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Abstract

This study provides a comprehensive evaluation of a great variety of state-of-the-

art precipitation datasets against gauge observations over the Karun basin in

southwestern Iran. In particular, we consider (a) gauge-interpolated datasets

(GPCCv8, CRU TS4.01, PREC/L, and CPC-Unified), (b) multi-source products

(PERSIANN-CDR, CHIRPS2.0, MSWEP V2, HydroGFD2.0, and SM2RAIN-CCI),

and (c) reanalyses (ERA-Interim, ERA5, CFSR, and JRA-55). The spatiotemporal

performance of each product is evaluated against monthly precipitation obser-

vations from 155 gauges distributed across the basin during the period

2000–2015. This way, we find that overall the GPCCv8 dataset agrees best with

the measurements. Most datasets show significant underestimations, which are

largest for the interpolated datasets. These underestimations are usually smallest

at low altitudes and increase towards more mountainous areas, although there is

large spread across the products. Interestingly, no overall performance difference

can be found between precipitation datasets for which gauge observations from

Karun basin were used, versus products that were derived without these measure-

ments, except in the case of GPCCv8. In general, our findings highlight remark-

able differences between state-of-the-art precipitation products over regions with

comparatively sparse gauge density, such as Iran. Revealing the best-performing

datasets and their remaining weaknesses, we provide guidance for monitoring

and modelling applications which rely on high-quality precipitation input.
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1 | INTRODUCTION

In many regions of the world, changes in water availabil-
ity have severe impacts on society and economy. These
changes will be intensified by climate change in some
regions (Kirtman et al., 2013). This jeopardizes water and

food security, especially in developing countries with
highly agricultural-oriented economies (Vaghefi et al.,
2019; Hameed et al., 2020). In this context, a lack of reli-
able precipitation information, which is key to monitor
these water dynamics, has been a serious barrier for
supporting decision-makers. To compensate for this
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deficit, different sources of data, including gauge or
satellite-based and reanalyses, have been utilized by
researchers to monitor and predict extreme events across
the world (Naumann et al., 2014; AghaKouchak et al.,
2015; Zhan et al., 2016; Balsamo et al., 2018). However,
without comprehensive and comparative validation
against ground-based observations the usefulness of these
data products is unclear.

In spite of this necessity for accurate ground-based
precipitation dataset, reliable gauge station datasets are
not widely available. Further, existing gauge observations
often suffer from artificial disturbances because the sta-
tions' reliability varies with time due to, for example,
instrument deterioration or relocations. As a result, there
may be substantial questionable or missing data records.
To address these problems, some studies have focused on
reconstruction, quality control and homogeneity of the
time series (e.g., González-Rouco et al., 2001 in south-
western Europe; Beaulieu et al., 2008 in Québec, Canada;
Vicente-Serrano et al., 2010 in north-eastern Spain).

As a result of sparse gauge measurements, datasets of
near-global coverage have been generated with various
approaches. Some make direct use of gauge measurements
together with statistical techniques for interpolating the
observations (e.g., Chen et al., 2002; Xie et al., 2007; Chen
et al., 2008; Becker et al., 2013; Harris et al., 2014). Others
use remote sensing from satellites with high spatiotempo-
ral resolution and near real-time availability, making them
suitable especially for data-sparse or ungauged basins.
Because of the indirect nature of the precipitation esti-
mates from satellites, the products are subject to a variety
of potential errors (Brocca et al., 2014; Moazami et al.,
2014; Koster et al., 2016; Sun et al., 2018; Salmani-Dehaghi
and Samani, 2019). The satellite estimates are therefore
often blended with gauge data (Ashouri et al., 2015; Funk
et al., 2015), which also enhances their usefulness in areas
with insufficient gauge coverage.

