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Abstract Human activities, such as human water use, have been shown to directly influence terrestrial
water fluxes and states. Simulations of soil moisture, river discharge, evapotranspiration, and groundwater
storage are significantly improved, if human interactions, such as irrigation and groundwater abstraction,
are incorporated. Yet improvements through the incorporation of human water use on the simulation of
local and remote precipitation are rarely studied but may contribute to the skill of land surface fluxes. In this
study, we evaluate the impact of human water use on the skill of evapotranspiration and precipitation in a
fully coupled bedrock‐to‐atmosphere modeling platform. The results show that human water use can
potentially increase the skill of the simulations across scales. However, observational uncertainty at the
watershed scale limits the identification of model deficiencies and added value related to human water use.
Locally, daily precipitation statistics potentially benefit from the incorporation of human water use.
Although the incorporation of human water use does not remove the wet bias, it can increase the
model skill.

Plain Language Summary Precipitation forecasts exhibit large uncertainties, arising from
unknown initial conditions and states, and limitations of models to represent processes at various scales.
In order to improve simulations of the terrestrial water cycle, studies seek to improve the realism of the
applied models through, for example, increased spatial resolution or the incorporation of additional
processes across the Earth system. Here we analyze how the incorporation of additional processes in a
Europeanmodeling system affects the accuracy of the simulated water fluxes, that is, evapotranspiration and
precipitation. In particular, we improve the representation of groundwater in a continental‐scale,
atmospheric model and include groundwater pumping and irrigation, as major components of human water
use. Results indicate that large‐scale averages of precipitation, for example, over watersheds, are not
necessarily improved if human water use is considered. However, significance of this finding is difficult to
establish, because observational data sets exhibit large uncertainties, arising from, for example, the lack of
observations in space and time, and miscalibration of the measuring devices. However, our results
indicate that the accuracy of simulated daily precipitation is locally improved, which suggests that the
incorporation of human water use may increase the accuracy of precipitation forecasts and advance our
understanding of water cycle processes.

1. Introduction

The ability to understand, monitor, and predict the terrestrial water cycle under current and global change
remains a major scientific and socioeconomic challenge (Wagener et al., 2010; Wood et al., 2011). Climate
change scenarios along with an expected intensification of the water cycle with more frequent droughts
and floods (Huntington, 2006) add uncertainty to future scenarios of water storages and flows
(Vörösmarty et al., 2000). Commonly, the intensification is often measured at the interface between the land
surface and atmosphere through combined changes in evapotranspiration (ET) or precipitation (P) as an
indicator for drying, which has been discussed controversially (Greve et al., 2014). While the assessment
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of human impacts on the terrestrial water cycle remains challenging (Oki & Kanae, 2006), studies
demonstrated that human water management may lead to an intensification of the terrestrial water cycle,
especially during droughts (e.g., He et al., 2017; Wanders & Wada, 2015).

Several attempts across multiple disciplines have been made to improve the simulation of the terrestrial
water cycle. From an atmospheric perspective, these range from increasing resolutions to improve the simu-
lation of P, for example, from general circulation models to regional circulation models (di Luca et al., 2015;
Rummukainen, 2016) toward convection permitting simulations (Hohenegger & Schär, 2007; Prein et al.,
2013, 2015) to replace simplified parameterization schemes. Yet, especially regional circulation models with
parameterized convection have been identified to exhibit a wet bias (e.g., Casanueva et al., 2016; Rojas et al.,
2011), which additionally limits their ability to simulate extremes and heat waves (Vautard et al., 2013;
Weisheimer et al., 2011). In this case, a scale separation in space is beneficial to identify the added value,
which is often located at the meso‐β scale (20–200 km; Feser, 2006).

An improved representation of land surface states can further improve the realism of the simulated terres-
trial water cycle. Here the incorporation of uncertainties in land surface models also leads to an improved
predictability of P (Orth et al., 2016) and extremes, such as the heat wave over Europe in 2003 (MacLeod
et al., 2016). This in turn might indicate the lack of information and realism that current land surface models
comprise (Davin et al., 2016; Miralles et al., 2018; Tuinenburg & de Vries, 2017). Here even observation‐
based estimates of terrestrial ET exhibit relatively large uncertainties (Müller et al., 2011, 2013; Sörensson
& Ruscica, 2018; Trambauer et al., 2014). Therefore, terrestrial system models and data sets to inform these
models have been continuously expanded, incorporating additional processes of the water, energy, and
biogeochemical cycles including human activities under the assumption that an increasing number and rea-
lism of simulated processes of the terrestrial water cycle leads to improved predictive skill (Sulis et al., 2018).
One such process is the incorporation of human management of land cover, land use, and water resources.
The most commonly studied management practice is irrigation, which may significantly influence
P (DeAngelis et al., 2010; de Vrese et al., 2016), and its incorporation can improve the skill of general circula-
tion model simulations (Thiery et al., 2017).

Large uncertainty in the simulation of the terrestrial water cycle also arises from the subsurface state. From
the hydrologic perspective, the simulation of the terrestrial water cycle can be improved by increasing reso-
lution (Bierkens et al., 2015) and the incorporation of human water use (HWU) beyond irrigation (Wada
et al., 2017). Hydrologic model validation comprises a wide range of studies, which evaluate the performance
of the simulated terrestrial water states and fluxes, such as soil moisture, ET, and discharge, fromwatersheds
to continents (e.g., Döll et al., 2003; Haddeland et al., 2006; Liu et al., 2017; Rakovec et al., 2016). While the
incorporation of water management, including groundwater abstraction and reservoirs, has been shown to
improve the skill of simulating hydrological extremes (Veldkamp et al., 2018), a high uncertainty of water
fluxes simulated with land surface and hydrological models comes from the driving atmospheric forcing
and P (e.g., Biemans et al., 2009; Müller‐Schmied et al., 2014, 2016; Wang et al., 2016).

