ¼ Cs;C3 ¼ Ca →
ΔC
Δx

¼ Ca−Cs

δ−x2
; (6c)

where Ca denotes the ambient vapor concentration at viscous boundary layer thickness δ and Cs the satu-
rated vapor concentration (kg/m3). Note that the mass evaporation rate density jdiffx

� �
(kg/m2/s) is related

to volumetric evaporation rate density _e by the factor ρw (often denoted as evaporation rate, see Lehmann
et al., 2008).

Inserting equations (3a) and (6a) into equation (5) yields

d2

dx2
ϕ xð Þ ¼ b θ;Tð Þ; (7a)

where the new variable ϕ(x) is defined as

Figure 6. Contact angle dependence of the corner flow caused by a reduced
cross section and an increased flow resistance (inset). The red curve presents
the best fit to the data points (blue dots). Those points are taken from
Ransohoff and Radke (1988, Table 4) for the case of a square capillary (cor-
ner angle = 90°) and a free water surface (reduced viscosity = 0). The com-
bined effect is expressed by rescaled flow resistance) α(θ) = β(θ)/C*(θ).
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ϕ xð Þ ¼ ρ3 xð Þ−Bo·I x; x2ð Þ (7b)

The θ‐ and T‐dependent constant b (right side equation (7a)) is the key variable of the SSC model

b θ;Tð Þ ¼ 3
r3p

νw Tð Þα θð Þ
σgw Tð Þ · Qevh i Tð Þ; (7c)

where νw denotes kinematic viscosity (m2/s) and T the temperature. Note that the kinematic viscosity and
the surface tension exhibit a strong T dependence in the temperature range of interest, that is, between 20
and 60 °C. Inside the capillary (inside the porous medium), b(θ) is zero (ΔC = 0) and ϕ(x) is determined
by the Laplace equation

Δxϕ xð Þ ¼ 0 (8a)

with the general solution

ϕ xð Þ ¼ b x2−xð Þ: (8b)

The constant b is determined by the flux continuity boundary condition at the evaporation front x2

Qwc ¼ Qevh i; (9)

which yields b = b(θ,T).

Before we derive an explicit solution of the vertical case (Bo ≠ 0), it is instructive to discuss the simpler hor-
izontal case (Bo = 0). The steady‐state solution ϕ(x) (equation (8b)) and its relation to the evaporation rate
(equation (9)) is schematically shown in Figure 7. The concentration gradient shown on the right determines
the slope of ϕ(x), that is, the θ‐ and T‐dependent constant b(θ,T) (equation (7c)). With increasing time the
evaporation front x2(tc + Δt) recedes into the porous medium and causes a weaker concentration gradient.
The linear solution is “shifted” by Δx1 and causes a change of the percolation front Δx1. It is obvious that
the slope of the linear solution b(θ,T) gives the inverse of x2(t)–x1(t) (equation (12a)). Note that a small
change of the evaporation front Δx2 leads to a large change of the percolation front Δx1, that is, the ratio
Δx1/Δx2 > 1 and increases with time. Physically, the decreasing evaporation flux leads to a decreasing corner

flow (flux condition; decreasing viscous forces) which is proportional to dϕ
dx; hence, the slope of ϕ decreases as

shown by the blue line in Figure 7 (left diagram). The white area above the red line (ϕ(x) diagram) deter-
mines the evaporated mass Δmw at tc and the blue area the increase of Δmw with time step Δt.

Figure 7. Steady‐state solution of the single square capillarymodel ϕ(x) (Bo= 0, horizontal case) and corresponding water
vapor concentration C(x) at two different times: (i) at detachment time tc (red lines) and (ii) at tc + Δt (blue lines). The
dashed black line in the left diagram represents a hypothetical solution of a tortuous corner flow path satisfying the correct
boundary conditions.
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Now we consider the vertical case (Bo ≠ 0). Introducing a new variable ξ(x) = ρ3(x), we reformulate solution
((8b)) into a nonlinear integral equation for ξ

ξ xð Þ ¼ b· x2−xð Þ þ ε·∫
x2
x dexξ4=3 exð Þ; (10)

where ε ¼ 3Bo
rp
. The explicit solution of this integral equation is obtained by a power series expansion in εΔx

(Δx = x2–x), and the nth approximation of ξ(x) is given by

ξ nð Þ xð Þ ¼ bΔx 1þ bΔxð Þ1=3 ∑
n

k¼1

εΔxð Þk
a1…ak

( )
; (11)

with ak= 4/3 + k. Note that the solution for the horizontal case is given by ξ(0)(x), that is, by setting ε= 0. The
convergence of the power series solution (11) is proven for n = 3 (Bo ≈ 10−3) in Appendix B.