Besides these direct and indirect measurements of
precipitation, there are also modelling approaches such
as through reanalyses which assimilate meteorological
observations from various sources, for example, ground-
based stations, ships, airplanes, and satellites (Parker,
2016) with forecasts from numerical weather prediction
models to infer precipitation estimates (e.g., Saha et al.,
2010, 2014; Dee et al., 2011; Kobayashi et al., 2015; Coper-
nicus Climate Change Service, 2017). To alleviate the
major bias in reanalysis models, because of not making
any direct use of gauge information, they are sometimes
combined with bias adjustment techniques (Weedon
et al., 2011; Berg et al., 2018) and often merged with other
data products such as satellite remote sensing and inter-
polated gauge datasets (Beck et al., 2017a, 2017b). In
regions with poor station coverage, satellite rainfall

estimates and reanalysis products may compensate for
the lack of gauge stations provided a meaningful calibra-
tion of the underlying models. This is particularly chal-
lenging in mountainous regions (Dinku et al., 2008; Hu
et al., 2016; Alijanian et al., 2017; Beck et al., 2017a).

This growing number of precipitation datasets derived
through various approaches implies a need for a compara-
tive performance assessment. In this study, we compare the
performance of various precipitation datasets derived from
multiple sources, against gauge measurements over Karun
basin, southwestern Iran. The outcome can inform dataset
developers about respective strengths and weaknesses, and
also provide guidance to users for their choice from the
variety of state-of-the-art products. This is especially impor-
tant in relatively data-sparse regions such as Iran. Although
there have been some studies on the evaluation of precipita-
tion products over Iran's climatic zones (Moazami et al.,
2014; Katiraie-Boroujerdy et al., 2013, 2017, 2019; Ghajarnia
et al., 2015; Sharifi et al., 2016; Khodadoust Siuki et al.,
2017; Alijanian et al., 2017, 2019; Hosseini-Moghari et al.,
2018; Dezfooli et al., 2018; Saeidizand et al., 2018), compre-
hensive evaluations of reanalysis, satellite-based, and inter-
polated precipitation data are lacking.

Sections 2 and 3 introduce the study area and the consid-
ered precipitation datasets. Section 4 illustrates the method-
ology, and Section 5 presents results and discussion. Finally,
in Section 6 the conclusions of this study are presented.

2 | STUDY AREA

Karun basin, with an area of 65,230 km2, is one of the largest
basins in Iran (Figure 1), hosting the Karun River with an
average annual discharge rate of 575 m3�s−1. Variation in
topography is significant over the basin; surface elevation
varies from zero at Persian Gulf coast to 4,400 m over the
Zagros mountain chains. The basin encompasses various
climate zones; this climate variability is controlled by geo-
graphical latitude, proximity to the Persian Gulf, and
elevation. Average annual precipitation over the basin is
about 632 mm, however, with a large spatial variability illus-
trated by values ranging from 153 mm in southern plain
regions to >2000 mm in mountainous regions. Daily temper-
ature varies over the basin from a minimum of −30.6�C at
Koohrang station to a maximum of 52.2�C at Ahvaz station.

3 | DATA

In this section, we introduce the ground-truth reference
data (Section 3.1) which we use to validate a multitude of
established gridded state-of-the-art precipitation datasets
(Section 3.2).
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3.1 | Reference data

In this study, in situ data from rain gauges operated by
IRIMO (Islamic Republic of Iran Meteorological Organi-
zation) are utilized as a ground reference for evaluating
the selected gridded precipitation products (Figure 1). In
essence, this dataset consists of two different sources of
3-hr synoptic and daily rain gauges, represented by trian-
gle and diamond, respectively. It should be noted that the
synoptic stations are more reliable because of occurring
less human error in the process of observation. As shown
in Figure S1 the distribution of gauges across altitudes
matches that of the grid cells which cover Karun basin.
No statistical post-processing has been applied to the
gauge measurements. We focus on the time period
2000–2015 in this study since, according to plotted sta-
tions' time series, the overall availability of the station
measurements is highest in these years. As most gridded
datasets come with a monthly resolution, we derive
monthly estimates of the gauge data by accumulating
daily values.