In an effort to move toward a process‐based and potentially more realistic model based representation of the
terrestrial water cycle, studies attempt to bridge the gap between hydrologic and atmospheric research
through the incorporation of a better representation of subsurface and land surface hydrology including a
HWU interface in Earth System Models (Hazenberg et al., 2016; McDermid et al., 2017; Nazemi &
Wheater, 2015; Pokhrel et al., 2015; Voisin et al., 2013). While progress has been made in understanding
the terrestrial water cycle, the validation of such integrated modeling systems and the identification of the
origin of biases become increasingly challenging (Oreskes et al., 1994) due to the lack of continuous and
colocated observations across the Earth System from groundwater across the land surface into the
atmosphere and observational uncertainty (Kotlarski et al., 2017). However, especially for water resource
assessments, the identification of biases is essential. In a coupled modeling system, this bias might propagate
not only from the local to the regional scale (Addor et al., 2016) but also from one compartment to the other
(groundwater to land surface, land surface to atmosphere, and vice versa; Sulis et al., 2017), which
potentially aggravates the bias through feedback processes.

There is a growing number of observations including satellites but also sensor networks and single stations
to measure states and fluxes of the terrestrial water cycle (McCabe et al., 2017). Yet validation studies often
neglect the fact that observations include additional uncertainty. There exist multiple sources that introduce
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uncertainty to observations. For example, observational devices may exhibit malfunctions, miscalibration,
and location biases. Analogously, all observations have a footprint, that is, a spatiotemporal reference, for
which they are assumed to be representative. The footprint of point measurements is typically very small
and on the order of a fewmeters, especially with respect to small‐scale processes, such as ET, which is mainly
influenced by local features, and convective P. On the contrary, satellite images have a much larger footprint
on the order of tens to hundreds of kilometers. To bridge the gap between these scales, point measurements
are often aggregated to gridded observational products, which introduce an additional uncertainty through
assumptions of the underlying algorithm and are especially critical for regions with a sparse coverage of in
situ stations.

In this study, we evaluate the integration of HWU in simulations using the continental scale integrated
Terrestrial Systems Modeling Platform (TerrSysMP), a fully coupled soil‐vegetation‐atmosphere modeling
system, during the heatwave 2003 in Europe. The main objectives of this study are to (1) evaluate the
accuracy of integrated groundwater‐atmosphere simulations at the land‐atmosphere interface considering
observational uncertainty and (2) assess potential added values of incorporating HWU on simulation
skills with a focus on ET and P. The first objective aims at a general evaluation of the agreement and
the accuracy of the simulations at the watershed scale at monthly to annual time scales using gridded
observational data sets of ET and P. Multiple observational data sets of ET and P are used for validation.
Both variables are evaluated separately but also combined to assess the accuracy and uncertainty of the
net water flux at the land‐atmosphere interface. The second objective focuses on the added value of
HWU in the simulation of terrestrial water fluxes addressing the questions whether and how the consid-
eration of HWU improves the skill of integrated bedrock‐to‐atmosphere simulations. Here additional daily
in situ measurements of P and ET from colocated stations are utilized to discuss potential benefits of
incorporating HWU.

The outline of this manuscript is as follows. Section 2 provides the methodology, the simulations, and the
experimental design and introduces the observational data sets and metrics used to evaluate the accuracy
and the skill of the simulations. Section 3 illustrates and discusses the results for a natural reference simula-
tion. The added value of incorporating HWU is assessed in section 4. Summary and conclusions are provided
in section 5.

2. Materials and Methods
2.1. Simulations

The simulations evaluated in this study were carried out with TerrSysMP (Shrestha et al., 2014; see also
Gasper et al., 2014), which was setup over the European CORDEX domain at 0.11° resolution (Keune
et al., 2016). HWUwas considered as groundwater abstraction and irrigation (Keune et al., 2018). A detailed
description of the setup can be found in aforementioned references, but a brief description is repeated here.
2.1.1. Setup of the Modeling System
TerrSysMP simulates the full terrestrial hydrologic cycle from groundwater to the atmosphere including
feedbacks between shallow groundwater, land surface ET, and boundary layer processes along with P initia-
tion. Lateral 3‐D surface‐subsurface flow is simulated using ParFlow (Jones & Woodward, 2001; Kollet &
Maxwell, 2006; Maxwell, 2013), which is coupled to the land surface model CLM3.5 (Oleson et al., 2008)
and the atmospheric weather prediction model COSMO (version 5.1; Baldauf et al., 2011; Doms &
Schättler, 2002) through the Ocean Atmosphere Sea Ice Soil coupling tool OASIS3‐MCT (Valcke, 2013). In
this setup, COSMO was run with a 60‐s time step, while ParFlow and CLM were run with a 180‐s time step.
Coupling between the models was performed every 180 s, constituting a very high coupling frequency to
account for nonlinearities.