We now calculate measurable quantities of the evaporation process.

1. Distance between the evaporation front and percolation front

Due to the boundary condition ϕ(x1) = 1 (equation (7b)), the distance between the evaporation front and per-
colation front, x2–x1, for horizontal flow (Bo = 0) is given by the inverse of the constant b(θ,T)

x2−x1 ¼ 1
b θ;Tð Þ : (12a)

For the vertical case (Bo ≠ 0) the implicit equation x1(x2)

ξ nð Þ x ¼ x1; x2ð Þ ¼ 1 (12b)

has to be solved.

At t = tc (x2 = 0), equation (12a) yields the x extension (width) of the spanning water cluster xp (tc).

2. Detachment time tc

The detachment time is given by the ratio of the evaporated mass (= mass loss) Δmw (white area above the
red line in ϕ(x) diagram; Figure 7) and the stage 1 evaporation rate (equations (6a) and (6b))

tc ¼ Δmw

Qevh i : (13)

3. Time‐dependence of the mass loss curve Δmw(t) during stage 2

We next derive the time dependence of the mass loss Δmw(t) and the evaporation front x2(t). We first discuss
the analytical solution of the horizontal case and then describe the solution method for the vertical case. The
calculation procedure is illustrated in Figure 7. To obtain the mass loss, we calculate the residual water mass
inside the four cornersmw (area below the blue curve in the ϕ(x)‐diagram) and subtract this value from the
water mass of the water‐filled capillary m0 (area of the dashed rectangle in the ϕ(x) diagram). The general
expression for the mass loss is

Δmw x2ð Þ ¼ m0−mw ¼ −ρwx1d
2
0−ρw·∫

x2
x1
dx·A xð Þ ¼

¼ −ρwx1d
2
0−ρwC

*r2p·∫
x2
x1
dx·ξ xð Þ2=3

(14a)

For the horizontal case we obtain a linear Δmw(x2) relationship using solution (8b) and equation (6c)

Δmw x2ð Þ ¼ a3−a4x2 (14b)

where the θ‐ and T‐dependent constants ai are given in Appendix A. Given the time dependence x2(t),
equation (14b) yields the time dependence of the mass loss. To derive the differential equation for x2(t),
we consider the x2 derivative of Δmw
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dΔmw

dx2
¼ dΔmw

dt
·
dt
dx2

¼ Qevh i dt
dx2

¼ −a4: (15)

Inserting the x2 dependence of the evaporation rate (equations (6a) and (6c)) yields the ordinary differential
equation for x2(t)

dx2
dt

¼ 1
a6

·
1

x2−δ
(16)

and its solution is

x2 tð Þj j≡xi tð Þ ¼ δ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a6δ2
Δt

s
−1

 !
; (17a)

with

Δt ¼ t−tc: (17b)

The time dependence of the percolation front is obtained by inserting x2(t) into equation (12a)

x1 tð Þj j≡xp tð Þ ¼ δ
a2

þ 1þ δ
a2

 �
xi tð Þ: (18)

We discuss different limit cases of the steady‐state solution. For 2
a6δ2

·Δt≪1 Δmw(t) shows a linear increase

that extrapolates the linear time dependence of stage 1 for a small transition region between stage 1 and stage

2. For t >> 2
a6δ2

·Δt, Δmw(t) shows the expected
ffiffi
t

p
dependence.

To the best of our knowledge, we derived for the first time these explicit analytical expressions for the time
dependence of the mass loss (equation (14a)), the evaporation front (equation (17a)), and the percolation
front (equation (18)).

For the vertical case we follow the same solution procedure using the capability of Mathematica to define
analytical functions f(x), where x is the solution of an implicit equation (e.g., equation (12b)) or the upper
integration limit of a definite integral (e.g., equation (3b)).

It is instructive to compare the solutions of the horizontal and vertical evaporation processes (black and red
curves in Figure 8). Given that the vertical flow length is shorter than the horizontal flow length, we expect
that the evaporation front recedes faster into the porous media. We also expect that the extension (width) of
the corner flow region is smaller compared to the horizontal case. This characteristic behavior is shown in
Figures 8a and 8b. For the horizontal case more water can be transported to the evaporation front. Hence,
the mass loss is higher compared to the vertical case as shown in Figure 8c.