3.2 | Gridded data products for
evaluation

The gridded products are grouped into three categories:
entirely gauge-based datasets, merged datasets using

gauge data among other sources, and reanalysis datasets
not making any direct use of gauge information. A sum-
mary of all individual datasets and their respective char-
acteristics is shown in Table 1.

3.2.1 | Interpolated gauge data

The four interpolated gauge datasets evaluated in this
study are GPCCv8 (Global Precipitation Climatology
Centre; Schneider et al., 2014, 2018), CPC-Unified
(Climate Prediction Center Unified; Xie et al., 2007; Chen
et al., 2008), PREC/L (PRECipitation REConstruction
over Land; Chen et al., 2002), and CRU TS4.01 (Climatic
Research Unit; Harris et al., 2014). They share a spatial
resolution of 0.5�, except for GPCCv8, which provides
0.25�. These products provide gridded gauge analysis
products derived from quality-controlled station data at a
daily (CPC-Unified) or monthly (GPCCv8, PREC/L and
CRU TS4.01) temporal resolution. PREC/L is based on an
advanced method of optimal interpolation (OI) and is
derived from gauge observations from over 17,000 sta-
tions collected in the Global Historical Climatology Net-
work version 2, and the Climate Anomaly Monitoring
System datasets (Chen et al., 2002). CPC-Unified is
derived by combining all information sources available at
CPC, 16,000 quality-controlled daily stations, and by tak-
ing advantage of the OI objective analysis technique
(Chen et al., 2008). GPCC employs an extraordinarily
large number of gauges around 85,000 stations
(Schneider et al., 2014, 2018). Further, it provides the
number of gauges used for each grid cell, and an uncer-
tainty estimate deduced from ordinary kriging
(Yamamoto, 2000). CRU TS4.01 provides a precipitation
dataset and other metrological variables from 1901 to
near-present, including over 4,000 individual weather sta-
tion records (Harris et al., 2014).

3.2.2 | Merged multi-source data

We use three high-resolution merged products, namely
CHIRPS2.0 (Climate Hazards group Infrared Precipita-
tion with Stations), PERSIANN-CDR (Precipitation Esti-
mation from Remotely Sensed Information using
Artificial Neural Networks-Climate Data Record), and
SM2RAIN-CCI (SM2RAIN-Climate Change Initiative,
published in July 2015). CHIRPS is a quasi-global rainfall
dataset, spanning across 50�S–50�N. It extends from 1981
to near-present and blends 0.05� resolution satellite imag-
ery with in situ station data to create gridded rainfall time
series. PERSIANN-CDR provides daily rainfall estimates
at a spatial resolution of 0.25� over the latitude band of

FIGURE 1 Topographical map of the Karun basin in Iran.

The location of precipitation gauge stations utilized in this study is

marked with purple diamonds (daily rain gauges) and triangles

(synoptic stations)
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60�S–60�N from 1983 to the near-present. PERSIANN-
CDR is produced from the PERSIANN algorithm using
GridSat-B1 infrared satellite data, and the training of the
artificial neural network is done using NCEP stage IV
radar data. The biases of PERSIANN-CDR are adjusted
using 2.5� monthly GPCP (Global Precipitation Climatol-
ogy Project) precipitation data (Adler et al., 2003; Ashouri
et al., 2015). Brocca et al. (2014) developed a global scale
rainfall product, SM2RAIN, by translating soil moisture
obtained from satellite soil moisture data into precipita-
tion estimates. Recently, the SM2RAIN method has been
applied to the satellite-derived ESA CCI soil moisture
product with a spatial resolution of 0.25� for the period of
1998–2015 (Ciabatta et al., 2018). The algorithm was cali-
brated against the Global Precipitation Climatology Cen-
tre Full-Data daily dataset (Ciabatta et al., 2018). Note
that even though these datasets rely primarily on
satellite-derived information, they also indirectly employ

gauge measurements for bias adjustment (PERSIANN-
CDR) or algorithm calibration (SM2RAIN-CCI).