COSMO was initialized and driven at the boundaries with the reanalysis of the European Centre for
Medium‐Range Weather Forecasts, ERA‐Interim (Dee et al., 2011). In order to keep the large‐scale atmo-
spheric circulation of all simulations consistent with the reanalysis, spectral nudging (von Storch et al.,
2000) was applied. Vertical winds (u,v) were nudged above the planetary boundary layer (p < 850‐hPa) with
a nudging coefficient of ɑ = 0.05 for wave numbers smaller than 14. The δ‐two‐stream approximation of the
radiative transfer equation according to Ritter and Geleyn (1992) was used. Convection was parameterized
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with the Tiedtke (1989) mass flux scheme, and vertical turbulent diffusion was simulated with a 2.5‐level clo-
sure scheme. Cloud water, cloud ice, rain, and snow were simulated with a bulk‐water continuity model.

The land surface characteristics for CLM3.5 were based on previous studies (Keune et al., 2016) including an
updated land cover and leaf area index (LAI) data set based on the Moderate Resolution Imaging
Spectroradiometer (Friedl et al., 2002). Subgrid‐scale heterogeneity was accounted for by a maximum of four
plant functional types per grid cell.

ParFlow was set up with the hydrofacies distribution 2 from Keune et al. (2016) in order to represent verti-
cally heterogeneous soil and hydrogeologic characteristics. This hydrofacies distribution consists of a soil
section (reaching a depth of 3 m) and a deeper subsurface and bedrock hydrogeology (reaching a depth of
103 m). The soil texture was prescribed using the Food and Agriculture Organization (FAO, 1988) soil data-
base for the upper 10 soil layers. Hydrogeology was prescribed at the lower five soil layers using the Gleeson
database (Gleeson, Marklund, et al., 2011; Gleeson, Smith, et al., 2011). To mimic the ocean, a lateral
Dirichlet boundary condition with a hydrostatic profile of a shallow water table was applied.

2.1.2. Water Use Scenarios
In this study, a set of five simulations, carried out over the heatwave year 2003, was analyzed. These include
a natural reference simulation (NAT) and four HWU scenarios. The HWU scenarios were constructed as fol-
lows: Two observation‐based HWU data sets and two water use schedules were applied. HWU1 describes the
HWU, that is, irrigation and (total) groundwater abstraction, from Wada et al. (2012, 2016). HWU2 is based
on HWU from Siebert et al. (2010) and Siebert and Döll (2010). In both cases, groundwater abstraction
accounted for irrigation and domestic and industrial demand, where domestic and industrial demand from
Wada et al. (2012, 2016) were added to groundwater abstraction estimates for irrigation from Siebert et al.
(2010) and Siebert and Döll (2010) for consistency. Irrigation and pumping were applied simultaneously
between 06:00 and 18:00 UTC (daytime, HWU1‐1 and HWU2‐1) or between 18:00 and 06:00 UTC (night-
time, HWU1‐2 and HWU2‐2). Both data sets were bilinearly interpolated to the 0.11° grid, and rates of each
daily estimate were added to the top soil layer (irrigation) or subtracted from the bottom soil layer (ground-
water abstraction/pumping) at every time step in ParFlow using source/sink terms. All simulations were
started from a multiyear spinup over the year 2003 after which a dynamic equilibrium was reached.

In this study, the simulations evaluated include the four water use scenarios (HWU's) and the natural refer-
ence simulation (NAT). Note that originally, the water use ensemble was not created to represent real‐world
conditions but to induce a relatively large spread in order to assess the uncertainty of land‐atmosphere feed-
back related to HWU (Keune et al., 2018). Nevertheless, these simulations are used to assess the accuracy of
each water use scenario but also the overall accuracy of the water use ensemble mean (mean of all four
HWU's) and test improvements against the natural reference simulation. The water use ensemble mean is
calculated using equally weighted water use scenarios, that is,

HWU−ENS ¼ ∑
M

i¼1
wi⋅HWUi;

with wi = 1/4 for all scenarios andM = 4. Thus, six simulations overall (four water use scenarios, one water
use mean, and one natural reference run) are evaluated using observations.

2.1.3. Simulation Period
Simulations were performed for the heatwave year 2003, which was characterized by extreme dry and hot
conditions over Europe (Schär & Jendritzky, 2004) due to numerous hydrometeorological factors (Black
et al., 2004). An anomalously anticyclonic high over Europe from May to August leads to reduced clouds
and P, which in turn lead to desiccating soils. These effects induced a pre‐heatwave at the beginning of
July and a mega heatwave in August. Land surface conditions played a crucial role during both heatwave
periods and, due to the absence of sufficient soil moisture to meet evaporative demands, were characterized
by a heat accumulation through sensible heat. The mega heatwave period was influenced by a steady antic-
yclonic high over France (FR), which promoted the dominance of the local heat balance, which, in turn, lead
to an exacerbating soil moisture‐temperature feedback loop and extreme temperature records (Miralles
et al., 2014). The exceptional combination of all feedbacks makes the heatwave of 2003 difficult to simulate
with current models (Weisheimer et al., 2011). In particular, Weisheimer et al. (2011) showed that it requires
not only an improved land surface hydrology but also improved radiation and convection parameterizations
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to improve model skill in simulating the heatwave conditions. Here we assess how the integration of HWU
improves the model skill.