Figure 8. Comparison of the time dependent characteristics of the vertical (red curves) and horizontal (black curves) eva-
poration process described by the single square capillary model: (a) evaporation front, (b) width of the corner flow region,
and (c) mass loss. The data set is taken from Exp. 3 (T = 61 °C, θ = 37°; see Table 2). tc denotes the detachment time.
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Note that the solutions satisfy the same boundary conditions, that is, yield the same width of the corner flow
region at the critical time tc. (xp (tc) = 4.2 mm; see Table 2, Exp. 3). It is obvious that the experimental xp value
for the horizontal evaporation experiment under the same thermodynamic boundary conditions has to be
larger compared to the vertical case (compare Exp. 4: xp (tc) = 4.6 mm and Exp. 1: 3.9 mm).

4. Experimental Results and Discussion

Figure 9a shows a typical spatial pattern of the corner flow region bounded by the evaporation (red) and per-
colation (blue) front during stage 2 at t = 244 min (Exp. 3; see Table 2). In Figure 9b (enlarged section of
Figure 9a, yellow rectangle), the gas‐water interface with the water menisci at the lattice nodes can be recog-
nized (curved white lines). The yellow arrow shows a corner flow path from the percolation to the evapora-

tion front, that is, through the unsaturated corner flow region. The
shortest path cannot be taken, as many channels are blocked, that is, com-
pletely filled with water. The location of such a single‐channel water clus-
ter is indicated by the red arrow. These isolated single‐channel or
multichannel water cluster force the corner flow along a highly tortuous
path. It is instructive to compare Figure 9b with Figure 10, which is an
image‐processed section of Figure 9b (yellow rectangle). The different
phases are indicated by different colors: (i) the water phase of the duct
flow area and the isolated water cluster are marked in blue, and (ii) the
yellow areas indicate the vapor‐saturated air demonstrating a continuous
tortuous pathway of the vapor molecule through the corner flow region.
The corner flow pathways are shown by the red areas. Most of the path-
ways are continuous pathways connecting the water‐saturated region
(blue region) with the completely dry region (yellow region), that is, the
pathway i starts at a certain point (xi1, y

i
1) at the heterogeneous percolation

front (index 1) and ends at a certain point (xi2, y
i
2) at the evaporation front

(index 2).

Since the evaporation process is a drainage process, the pathway should
always follow networks of connected channels with large width, that is,
low capillary pressure. The water pressure gradient dissipates along such
tortuous corner flow pathways. Besides continuous corner flow pathways,
there are also isolated corner flow pathways shown in Figure 10 inside the
dashed line square. Note that there is still a corner flow from the water‐
filled channels (blue sections) to the tips of the corner flow pathway.

Vorhauer et al. (2015) observed in regular stochastic Si‐lattices that stable
water rings around single grains during the evaporation process. Why are

Figure 9. (a) Spatial stochastic pattern of the corner flow region bounded by the evaporation (red) and percolation (blue)
front during stage2 at t= 244 min for evaporation Exp. 3 (see Table 2). (b) Magnified section of Figure 9a (yellow window).
Water menisci, single isolated water‐filled channels (red arrow), and two corner flow paths (yellow arrows) are shown.

Figure 10. Lattice section (yellow square in Figure 9b) after image proces-
sing (Exp. 3, t = 244 min). The tortuous corner flow paths around the
grains are marked in red, the duct flow region and the residual water clus-
ters are marked in blue, and the dry region (vapor saturated air) is marked in
yellow. The dashed line square shows an isolated corner flow path supplied
only by the two water‐filled throats.
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they absent in our experiments? For the following discussion we have to distinguish two types of corners: (i)
corners along the flow direction and (ii) corner perpendicular to the flow denoted as grain corners. It is
obvious that the water ring surface around the grain corner exhibits a saddle point geometry, that is,
convex (positive) curvature within the corner and concave (negative) curvature around the grain. To keep
the water pressure constant (pg–pw = constant = pc), the negative curvature has to be compensated by a
higher positive curvature. For sharp corners it is rather likely that these “tied‐up” water rings become
unstable and snap‐off will occur. Therefore, isolated water‐filled channels are more likely than water
rings. The absence of water rings is an indirect indicator of the corner stiffness (etching precision) of the
square lattice shown in Figure 2b. For round corners, the probability that water rings are
thermodynamically stable is higher as discussed by Vorhauer et al. (2015).

Four different evaporation experiments with each about 20 snapshots of the fluid distribution are the basis
for the quantitative analysis of the geometric characteristics of the evaporation process. We test the accuracy
of the IP images by calculating the water saturation (summation over all water pixels) and by deriving the
mass loss curve at about 20 time points. The relative error between the gravimetrical mass loss curve (thin
black line in Figure 11a represents the best fit to the data) and the IP‐derived mass loss (red dots in
Figure 11) is 5% for Exp. 3 (11% for Exp. 1 and 9% for Exp. 2), that is, both data sets show good agreement.