Further, we evaluate two datasets: HydroGFD2.0
(Hydrological Global Forcing Data) and MSWEP V2
(Multi-Source Weighted-Ensemble Precipitation), which
are produced by merging gauge, satellite and reanalysis
data. HydroGFD2.0 is methodologically based on
Weedon et al. (2011), and is produced in near real-time
(Berg et al., 2018; Arheimer et al., 2019). The
HydroGFD2.0 dataset covers the period 1979 to present
at a daily time scale and with a spatial resolution of 0.5�.
Additionally, we use the MSWEP V2 dataset from Beck
et al., 2019. It provides data with high spatial (0.1�) and
temporal (3-hourly) resolution, and is computed by merg-
ing precipitation estimates based on gauges, satellites,
and reanalyses data. In addition, they corrected fre-
quency and systematic biases in the precipitation data
(Beck et al., 2019).

TABLE 1 Summary of the precipitation datasets evaluated in this study (NRT stands for near real-time)

Group Dataset
Temporal
coverage

Spatial
coverage

Spatial
resolution Data sources Reference

Modelled JRA-55 1959–NRTa Global ~0.56� Reanalysis Kobayashi et al. (2015);
Japanese 55-year Reanalysis
(2013)

CFSR 1979–NRTb Global 0.5� Reanalysis Saha et al. (2010, 2012, 2014)

ERA-Interim 1979–NRT Global ~0.75� Reanalysis Dee et al. (2011)

ERA5 1979–NRTc Global ~0.28� Reanalysis Copernicus Climate Change
Service (2017)

Interpolated CRU TS4.01 1901–2016 Global 0.5� Gauge Harris et al. (2014)

CPC-Unified 1979–NRTa Global 0.5� Gauge Xie et al. (2007); Chen et al.
(2008)

PREC/L 1948–NRTc Global 0.5� Gauge Chen et al. (2002)

GPCCv8 1901–2016 Global 0.25� Gauge Becker et al. (2013); Schneider
et al. (2014, 2018)

Multi-
source

MSWEP V2 1979–NRTb Global 0.1� Satellite + gauge +
reanalysis

Beck et al. (2019)

HydroGFD2.0 1978–NRTc Global 0.5� Satellite + gauge +
reanalysis

Berg et al. (2018)

CHIRPS2.0 1981–NRTa 50�N–50�S 0.05� Satellite + gauge+
reanalysis

Funk et al. (2015)

PERSIANN-
CDR

1983–NRTc 60�N–60�S 0.25� Satellite + gauged Ashouri et al. (2015)

SM2RAIN-
CCI

1998–2015 Global 0.25� Inversion of the satellite
soil moisture + gaugee

Brocca et al. (2014); Ciabatta
et al. (2018)

aAvailable until the present with a delay of several days.
bAvailable until the present with a delay of several hours.
cAvailable until the present with a delay of several months.
dGauge information have been utilized for bias adjustment.
eGauge information have been incorporated in the calibration process.
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3.2.3 | Reanalysis data

Climate reanalyses are derived through observation-
adjusted model simulations which generate spatiotempo-
ral consistent time series of multiple climate variables. In
this study, four reanalysis precipitation datasets are eval-
uated: CFSR (Climate Forecast System Reanalysis), JRA-
55 (Japanese 55-year Reanalysis), ERA-Interim
(European Centre for Medium-range Weather Forecasts
Reanalysis Interim) and ERA5. They all cover the entire
global domain. CFSR extends from 1979 to 2010 with a
spatial resolution of 0.5� (Saha et al., 2010, 2012). JRA-55
covers a period of more than 55 years from 1959 with a
spatial resolution of 0.5625�, and with 3-hourly time
steps. It is based on four-dimensional variational data
assimilation (4D-Var) with Variational Bias Correction
(VarBC) for satellite radiances (Kobayashi et al., 2015).
ERA-Interim starts in 1979 and is continuously updated,
providing 3-hourly data with a spatial resolution of
~0.75�. The data assimilation system used to produce
ERA-Interim is based on a 2006 release of the integrated
forecasting system (IFS), including 4D-Var with a 12-hr
analysis window (Dee et al., 2011). ERA5 is the sequel of
ERA-Interim. Using the latest IFS version, it provides
hourly data on many atmospheric, land-surface and sea-
state parameters together with estimates of uncertainty
on a 30-km grid from 1979 to near-present (Copernicus
Climate Change Service, 2017).