2.2. Observations

Two types of observations are used for validation. First, gridded, model‐based observations are used to
evaluate monthly, seasonal, and annual estimates of ET, P, and the net moisture flux ET‐P, at the
watershed scale. All gridded observation‐based data sets of ET and P that are available for 2003 at a spa-
tial resolution of at least 0.5° and a monthly time scale are used for validation in order to assess observa-
tional uncertainty. These include only diagnostic data sets, which are either interpolated in situ
observations, merged observational data sets, and in case of ET, are based on the Penman‐Monteith equa-
tion or empirically derived formulations, such as the Priestley‐Taylor equation. We refrain from using
modeled estimates, in which ET and P are estimated with the help of a land surface model and/or a rea-
nalysis, because these do not consider HWU explicitly (e.g., irrigation; Tuinenburg & de Vries, 2017). The
gridded observations comprise five P and three ET data sets, which have been used in previous studies
(Greve et al., 2014; Martens et al., 2018; Müller et al., 2011). Here we also combine these observations into
15 observational data sets of ET‐P to assess the uncertainty of the observed net moisture flux at the
watershed scale.

Second, colocated in situ measurements of ET and P from FLUXNET eddy‐covariance sites are used to vali-
date local‐scale and daily variations of the net moisture flux and to identify the added value of incorporating
HWU in fully integrated modeling systems at the local scale. In addition, a larger data set of in situ rain
gauge measurements is used to identify skills at the local scale. Tables 1 and 2 provide an overview of the
gridded and in situ observations used in this study, their provenance, and spatial and temporal resolution.
A detailed description of each data set is provided below.

Table 1
Overview of the Gridded Observational Data Sets of P and ET Used in This Study

Observation Description Time scale
Spatial
scale Variable (unit) References Data access

Gridded precipitation data sets
CRU v. 4.01 Interpolated gauge observations,

not bias corrected
(angular‐distance
weighting interpolation)

Monthly 0.5° P (mm/month) Harris et al. (2014) http://browse.ceda.ac.uk/
browse/badc/cru/data/cru_ts/
cru_ts_4.00/

GPCC Interpolated gauge observations,
not bias corrected

Monthly 0.5° P (mm/month) Rudolf et al. (2005) https://www.esrl.noaa.gov/psd/
data/gridded/data.gpcc.html

UDelP Interpolated gauge observations Monthly 0.5° P (cm/month) Legates and Willmott
(1990)

https://www.esrl.noaa.gov/psd/
data/gridded/data.UDel_
AirT_Precip.html

PREC/L
(NOAA)

v. 4.01

Interpolated gauge observations,
not bias corrected

Monthly 0.5° P (mm/month) Chen et al. (2002) https://www.esrl.noaa.gov/psd/
data/gridded/data.precl.html

MSWEP
v.1.2

Multisource weighted ensemble
observations (satellites, gauges,
and reanalysis)

Monthly
(aggregated
from 3 hr)

0.1° P (mm/day) Beck, Vergopolan, et al.
(2017) and Beck, van
Dijk, et al. (2017)

http://www.gloh2o.org/

Gridded evapotranspiration data sets
FLUXNET‐
MTE

Statistical upscaling of flux
observations using a
Model‐Tree‐Ensemble approach

Monthly 0.5° LE (MJ/m2/day) Jung et al. (2009, 2010,
2011)

https://www.bgc‐jena.mpg.de/
geodb/projects/Data.php

GLEAM
v.3.1a

Priestley and Taylor based
algorithm based on
satellite observations

Monthly
(aggregated
from daily)

0.25° ET (mm/day) Miralles et al. (2011)
and Martens et al.
(2017)

http://www.gleam.eu/

CSIRO Derived from the Budyko
framework with observed P
and Penman‐Monteith E

Monthly 0.5° ET (mm/month) Leuning et al. (2008)
and Zhang et al.
(2016)