1. Extension of the spanning water cluster xp (tc)

We start our discussion with stage 1 of the evaporation process. Figure 11a shows themass loss curve for Exp.
3. The straight blue line indicates the stage 1 slope of the mass loss curve, which determines the constant
evaporation rate 〈Qev〉 . This also determines the boundary layer thickness of 0.30 mm via equations (6a)
and (6b) listed in Table 2. The experimental value of the extension (= width) of the spanning water cluster
is 4.2 mm (Table 2). Solving the nonlinear equation (12a) for the contact angle (4.2 mm = 1/b(θ,T)) yields a
contact angle of 36.7°.

To discuss the constant evaporation during stage 1, we show the stage 1 mass loss data for experiment 3 in
Figure 12 in a higher resolution compared to Figure 11a. The experimental mass loss data are shown by
black crosses. These data are smoothed by a Moving Average‐filter with block size 10 using Mathematica
11. The smoothed data are shown by black circles. Linear regression of the smoothed experimental data
yields a regression coefficient near 1 (= 0.99; black dashed line). Hence, a nearly perfect constant evapora-
tion rate is shown in Figure 11b. Linear regression of the IP data (red points) yields also a regression coeffi-
cient near 1, that is, strict linear behavior of the IP‐mass loss data and a constant evaporation rate, too.

As discussed byMosthaf et al. (2014; see Figure 1 therein) one would expect a decreasing stage 1 evaporation
rate for thin boundary layers (2 mm for experiment 3; see Table 2). This argument is based on a physical pic-
ture that lateral diffusion and interference effects between the diffusion sources (evaporating pores) are not

Figure 11. (a) Mass loss of one effective square capillary versus time for experiment 3 (mean temperature 61 °C, mean
relative humidity (RH) = 40). The thin black solid line shows the best fit to the experimental data (blue dots). The red
points represent the IP‐mass loss data points. The blue straight line represents the best fit to the stage 1 data, and its slope
determines the constant stage 1 evaporation rate. The theoretical mass loss curve (red curve, series expansion to third
order; equation (11)) is compared to the analytical solution of the horizontal case (black curve, equations (14a) and (17a)).
The inset shows the temperature and the relative humidity during the experiment. (b) Evaporation rate density versus
time (log scale). The black curve is based on the best fit mass loss data and corresponds to the thin black line in (a). The red
curve shows the sharp transition approximation of the single square capillary model.
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strong enough to establish a constant concentration profile along the sur-
face. However, to quantify the interference effect, one has to consider the
diffusion parameter, that is, the ratio BL thickness/distance of evaporat-
ing pores (see equation (3a) in Geistlinger & Leuther, 2018). If the diffu-
sion parameter becomes larger than 1, then the lateral distance of
diffusion sources (pores) has the same order of magnitude as the boundary
layer thickness. At this threshold interference effects become dominant.
For experiment 3 we have a diffusion parameter of 3.3. Hence, interfer-
ence effects are strong enough to cause a constant steady‐state concentra-
tion profile along the surface.

2. Detachment time tc

The experimental detachment time is 468 s (Table 2). The theoretical tc
value is given by equation (13), calculating the evaporation rate via equa-
tions (6a) and (6b) and the mass loss via equation (14a) for x2 = 0. Solving
the nonlinear equation (13) for the contact angle yields a contact angle of
36.5°. We emphasize that the xp and tc measurements are independent
measurements. The equivalence of both values (deviation = 0.2°, relative
error < 1%) demonstrate the consistency of the experimental measure-

ments and, moreover, the validity of the θ‐dependent SSCmodel. Both experimental values of 37° are strong
hints that the SiO2 surface causes partial wetting. Evaluating the evaporation experiments at lower tempera-
tures in Exp. 1 (28 °C) and Exp. 2 (42 °C) yields similar contact angles: 37° for Exp. 2 and 39° for Exp. 1 and
Exp. 4. The mean value over all contact angles listed in Table 1 is 37.9 ± 1.4°.

It is instructive to compare the theoretical contact angle derived from inverse modeling with the experimen-
tal contact angles of the flat surfaces of the Si‐SiO2‐wafer (48 ± 2°) and of the Borofloat‐cover glass (23 ± 2°).
Since the effective contact angle of our micromodel is the average of both contact angles, a simple arithmetic
averaging yields: 3 × Si‐SiO2‐corners + 1 × glass corner)/4 = 42°. This yields a deviation of 10% between the
effective experimental and the theoretical contact angle. This reasonable agreement supports the SSC model
as an appropriate model for the description of the evaporation process in an ideal (no round corners!) square
capillary during stage 1 evaporation.