4 | METHODOLOGY

Before comparing the various precipitation products, they
are re-gridded to a common 0.5� spatial resolution, if nec-
essary. This was done using climate data operators
(Schulzweida, 2019), namely through conservative
remapping which preserves the water mass (Jones, 1999).
This method is widely used for remapping precipitation
datasets (Chen and Knutson, 2008; Nikulin et al., 2012).
To examine the effect of this re-gridding, we also com-
pute our analyses with the native resolutions of the pre-
cipitation datasets.

Gauge measurements within each grid box of the
respective datasets were averaged arithmetically to pro-
duce representative time series, and to form a reference
for the evaluation of the considered precipitation
datasets. In this context, to assess the performance,
monthly time series were computed for for gauges and
datasets; G and M are defined later. Based on these time
series, six measures were calculated for each grid cell of
the models: mean and maximum values, spatial and tem-
poral correlation coefficient (CC), relative error (RE), and
absolute error (AE):

CC=
Pn

i=1 PMi − �pMð Þ PGi − �pGð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 PMi − �pMð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 PGi − �pGð Þ2

q , ð1Þ

RE=
Pn

i=1 PMi −PGið ÞPn
i=1PGi

×100, ð2Þ

AE=
Pn

i=1 PMi −PGið Þ
n

, ð3Þ

where i, n, and top bar indicate time, the number of
months, and an average over time, respectively. Further,
P denotes monthly precipitation data from gauge mea-
surements (G) or the considered datasets (M). After cal-
culating these measures, the average of all grid cell
values is taken to obtain a single representative value for
each metric and each dataset over the basin. In addition
to temporal correlation, we also infer spatial correlations
of observed versus modelled grid cell averages.

We also examine the accuracy of products in different
climate regimes. These are characterized by long-term
average aridity and temperature, and computed from
ERA-Interim data for each grid cell. Thereby, aridity is
computed as the ratio of mean annual net radiation to
mean annual precipitation, converted to the same units
by normalization with the latent heat of vaporization
(Budyko, 1974; Orth and Destouni, 2018). Figure S2 indi-
cates the basin climate determined by aridity values in
each grid cell along with the respective stations'
temperature.

5 | RESULTS AND DISCUSSION

5.1 | Seasonal variability of precipitation

Figure 2 illustrates mean monthly precipitation averages
across the basin. It shows that the main differences
between the datasets occur during the regional wet sea-
son (November to April) while all datasets capture the
summer dry season. Most datasets, except for the
reanalyses and HydroGFD2.0, underestimate precipita-
tion during the wet season. GPCCv8, reanalyses, and
merged products generally demonstrate seasonal variabil-
ity of precipitation better than the other interpolated
gauge products. Underestimation in the datasets incorpo-
rating satellite estimates during winter might be due to a
systematic bias related to snow-covered surfaces
(Gebregiorgis et al., 2017); this is despite the fact that they
are calibrated with gauge observations. Moreover, such
underestimation in SM2RAIN-CCI might be further due
to surface soil moisture saturation (Brocca et al., 2013).
We repeat this analysis for low, medium, and high
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elevation grid cells (Figure S3). The overall similar results
indicate no or little importance of elevation for the sea-
sonal performance patterns.

5.2 | All-basin summary evaluation
of precipitation products

Results for the statistical analysis are presented as basin
averages in Table 2. In terms of mean values, ERA-
Interim, CFSR, and GPCCv8 agree best with the observed
gauge values, while reanalyses perform generally well.
The spread is large especially between the interpolated
datasets, which is likely due to the different selection of
gauges included in each individual dataset. Even though

HydroGFD2.0 uses monthly anomalies from CPC-
Unified, we find different mean values here because the
climatology is derived from CHPclim, which includes
more stations (Funk et al., 2015).