https://data.csiro.au/dap/
landingpage?pid=csiro%
3A17375

Note. P = precipitation; ET = evapotranspiration; LE = latent heat of evaporation.
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2.2.1. Gridded Observations of ET and P
2.2.1.1. CRU
Climate Research Unit (CRU) TS4.01 (Harris et al., 2014) is a gridded time series data set, which was released
in January 2017. It provides global, monthly observations of P at 0.5° × 0.5° resolution. Monthly station mea-
surements are interpolated to a high‐resolution grid by the CRU of the University of East Anglia (http://
www.cru.uea.ac.uk/) to provide a global, homogenous climatic time series of basic variables.
2.2.1.2. GPCC
The global P data set from the Global Precipitation Climatology Centre (GPCC) is based on 67,200 quality‐
controlled gauge measurements and contains the monthly records of P interpolated to a regular 0.5° × 0.5°
grid (Rudolf et al., 2005; Schneider et al., 2011). This gridded gauge‐analysis product is not bias corrected and
may include systematic gauge errors.
2.2.1.3. UDelP
The P data set from the University of Delaware (UDelP; Willmott & Matsuura, 2001; see also Legates &
Willmott, 1990) combines gauge measurements of P from multiple climate monitoring networks, such as
the Global Historical Climatology Network. The gauge observations were interpolated to a regular 0.5° ×
0.5° grid using the Climatologically aided interpolation (Willmott & Robeson, 1995) and were not corrected
for sensor biases.
2.2.1.4. PREC/L
The National Oceanic and Atmospheric Administration released a reconstructed P product over land
(PREC/L) based on 17,000 gauge observations from the monitoring networks Global Historical
Climatology Network and Climate AnomalyMonitoring System. Observations were interpolated to monthly
averaged P over a regular 0.5° × 0.5° grid (Chen et al., 2002).
2.2.1.5. MSWEP
The multisource weighted ensemble precipitation (MSWEP) is a new P product, which was released in
2017 (Beck, Vergopolan, et al., 2017). It provides 3‐hourly P at 0.1° resolution worldwide and combines
gauge, satellite, and reanalysis data in a weighted ensemble approach. MSWEP adjusts for gauge biases
on a daily basis and has been developed specifically for hydrological applications (Beck, van Dijk,
et al., 2017).
2.2.1.6. FLUXNET‐MTE
The model tree ensemble (MTE) proposed by Jung et al. (2009, 2010, 2011) is a machine learning approach
to upscale eddy covariance measurements at FLUXNET stations (described below) to a global gridded data
set. The machine learning technique was trained using remote sensing data sets, land use information, cli-
mate, and meteorological data (Jung et al., 2011). Thus, in regions of sparse FLUXNET measurements, the
resulting fields rely strongly on the information content and accuracy of the training data set. The
FLUXNET‐MTE data set provides monthly averages of, for example, ET at 0.5° × 0.5° resolution and is
often used as an independent data set for model evaluation and calibration (e.g., Bonan et al., 2011;
Swenson & Lawrence, 2014).
2.2.1.7. GLEAM
The Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011) estimates ET based on
satellite observations. In GLEAM, ET is calculated as the residual of potential ET from the Priestley‐
Taylor equation constrained by water stress obtained from satellite observations of soil moisture and vegeta-
tion optical depth and conditioned on estimates and reanalyses of P, radiation, and temperature. In this

Table 2
Overview of the In Situ Observational Data Sets of P and ET Used in This Study

Observation Description Time scale Spatial scale Variable (unit) References Data access

In situ observations
FLUXNET Eddy‐covariance

measurements
Daily (aggregated
from half hourly)

In situ P (mm/day)
and LE (W/m2)

Baldocchi et al. (2001) http://fluxnet.fluxdata.org/

ECA&D (blended) Weather stations/rain
gauges

Daily In situ P (mm/day) Klein Tank et al. (2002) http://www.ecad.eu/
dailydata/
predefinedseries.php

Note. P = precipitation; ET = evapotranspiration; LE = latent heat of evaporation.
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study, the GLEAM version 3.1a was used (Martens et al., 2017). GLEAM provides daily estimates of ET at
0.25° × 0.25° resolution, which have been shown to agree well with existing FLUXNET stations (Martens
et al., 2017). GLEAM retrievals of root zone soil moisture and ET are often used in land‐atmosphere
feedback studies (e.g., Guillod et al., 2015; Miralles et al., 2012).
2.2.1.8. CSIRO
The ET data set from the Commonwealth Scientific and Industrial Research Organization (CSIRO) in
Australia provides global estimates of land surface ET and its components at 0.5° resolution. ET is derived
in a Budyko framework using observed P and potential ET calculated with the Penman‐Monteith‐
Leuning model (Leuning et al., 2008; Zhang et al., 2016).
2.2.2. In situ Observations of ET and P
2.2.2.1. FLUXNET
The European FLUXNET community (e.g., Baldocchi et al., 2001, http://fluxnet.fluxdata.org/) provides an
error‐corrected and quality‐checked, combined data set of measurements across registered European
eddy‐covariance stations with half‐hourly resolution. For 2003, a total of 19 stations over Central and
Southern Europe is considered for validation, using a data coverage of at least 50% for P and ET, respectively.
This selection comprises four eddy‐covariance stations over grasslands, five stations over evergreen needle-
leaf forests, six stations over deciduous broadleaf forests, three stations over evergreen broadleaf forests, and
one station over mixed forest. Three stations (i.e., IT‐Col [deciduous broadleaf forests], NL‐HAA [grass-
lands], and CZ‐BK1 [evergreen needleleaf forests]) were neglected for analysis due to quality concerns.
Figure 1 provides an overview of the FLUXNET stations used for validation. Note that uncorrected measure-
ments of the latent heat flux are used for comparison and that eddy covariance stations do not necessarily
close the land surface energy budget (e.g., Wilson et al., 2002).
2.2.2.2. ECA&D
The European Climate Assessment & Data (ECA&D, http://www.ecad.eu/) collection provides a compre-
hensive data set of daily in situ observations of multiple variables including P. Figure 1 shows the spatial dis-
tribution of P stations available for 2003 across Europe. Only stations with at least 95% data coverage (i.e.,
342 days of 360 days excluding the model spinup) were selected for validation. This yields a total of 1,033 sta-
tions across Europe.

Figure 1. European watersheds larger than 100 km2 considered in this study. Colors are representative of the watershed
area. Watershed boundaries are taken from the Hydrological data and maps based on SHuttle Elevation Derivatives at
multiple Scales (https://hydrosheds.cr.usgs.gov/, Lehner et al., 2006). Gray and red points indicate in situ observations
from ECA&D and FLUXNET stations, respectively. The symbols are commensurate to the dominant land use of the
FLUXNET station: evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF),
mixed forest (MF), and grassland (GRA).
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2.2.3. Data Aggregation
For all gridded observations at different spatial resolutions, watershedmeans are calculated based on the ori-
ginal resolution (native grid) and compared to the watershed average of the simulations. Daily values of
gridded data sets, that is, GLEAM and MSWEP, are summarized to monthly values. The half‐hourly values
of FLUXNET are accumulated to daily latent heat fluxes (LE) and converted to daily ET (excluding missing
values consistently from model results) and daily P. For the validation with station data, simulations are
interpolated to the stations using the nearest neighbor method. For the comparison with FLUXNET stations,
the nearest neighbor is used irrespective of the predominant land use type.