We now discuss the temperature dependence of the stage 1 characteristics in order to test the consistency of
the SSCmodel against the temperature variation. Therefore, we conducted evaporation experiments at three
different temperatures: 28, 42, and 61 °C. As a novel aspect, the presented theory takes into account both
contact angle and temperature dependence of the water flux.

We first discuss the temperature dependence of the evaporation flux. Both the diffusion coefficient and the
saturated vapor pressure increase with temperature and lead to a 2.5 larger evaporation flux density increas-
ing the temperature from 28 (Exp. 1) to 42 °C (Exp. 2). This is expected to cause a smaller width xp(T), as the
width is inversely proportional to the evaporation rate (equations (12a) and (7c)). However, the xp values of
the vertical experiments 1–3 are nearly constant and approximately 4 mm. Hence, the higher evaporation
flux is compensated by a higher water flux. Obviously, the water flux will increase with temperature, because
of the decreasing kinematic viscosity. However, this effect is not sufficient and increases the water flux only
by a factor of 1.3. The main increase is caused by a decreased flow resistance factor α(θ) with decreasing con-
tact angle from 39° to 37°. In this range α(θ) is a rather sensitive function of the contact angle (see Figure 6).
The temperature‐dependent decrease of the contact angle could be attributed to a decreased surface tension
σgw(T) with increasing temperature. Young's law, cos(θ) = σw,s/σgw(T), yields a smaller contact angle assum-
ing that the strong water‐solid interaction is temperature independent and neglecting the weak gas‐solid
interaction (Grant & Bachmann, 2002).

3. Time dependence of the mass loss curve

We now study the time dependence of the mass loss curve. We note that the experimental data shown in
Figure 11 are renormalized data, that is, the mass loss and the volumetric evaporation rate for one effective
capillary. The volumetric evaporation rate is given by the mass evaporation rate density jdiff (Table 2) divided
by Ncapρwφ (φ—porosity, Ncap—number of capillaries).

Figure 12. Stage 1 mass loss of one effective square capillary versus time for
experiment 3; compare with Figure 11a. Black crosses: original mass loss
data, black circles: smoothedmass loss data (moving average with block size
10), red points: IP‐data.
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There are two constraints to renormalize the original mass loss data: (i)
the active surface area constraint and (ii) by the pore volume constraint.
Setting the number of open surface pores to the number of capillaries (=
79), both methods lead to an effective capillary width. Note that the sur-
face porosity (at the inlet) is not identical to the volume porosity of 0.46.
The following discussion is based on the active surface area constraint,
which gives an effective width of the square capillary of 0.3 mm.

The red curve in Figure 11a represents the theoretical mass loss curve for
the vertical experiment 3 (Bo > 0). The mass loss equation (14a) is derived
by using a series expansion third order for ξ(x) (equation (11)). Compared
to the horizontal mass loss curve (thick black curve), the red curve fits the
experimental data better. However, it still shows a significant deviation for
longer times (>4,000 s).

This deviation indicates that during the later stage 2 period corner flow
from small capillaries (pores) becomes important. The decreasing corner
flow leads to a decreasing evaporation flux compared to the flux of the

mean capillary of the SSC model. This presumably causes the SSC model to overestimate the evaporation
flux. We tested this hypothesis by conducting a drainage experiment under the same capillary number.
The resulting patterns were almost identical implying that the width of the PSD becomes increasingly impor-
tant as evaporation proceeds.

We next analyze whether gravitational forces have an impact on the evaporation process, that is, causes a
reduced mass loss. We therefore conducted a horizontal evaporation experiment under room temperature
(Exp. 4) and compared it with the corresponding vertical experiment (Exp. 1; see Figure 13). The experimen-
tal mass loss under gravitation shows a significant reduced mass loss when compared to the horizontal
experiment. The theoretical curve for the horizontal case (equation (14a)) shows reasonable agreement for
t < 12,000 s. For later times the theoretical curve shows a significant deviation.

Based on the best fit of the mass loss data (thin black line in Figure 11a), we derive the evaporation flux den-
sity = (also denoted as evaporation rate) in millimeter per day shown by the thin black line in Figure 11b).
Note that the experimental data show a smooth transition between stage 1 and stage 2 evaporation. The red
curve in Figure 11b represents the sharp transition approximation of the SSC model.