As seen in Figure 2, most products underestimate pre-
cipitation over the basin. The underestimation of precipi-
tation in CHIRPS2.0 could stem from the low density of
employed stations. The underestimation found in
PERSIANN-CDR might be related to the bias-adjustment,
which is based on the GPCP dataset with a rather coarse
2.5� resolution. Such underestimation over mountainous
regions in Iran has also been reported for other precipita-
tion datasets which include satellite estimates (Moazami
et al., 2016; Alijanian et al., 2017; Katiraie-Boroujerdy
et al., 2017). It might be associated with infrared sensors

FIGURE 2 Comparison of mean

monthly precipitation (mm per

month) for different datasets

(symbols) across all grids of Karun

basin (2000–2015). Red lines denote

datasets which did not employ gauge

data, while blue lines indicate

datasets which use some gauge

records, and turquoise lines refer to

datasets which extensively used gauge

observations

TABLE 2 Statistical measures of the evaluated monthly datasets over Karun basin (2000–2015)

Group Dataset

Mean
(mm per
month)

Maximum
(mm per
month)

Temporal
correlation
(−)

Spatial
correlation
(−) RE (%)

AE
(mm per
month)

Gauge 38.6 291.9

Reanalysis CFSR 37.0 222.9 0.87 0.85 −0.6 −1.6

ERA-Interim 39.6 257.0 0.86 0.79 +14.6 +0.9

ERA5 45.5 (40.1) 283.6 (241.5) 0.88 (0.87) 0.78 (0.65) +23.7 (+14.3) +6.9 (+1.9)

JRA-55 36.8 190.0 0.83 0.65 +19.7 −2.0

Interpolated CPC-Unified 23.0 158.9 0.81 0.73 −33.7 −15.6

CRU TS4.01 26.0 144.6 0.82 0.69 −21.6 −12.6

PREC/L 11.4 98.9 0.68 0.52 −61.8 −27.2

GPCCv8 40.2 281.5 0.91 0.89 +5.1 +1.6

Multi-
source

MSWEP V2 21.6 (19.8) 161.2 (141.9) 0.92 (0.87) 0.34 (0.17) −29.3 (−34.7) −17 (−19.9)

HydroGFD2.0 40.8 290.9 0.85 0.80 +15.6 +2.2

CHIRPS2.0 30.1 (29.3) 187.8 (182.1) 0.86 (0.83) 0.79 (0.58) −12.2 (−13.8) −8.5 (−11.1)

PERSIANN-CDR 29.6 (29.5) 213.7 (202.8) 0.88 (0.87) 0.73 (0.68) −7.5 (−5.0) −9.0 (−9.5)

SM2RAIN-CCIa 16.8 (15.6) 118.8 (118.1) 0.82 (0.80) 0.68 (0.73) −11.3 (2.2) −3.8 (−1.4)

Note: Values in parenthesis denote statistics based on the dataset's original resolution.
aNote that SM2RAIN-CCI metrics are afflicted by missing values.
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having difficulties to detect warm cloud process espe-
cially over mountains (Dinku et al., 2018; O and
Kirstetter, 2018). The underestimation in SM2RAIN-CCI
could be related to the fact that once the surface soil is
saturated after intense or long-lasting precipitation
events, no additional increase is possible such that no
additional precipitation can be deduced from the soil
moisture data (Brocca et al., 2013). According to Ali-
janian et al., 2017, MSWEP V1 highly overestimated pre-
cipitation values over different climatic zones of Iran
while this study interestingly indicates contrary results

for MSWEP V2. This might have to do with a reduction
of Iranian bias correction factor due to suspected issues
with observed runoff data (Beck et al., 2019).