2.3. Validation Metrics and Skill Scores

The quality and accuracy of the simulation experiments is evaluated with observations at the monthly, sea-
sonal, and annual watershed scale and at the daily and local scale. The followingmeasures are used. The bias
indicates the average direction of the error between simulation f and observation o, that is,

bias ¼ 1
n
∑n

i¼1 f i−oið Þ

over a time series of length n. Here f and o are ET, P, or their difference, from simulation and observation,
respectively. The bias provides only an average error between simulation and observation and does not indi-
cate the quality of the simulations. The mean squared error (MSE) is used to measure the accuracy of the
forecast, that is, the magnitude of the error weighted with the squares of error as

MSE ¼ 1
n
∑n

i¼1 f i−oið Þ2:

The MSE skill score, SSMSE (Jolliffe & Stephenson, 2012), relates the improvement of one simulation over
another and allows to identify potential improvements of accuracy between the water use scenarios and
the natural reference simulation. The SSMSE is calculated as

SSMSE ¼ MSEHWU−MSENAT

MSEperf−MSENAT
¼ 1−

MSEHWU

MSENAT
;

where MSEHWU is the MSE of each water use scenario and MSENAT is the MSE of the natural reference
simulation. MSEperf describes the error of a perfect forecast with MSEperf = 0. Values close to 0 indicate
no change of accuracy by incorporating HWU. A value of 1 indicates an improvement of 100%. The SSMSE

is a positively oriented score, that is, the higher the value, the stronger the improvement.

Similarly to Kotlarski et al. (2017), we consider observational uncertainty in our comparison. Here
observational uncertainty is defined as the standard deviation of the variable's values among
the observations.

Daily, in situ observations also allow to evaluate deterministic forecasts in a probabilistic approach, based
on, for example, the joint occurrence of events. For P, we define thresholds for wet days (WD, P > 1
mm/day), heavy P days (HPD, P > 10 mm/day), and very heavy P days (VHPD, P > 20 mm/day), thus con-
verting continuous values of P into dichotomous data sets of “yes”/“no” events. These events are then eval-
uated probabilistically by their joint occurrence in simulations and observations. Therefore, a contingency
table (supporting information Table S1) is defined for each threshold, which allows to evaluate the condi-
tional probability of an event being simulated, given the observations and vice versa. A number of skill scores
have been identified based on the contingency table (e.g., Jolliffe & Stephenson, 2012), such as the frequency
bias (FBI)

FBI ¼ hitsþ false alarms
hitsþmisses

;

which indicates the tendency of the simulations to overpredict or underpredict events. A value larger than 1
indicates that more events were simulated than observed. Vice versa, values below 1 indicate
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underprediction. The Peirce's skill score (PSS) evaluates how well the simulations are able to separate the
occurrence of events (yes events) from the nonoccurrence (no events). The PSS is defined as

PSS ¼ hits
hitsþmisses

−
false alarms

false alarmsþ correct negatives

and hence evaluates the relation between the probability of detection (first term) and the probability of false
detection (second term). The PSS varies between −1 and 1, where 0 indicates no skill. A perfect separation
between occurrence and nonoccurrence of events is indicated by a PSS of 1.

3. Validation of the Natural Reference Simulation

This section evaluates the accuracy of the natural reference simulation with TerrSysMP over the heatwave
year 2003. It is split in two parts: (i) the monthly watershed scale, at which observational uncertainty of
gridded products is considered, and (ii) the daily, local scale using in situ observations.

3.1. Watershed Scale

In order to consider the observational uncertainty, we evaluate the accuracy of the simulated terrestrial
water cycle based on multiple gridded observation‐based products of ET and P at the watershed scale.
Figure 2 shows ET, P, and ET‐P averaged over the watersheds for the year 2003. The upper two rows show
the average and the standard deviation over the 5, 3, and 15 observation‐based products, respectively. The

Figure 2. Maps of annually averaged P (mm/day), ET (mm/day), and ET‐P (mm/day) over Europeanwatersheds in 2003. (a)–(c) and (d)–(f) show themean and the
standard deviation over the 5, 3, and 15 observations (each combination of ET: FLUXNET‐MTE, CSIRO, and GLEAM with P: GPCC, CRU, PREC/L, MSWEP,
and UDelP), respectively. (g)–(i) shows the mean bias of the NAT simulation of TerrSysMP with respect to the mean observations, again for P, ET, and
ET‐P. P = precipitation; ET = evapotranspiration.
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bottom row shows the bias of the natural reference simulation with respect to the mean of all observations.
Over the year, the average P commonly exceeds ET, but a few watersheds show a positive net moisture flux
(e.g., Guadalquivir, Guadiana, Seine, Loire, Elbe, and Oder; Figure 2c). The model shows a positive P bias,
especially over mountainous watersheds. The ET bias is comparably small, which leads to an
underestimation of the net moisture flux by the model over almost all watersheds (Figure 2i). Note the
highest observational uncertainties, arising through P, coincide with the highest biases (Figures 2d and 2g
and 2f and 2i). Especially in mountainous regions, such as the Alps, the Pyrenees, the Cantabrian
mountains (NE Spain), and the mountain ranges of the Iberian system (NW Spain), ET‐P is underestimated,
but the observations exhibit a high uncertainty.