An interesting question is whether the evaporation experiments exhibit a
ffiffi
t

p
behavior for the later stage 2

time interval. Figure 14 shows the mass loss curves versus
ffiffi
t

p
. All experiments are in excellent agreement

with
ffiffi
t

p
behavior (regression coefficient R2 = 1.0).

This square root time dependence is usually obtained by infiltration the-
ory (Brutsaert & Chen, 1995; Parlange et al., 1985), that is, by solving
the nonlinear partial differential equation for the volumetric water con-
tent θw(x,t) (see equations (26)–(28) in Geistlinger & Leuther, 2018). The

solution gives Δmw ¼ Sd
ffiffi
t

p
with the desorptivity Sd as a functional of

the hydraulic functions of the porous media. The water flux at the sur-
face decreases, because the water front recedes into the porous media,
and hence, the flow has to overcome viscous forces over a longer flow
distance. Hence, desorption theory considers (i) only the water move-
ment, that is, diffusive transport within the gas phase is not considered,
and (ii) there is no sharp evaporation front receding into the porous
media. That means that the theory gives a continuous distribution of
the volumetric water content between x1 (percolation front) and x = 0
(surface).

The SSC model couples the water flux (water phase) with the vapor flux
(diffusion within the gas phase), that is, it takes into account the receding
water front xi(t) and the xi(t) dependence of the concentration gradient. It
is interesting that the steady‐state approximation of the SSC model yields

Figure 13. Comparison of vertical evaporation (Exp. 1, black curve) and
horizontal evaporation (Exp. 4, blue curve). The red curve shows the theo-
retical mass loss curve for the horizontal case (equation (14a)).

Figure 14. Mass loss versus
ffiffi
t

p
. The experimental data show a

ffiffi
t

p
behavior of

stage 2 evaporation for vertical evaporation (Exp. 1 to Exp.3) and for hori-
zontal evaporation (Exp. 4). The red linear curves represent the best fits to
the experimental data (R2 = 1.0) for later times. The horizontal black lines
indicate the end of stage 1 evaporation.
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the
ffiffi
t

p
dependence. We previously observed this

ffiffi
t

p
dependence for two

real soils with high accuracy (relative error <2%; Geistlinger & Leuther,
2018).

One could argue that the steady‐state mass flux (maximal mass flux for a
given concentration gradient) can explain why the theoretical mass loss is
too large compared to the experimental one. However, the velocity of the
receding percolation front (Exp. 3: 2.5 × 10−3 mm/s) is by 1 order of mag-
nitude slower than the diffusion velocity of the water molecules in the gas
phase (Exp. 3: 2.6 × 10−2 mm/s). Hence, the diffusion process always
adjusts the vapor concentration in the corner flow region to the new
steady state. Therefore, it seems that the deviation is a consequence of
the “stiff” solution of the effective capillary model (see discussion below).

4. Geometric characteristics of the stage 2 evaporation process

It is clear that geometric heterogeneity of the percolation front and the
evaporation front will lead to heterogeneous diffusion lengths across the
corner flow region. As the fast diffusion process within the gaseous phase
will even this pore scale heterogeneity through lateral diffusion, an effec-

tive capillary model should be able to describe a diffusion‐averaged quantity like the mass loss. The interest-
ing question is whether the SSC model can describe averaged geometric characteristics of the evaporation
process, like the mean evaporation and percolation front. Figure 15 compares the theoretical curves (red
curve) with the experimental data (blue dots) for the stage 2 time interval.

Both the xi and the xp curves show strong deviations (up to 100% at t = 12,000 s), whereas the xi curve gives
too small values and the xp curve too large values. Note that there is no free adjustable parameter, because
the contact angle of 38° is determined by stage 1 evaporation characteristics.

The reason for these large deviations of the xi and xp values is the “stiffness” of the SSC solution illustrated in
Figure 7. Themodel needs a too large flow length, that is, a too large width of the corner flow region, because
it describes a tortuous corner flow path (shown in Figure 10) by a straight or stiff flow path of an effective
capillary. However, the path has to be longer in order to be able to account for the same water pressure gra-
dient. To understand why the model yields too small xi(t) values and too large xp(t) values, one has to con-
sider the flux condition at the evaporation front (equation (9)). A decreasing evaporation rate (compare
red and blue curves in Figure 7b) causes a decreasing slope of the solution ϕ(x) with time (compare red
and blue curves in Figure 7a). This decreasing slope of the linear ϕ(x) results in a large change of the perco-
lation front Δx1 for a small change of the evaporation front Δx2. Therefore, the ratio Δx1/Δx2 is always larger
than 1 and increases with time. Hence, a small change of the evaporation front leads to a large increase of the
mass loss (see Figure 7a). This forces the model to too small xi(t) values and to too large xp(t) values during
stage 2. A realistic tortuous ϕ(x) solution is shown by the black dashed line in the ϕ(x) diagram of Figure 7a.
This hypothetical ϕ(x) solution represents a tortuous path of the corner flow through a regular square lattice
(see Figure 10). The slope satisfies the mass flux boundary condition (equation (9)) at x2 (same slope as the
linear solution) and leads to the same Δmw increase but to a larger x2 value.