Furthermore, for maximum precipitation, HydroGFD2.0,
GPCCv8, and ERA5 agree best with in situ measurements
whereas the other interpolated datasets, as well as
MSWEP V2 and SM2RAIN-CCI, show large underestima-
tions. Considering the mean relative error over Karun
basin, the CFSR reanalysis shows the best agreement with
gauge data, followed by GPCCv8. Merged datasets out-
perform some reanalyses which may be attributed to a

FIGURE 3 Mean precipitation

(mm per month) over the basin for

the 2000–2015 period. Background
colours indicate precipitation of the

respective gridded product while the

circles denote observations
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large overestimation of these reanalyses at low-altitude
regions (Figure S3).

The spatial correlation results indicate the best agree-
ment of GPCCv8 and CFSR with gauge data, but also
reanalysis datasets (except JRA-55) show similarly high
correlations whereas MSWEP V2 and PREC/L, show par-
ticularly poor performance. We also explore the perfor-
mance of the products in their original spatial resolution
(shown in Table 2 with parenthesis). Overall, we find a

minor role of the spatial resolution, except for spatial cor-
relation where results seem to be more sensitive.

5.3 | Spatial evaluation of precipitation
datasets

In addition to the all-basin evaluation of the considered
datasets in the previous section, in this section, we

FIGURE 4 Temporal

correlation between different global

precipitation datasets and local

gauge data
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analyse the spatial variability of datasets versus gauge
measurements. Figure 3 presents dataset versus gauge-
based mean precipitation across the Karun basin. The
above-mentioned underestimation mostly occurs in
mountainous regions. In general, reanalysis datasets
along with GPCCv8 and HydroGFD2.0 agree best with
gauge-derived rainfall patterns over the basin, confirming
results from Table 2. Aside from the overall biases, we
find that MSWEP V2 and PREC/L have most difficulties
in capturing the spatial precipitation patterns, including

the contrast between low areas and the mountains (rela-
tive error of products in each station are presented in
Figure S4).

In Figure 4, we analyse the spatial pattern of the tem-
poral correlations evaluated in Table 2. We find overall
highest correlations for GPCCv8 and MSWEP V2. For the
latter, this was reported earlier by Alijanian et al. (2017),
who attributed this fact to either applying high weights
to gauge observations in MSWEP, or the inclusion of
reanalysis precipitation data. Most datasets show high

FIGURE 5 Bias values (mm per

month) of datasets and the number of

gauges within each grid cell (size of

the circles) in the different climatic

zone of the basin (circles with no

colour means missing data)
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spatial variability in the correlation results across the
basin, except for GPCCv8 and MSWEP V2 where correla-
tion is generally high, and for PREC/L where correlation
is low everywhere.

5.4 | Performance in different climates
and elevations

Figure 5 illustrates the absolute error of the considered
precipitation datasets with respect to climate in the

considered grid cells. Further, the number of gauges
located within each grid cell is reflected by the size of the
points; smallest circles indicate one gauge per grid cell,
while largest circles refer to nine gauges. Performance of
the datasets in each grid cell is shown through colour
coding. We find no systematic difference in the results
indicated by small versus large circles. This suggests that
the different number of gauges in each grid cell has only
a negligible impact on our conclusions.

The previously mentioned underestimation in
CHIRPS2.0, PERSIANN-CDR and interpolated gauge

FIGURE 6 (a) Absolute error,

(b) relative error and (c) temporal

correlation as a function of elevation.

Symbols indicate the elevations of the

grid cells. Lines are smoothed with a

LOWESS filter
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(CPC-Unified and CRU TS4.01) datasets, as well as
MSWEP V2, is mostly found in regions with compara-
tively cold and wet climates; regions with elevations
above 2,500 m as opposed to the low altitude surfaces.
GPCCv8 and ERA5 generally show more similar perfor-
mance across the different climates. Most datasets agree
better with gauge observations in dry and warm climate.
This underlines the importance of considering the oro-
graphic and geographic effects on the quality of precipita-
tion data (Hu et al., 2016). Similar results are found for
relative errors of the datasets (Figure S5); while the cli-
mate sensitivity of correlation performance interestingly
is overall lower (Figure S6).