During the dry summer (June, July, and August) of 2003, all European watersheds lost more water through
ET than they received through P, which resulted in a positive upward moisture flux (Figures 3a–3c). Most
watersheds over FR, the Iberian Peninsula (IB) and the Mediterranean (MD) received almost no P and indi-
cate a net loss of water on the order of 2–3 mm/day. Whereas the model captures the net loss of water over
the Southern European watersheds quite well, it simulates a negative ET‐P balance over the watersheds
Ebro, Rhone, and Po, resulting in a strong negative bias (Figure 3i), which also indicates the lack of skill
in simulating heatwaves (Weisheimer et al., 2011). Again, this coincides with the highest observational
uncertainty, determined by observational products of ET during summer (Figures 3e and 3f).
Interestingly, the Po watershed, which is heavily water managed (Wada et al., 2016), shows the largest obser-
vational uncertainty of ET‐P during summer.

Observational uncertainty is mainly determined by P over the course of the year and by ET during summer.
Figure 4 shows exemplarily the annual cycle of ET, P, and ET‐P for the Guadalquivir basin. The annual cycle
of the water fluxes is well captured for this watershed but also indicates some differences between the model

Figure 3. Same as Figure 2 but for summer 2003 (June‐July‐August).
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and the observations. The observations show a peak of ET in late spring (Figure 4a), presumably through the
prolonged P deficit and the pre‐heatwave from March to May. However, the ET observations also show a
large uncertainty from April to September, which is mainly stemming from GLEAM, and might indicate
the strongest water limitation of the observational data sets from June onward. In contrast, this effect is
hardly visible in case of CSIRO and FLUXNET‐MTE, which agree better with the simulation results. The
origin of the existing biases cannot be traced back conclusively to P, which is only marginally
overestimated in this case. Vice versa, it remains unclear to which extent the ET observations are able to
capture irrigation effects. In case of GLEAM, this is mainly limited to the capability of large‐scale satellite
measurements of soil moisture to capture the effect of (small‐scale) irrigation (Lawston et al., 2017).
Similarly, FLUXNET‐MTE is limited to the availability of tower measurements, which might not be
located in irrigated areas. Considering all these uncertainties, the annual cycle of ET‐P is well captured,
with an underestimation in spring and a shift of the peak from May to July.

3.2. Local Scale

The validation of daily ET, P, and ET‐P fluxes with in situ measurements of 1,033 rain gauges and 19
FLUXNET towers confirms the above watershed‐based biases. Figure 5 shows the annual (Figures 5a–5c)
and summer (Figures 5d–5f) biases of P, ET, and ET‐P for all available stations in 2003. Over the year, the
simulation exhibits a positive P bias on the order of 0.5 mm/day based on FLUXNET stations and 0.49
mm/day based on ECA&D stations. This value is comparable to other validation studies (e.g., Katragkou
et al., 2015; Kotlarski et al., 2014, 2017; Vautard et al., 2013). In contrast to the watershed scale, ET is over-
estimated, with a bias of 0.24 mm/day. For all available colocated measurements, this results in an under-
estimation of ET‐P on the order of −0.29 mm/day. These biases are slightly increased for summer (0.94
mm/day [P, FLUXNET], 0.69 mm/day [P, ECA&D], 0.46 mm/day [ET, FLUXNET], and −0.48 mm/day
[ET‐P, FLUXNET]). Noteworthy is the high P bias over all stations in the area of Ebro and the Alps, which
corroborates the well‐known dependence on topography. On the other hand, the biases at FLUXNET sta-
tions reveal no dependence on the land use, which suggests the dominant role of P biases in the simulation.
Yet it has to be mentioned that the lack of stations, and especially colocated stations, is a major limitation for
this and many other studies.

A detailed analysis of the daily P statistics reveals that heavy and very heavy P events are most commonly
responsible for an increased P bias. Figure 6 shows boxplots of the FBI and the PSS for WD, HPD, and
VHPD, separately for the regions Mid‐Europe (ME), FR, IB, MD, and Eastern Europe (EA). The FBI shows
only a small overprediction of WD, with the highest skill in ME and FR. The FBI increases with the P thresh-
old and shows an overprediction of HPD and VHPD. Over MD and IB, HPD (VHPD) are on average 2–3
(6–8) times more often simulated than observed. The skill also continuously decreases and indicates that
over the depicted regions, the simulation is unable to correctly detect timing and location of VHPD.

Figure 4. Monthly time series of (a) ET, (b) P, and (c) ET‐P in (mm/month) averaged over the Guadalquivir watershed for all gridded observational data sets and the
NAT simulation. The gray area indicates the maximum range covered by the observations. P = precipitation; ET = evapotranspiration.
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bias is rather subject to observational uncertainty, which increases from flat and coastal areas (Guadalquivir,
Guadiana, and Tagus) toward mountainous watersheds (Douro, Ebro, Garonne, and Rhone). Here the
observational uncertainty clearly exceeds the uncertainty related to HWU.