5. Summary and Conclusion

We conducted a series of evaporation experiments at different temperatures (23 to 61 °C) in a micromodel
(regular square 80 × 80 lattice with lognormal‐distributed throats), which was produced by a new
interval‐based ICP‐DRIE technology. This anisotropic etching technology guarantees high edge steepness
(sharp corners) and a true mapping of the lattice structure with depth.

We visualized the tortuous corner flow paths between the percolation and evaporation front and analyzed
the fluid‐fluid patterns during the evaporation process. The mass loss was quantified both gravimetrically
and by image processing.

Based on the steady‐state assumption, we developed a θ‐ and T‐dependent analytical theory considering cor-
ner flow within an effective square capillary and coupled it to the evaporation flux. Based on this theory, we

Figure 15. Comparison between the power series solution (equation (11);
red curves) and the experimental data (blue dots) for the mean evapora-
tion front xi and the mean percolation front xp. The black curves represent
the best fits of the analytical solutions (equations (17a) and (18)) to the
experimental data.
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were able to study the combined effect of contact angle and temperature on the evaporation process. We
derived a novel explicit analytical power series solution of the Laplace equation that describes the steady‐state
corner flow in arbitrary direction. For the horizontal case (Bo = 0) described by the zero‐order term of the
solution, we obtained analytical expressions for the time dependence (i) of the mass loss (linear dependence
for stage 1 and square root dependence for stage 2), (ii) of the mean evaporation front, and (iii) of the mean
percolation front. For the vertical case and for Bo ≤ 10−3 the power series solution shows fast convergence.
Since our micromodel exhibits a relatively large effective pore diameter of about 0.4 mm, a third‐order power
series solution should be valid for most of the natural porous media, like soils, sands, sandstones, and
fractured rocks.

We note that the general SSC model developed by Yiotis et al. (2012a) presents the results in terms of the
hypergeometric function that has to be evaluated numerically to obtain the time‐dependent characteristics
of the evaporation process.

Our main conclusions are as follows:

1. Contact angle and temperature dependence

The SSC model was able to describe the mass loss time behavior during stage 1 and stage 2 at different tem-
peratures between 23 and 61 °C. Interesting is that the model gives highly consistent contact angles derived
from stage 1 characteristics: extension of the spanning water cluster and the critical detachment time. The
experimental value of 38° ± 1° is a strong indicator that the SiO2 surface causes partial wetting. The consis-
tent contact angles derived from stage 1 characteristics (deviation < 1%) and the reasonable agreement
between effective experimental and theoretical contact angle (deviation = 10%) support the SSC model as
an appropriate model describing the evaporation process in an ideal (no round corners) square capillary
for stage 1 evaporation.

Any model that does not take into account the contact angle dependencewill fail to explain the experimental
xp and tc values or has to include another fitting parameter into the model, like the roundness factor.

For the early stage 2 time interval, the SSC model gives reasonable agreement between experimental and
theoretical mass loss curves both for horizontal and for vertical evaporation. For the later‐ tage 2 time inter-
val there is a significant deviation. An interesting experimental result is that all experimental mass loss

curves show a
ffiffi
t

p
behavior in the later stage 2 time interval with high reliability (R2 = 1.0). This

ffiffi
t

p
behavior

is described well by the analytical solution, if used as a fit function.

2. Impact of gravitational forces: Horizontal versus vertical evaporation

To analyze whether gravitational forces have an impact on the evaporation process, that is, cause a reduced
mass loss, we conducted a horizontal evaporation experiment under room temperature and compared it
with the corresponding vertical experiment. The experimental mass loss under gravitation showed a signifi-
cant reduced mass loss compared to that of the horizontal experiment. To the best of our knowledge, this is
the first experimental demonstration that gravitation leads to a reduced mass loss during evaporation in 2‐D
micromodels.

3. Geometric characteristics of the evaporation process

The SSC model fails to describe the geometric characteristics of the evaporation process, like the mean eva-
poration and percolation front. Both the xi and the xp values show strong deviations during stage 2 (up to
100%), because the model describes a tortuous corner flow path by a straight flow path of an effective
capillary.