The elevation effect on the agreement between gauge
data and precipitation products is analysed in Figure 6,
using each grid cell's elevation according to a 0.5� digital
elevation map (Amante and Eakins, 2009). Overall, the
performance of the considered products varies similarly
to altitude. Reanalysis datasets tend to overestimate pre-
cipitation at low altitudes while they show no or little
bias at higher altitudes, despite the challenging topo-
graphic complexity associated with high elevation regions
(Isotta et al., 2015). All other datasets show largest biases
at medium altitudes and slightly improved results for the
lowest and highest elevation regions. Interestingly, the
temporal correlation analysis (Figure 6c) reveals opposite
results; highest correlations are found at medium alti-
tudes and performances are degraded in the lowest and
highest grid cells. These performance differences are

controlled by altitude-dependent (a) topographic com-
plexity and (b) climate (Figure S7).

Figure 7 illustrates which dataset agrees best with
gauge observations in each grid cell and climate. For this
purpose, a ranking of datasets is computed in each grid
cell according to (a) temporal correlation and
(b) absolute error. Then, the dataset with the lowest sum
of the two ranks is selected as the best dataset for a par-
ticular grid cell. GPCCv8 performs best in 15 grid cells,
thereby clearly outperforming all other datasets. Among
the remaining datasets, CFSR and ERA5 stand out with
the best agreement against gauge data in three grid cells
each. The outstanding performance of GPCCv8 in this
context is probably due to the fact that this dataset
employs some of the gauge data used as reference in this
study. While this is true for other (interpolated) datasets,
they probably could use the gauge information more effi-
ciently in their derivation procedure.

6 | CONCLUSIONS

Known discrepancies between state-of-the-art precipita-
tion datasets have motivated us to assess the accuracy of
a great variety of state-of-the-art precipitation datasets
against gauge observations in a comparatively
observation-sparse region, Karun basin in Iran. Thereby,
we analysed the spatiotemporal variability and find char-
acteristic strengths and weaknesses of each dataset, while
no single dataset is superior in all respects.

The overall best agreement with observations was
found for the GPCCv8 dataset. However, GPCCv8 is
likely biased to better results as it might include a large
part of the gauge data used for the evaluation. Therefore,
the result rather points out that a comprehensive gauge
selection is most important for the quality of any large-
scale precipitation dataset.

While merged products include gauge data for cali-
bration, reanalyses are independent of the gauge data
since they do not assimilate surface gauge precipitation.
Among the latter, ERA5, ERA-Interim, and CFSR out-
perform JRA-55 over Karun basin. Given this rather inde-
pendent nature of the reanalyses, the results do show
value in such data, particularly in regions where no
gauge data are available.

Comparing older, established datasets with more
recent products we find mixed results. While ERA5
shows overall improved agreement with gauge measure-
ments over ERA-Interim, MSWEP V2 shows significant
biases even though with the opposite sign as the previous
version (Alijanian et al., 2017). Further, MSWEP V2 and
HydroGFD2.0 as the most recent of the considered prod-
ucts are not outperforming previously released datasets.

FIGURE 7 Datasets showing best agreement with gauge data

in each grid with respect to correlation and absolute error. The

number of gauges within each grid cell is denoted by the size of the

points
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A caveat for our analysis is potential errors in gauge
measurements. Especially at higher altitudes, precipita-
tion under-catch in such measurements is a known issue
(Mekonnen et al., 2015). Therefore, the underestimations
we find in most considered datasets are likely even more
considerable than shown here. In addition, it should be
noted that the gauge measurements used in this study
have (partly) been employed in the derivation of (some
of) the considered datasets. Despite this, we find no con-
sistently improved agreement between the gauge mea-
surements and datasets that use more of them versus
datasets that do not use them.

The identification of such important shortcomings of
state-of-the-art datasets highlights potential avenues for
future development. This way, the present study contrib-
utes to more reliable, high-quality precipitation datasets
which are key to hydro-climatological monitoring and
modelling, especially given the potential increase of
related extremes in the context of climate change.
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