4. Semiphenomenological models: IPE model versus SSC model

Our experimental study demonstrated that the SSC model gives good agreement between experimental and
theoretical results during stage 1 and early stage 2 behavior. The SSCmodel is hereby based on renormalized
mass loss data, that is, the effective width of the square capillary is determined by the active surface con-
straint. Consequently, observed agreement confirms the fundamental hypotheses of the SSC model.
Namely, that the steady‐state corner flow within a square capillary of effective width (= mean pore size
and not the width of the PSD; hypotheses of the IPE model) controls the main characteristics of the evapora-
tion process during stage 1 and early stage 2 behavior. These characteristics include extension of the
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spanning water cluster, detachment time, constant evaporation rate dur-

ing stage 1, and 1/
ffiffi
t

p
falling evaporation rate.

For the later stage 2 period the SSC model overestimates the evaporation
flux, because evaporation from small capillaries becomes important
implying that the hydraulic connected region of the PSD controls this eva-
poration period. The width of the effective capillary overestimates the size
of small capillaries and hence the corner flow and the evaporation
flux, too.

It is difficult to recommend which semiphenomenological model should
be used to describe evaporation in real soils. One could use a certain sec-
tion of the experimental PSD (= characteristic width of the PSD= hydrau-
lic connected region) shown in Figure 4. The IPE model can be used to
derive the stage 1 evaporation rate. We have shown before that there is
some nonuniqueness (arbitrariness) choosing this characteristic PSD sec-
tion; that is, different characteristic sections will lead to the same theore-
tical evaporation rate (Geistlinger & Leuther, 2018). The main drawback

of the IPE model is that it fails to describe stage 2 and any geometric characteristics of the evaporation pro-
cess. Based on these arguments, we would recommend the use of the SSC model. However, our evaporation
study was based on a regular square lattice with ideal rectangular channel geometry. The mapping of this
porous medium to an effective square capillary is straightforward, and we expect good agreement between
theory and experiment. However, it is an unresolved problem how to map real porous media (like glass
beads, sands, and soils) to an effective square capillary.

An alternative is a pore network model that considers the drainage of water within the pore channel and the
buildup of water‐filled corners and continuous tortuous corner flow paths. However, it seems to be unrealis-
tic to develop such a pore network model that takes into account corner flow instability (snap‐off) of about
5,000 grain corners within the corner flow region at each time step, to classify the corner flow into contin-
uous and discontinuous corner flow paths (Figure 10, dashed line section). Nevertheless, it would be an
interesting question, if such an extended pore network model could describe the geometric characteristics
of our experimental evaporation experiments.

Appendix A: Constants of the Steady‐State Solution for the Horizontal Case
(Bo = 0)
The θ‐ and T‐dependent constants ai of the analytical solutions (14b), (17a), and (18) are given in
the following:

a0 Tð Þ ¼ ρw Tð Þd20; (A1)

a1 θ;Tð Þ ¼ a0 Tð Þ− 3
5
ρw Tð ÞC* θð Þr2p θð Þ; (A2)

a2 θ;Tð Þ ¼ −
3
r3pθ

νw Tð Þα θð Þ
σgw Tð Þ ·A0

gD
eff
g Tð ÞΔC Tð Þ; (A3)

a3 θ;Tð Þ ¼ a1
a2

δ; (A4)

a4 θ;Tð Þ ¼ a0 þ a1
a2

; (A5)

a5 Tð Þ ¼ −A0
gD

eff
g ΔC; (A6)

a6 θ;Tð Þ ¼ a4
a5

: (A7)

Figure A1. Percolation front xp versus evaporation front xi. Comparison of
the solutions ξ(n)(x) (equation (11)) for n= 0 (black curve, horizontal case), n
= 1 (gray curve), n = 2 (green curve), and n = 3 (red curve).
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Appendix B: Convergence of the Power Series Solution for the Vertical Case
(Bo ≠ 0)
Since the curvature of the gas‐water interface ry has its maximal value at the percolation front xp (minimal
capillary pressure), the influence of gravitational forces is maximal (maximal bond number). Therefore, we
calculate the percolation front as a function of the evaporation front, that is, xp (xi), shown in Figure A1 (data
set Exp. 3, Bo ≅ 10−3) using the power series solution ξ(n)(x) (equation (11)) in different approximations: n =
0 (black curve, horizontal case), n= 1 (gray curve), n= 2 (green curve), and n= 3 (red curve). Convergence is
achieved for n = 3.
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