The high observational uncertainty of ET‐P leads to a high uncertainty of the bias especially in summer
(Figure 7b). As has been discussed before, the models fail to capture the prolonged drought and exhibit con-
sistently a small overestimation of the net moisture flux especially for the southern watersheds over the IB.
For most of the analyzed watersheds, the bias is negative in summer and hence indicates an underestimation
of ET‐P, either through an underestimation of ET or an overestimation of P (cf. Figure 3). The summer bias is
the largest for the CSIRO data sets, ranging from, for example,−0.9 to−0.4 mm/day for the Po basin. On the
contrary, the biases for Douro, Tiber, Garonne, and Elbe can be either negative or approximately 0 and
depend on the observation‐based products used. The fact that the highest biases coincide with the highest
observational uncertainty, and furthermore exceed the variations of ET‐P induced by HWU, hampers an
objective validation. Moreover, this raises concerns especially for the use of gridded validation data sets in
water assessment and scarcity studies.

The individual HWU scenarios were not constructed to represent real‐world conditions but rather to assess
local and nonlocal feedback processes in the terrestrial water and energy cycles associated with HWU
(Keune et al., 2018). Hence, we do not expect the single HWU scenarios to improve model skill with respect
to NAT. The mean of all scenarios, HWU‐ENS, is assumed to be representative of the effect of a more

Figure 7. Box‐Whisker Plots of the ET‐P bias for (a) the full year 2003 and (b) summer 2003 for the 5 simulations, the 15 observations, and over 15 selected
watersheds: 1 = Guadalquivir; 2 = Guadiana; 3 = Tagus; 4 = Douro; 5 = Ebro; 6 = Tiber; 7 = Po; 8 = Garonne; 9 = Rhone; 10 = Seine; 11 = Loire; 12 = Rhine;
13 = Elbe; 14 = Oder; 15 = Danube. The five boxplots for each watershed indicate the observational uncertainty of the simulated bias in the following order:
NAT, HWU1‐1, HWU1‐2, HWU2‐1, and HWU2‐2. The symbols within each box indicate the observational P data set (Δ: CRU,◯: GPCC;▢: UDelP,▽: PREC/L,
and◇: MSWEP) and the color the observational ET data set (red: FLUXNET‐MTE, orange: GLEAM, and purple: CSIRO). A negative bias in (a) indicates that the
net moisture flux ET‐P is overestimated (simulations too wet) and in (b) that the continental source is underestimated. A positive bias in (b) indicates that
ET‐P is overestimated. The values at the bottom of each subplot indicate the mean ET‐P flux of all observations over the watershed. P = precipitation;
ET = evapotranspiration; HWU = human water use.
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realistic representation of HWU. Hence, we focus on the added value of HWU‐ENS over NAT in
the following.

Figure 8 shows the SSMSE of HWU‐ENS over NAT and its dependency on observational uncertainty. The
boxplots show the SSMSE of P, ET, and ET‐P for the 15 watersheds from Figure 7, for the full year
(Figure 8a) and summer (Figure 8b), and include the 5, 3, and 15 observational products, respectively.
Most watersheds indicate a clear improvement in the simulation of P and ET‐P (e.g., Guadiana, Ebro,
Tiber, and Elbe) but a deterioration of skill in the simulation of ET over the summer and the full year.
The magnitude of this skill improvement for ET‐P varies between 1% and 30% (average: 2.67% for the full
year and 3.83% for the summer). However, for some watersheds, the added value is masked by observational
uncertainty, either in magnitude (e.g., Guadiana) or in sign (e.g., Guadalquivir and Garonne).

Over all watersheds (including the ones not illustrated here), the SSMSE indicates that the incorporation of
HWU‐ENS improves marginally the simulation of ET by 0.25% but deteriorates the skill for P and ET‐P
fluxes by some 1%. On the contrary, the simulation of the summer net moisture flux is improved by about
8%, which mainly stems from an improved simulation of P (~11%).

4.2. Local Scale

The differences associated with HWU increase toward the daily and local scales (Keune et al., 2018). To
assess the added value of incorporating HWU at the local scale, daily in situ observations of ET, P, and
ET‐P are used. A SSMSE is calculated for the 19 available FLUXNET stations. The results are shown in
Figure 9, for ET‐P, ET, and P along the rows and for the entire year and summer along the columns. Over
the year and all available FLUXNET stations, the HWU mean improved the MSE of ET‐P by ~13%, P by

Figure 8. Box‐Whisker Plots of the SSMSE for P, ET, and ET‐P of HWU‐ENS over HWU‐NAT, for (a) the full year 2003 and (b) summer 2003 over the 15 selected
watersheds from Figure 7: 1 = Guadalquivir; 2 = Guadiana; 3 = Tagus; 4 = Douro; 5 = Ebro; 6 = Tiber; 7 = Po; 8 = Garonne; 9 = Rhone; 10 = Seine; 11 = Loire;
12 = Rhine; 13 = Elbe; 14 = Oder; 15 = Danube. The three boxplots for each watershed indicate the uncertainty of the SSMSE with respect to the observational data
set: P (Δ: CRU, ◯: GPCC; ▢: UDelP, ▽: PREC/L, and ◇: MSWEP), ET (red: FLUXNET‐MTE, orange: GLEAM, and purple: CSIRO), and ET‐P. A positive
(negative) SSMSE indicates that the incorporation of HWU increases (decreases) the skill of the simulations. A value of 0 indicates no change of skill.
P = precipitation; ET = evapotranspiration; HWU = human water use; MSE = mean squared error.
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~13%, and ET by ~3%. However, single stations can also show considerable deteriorations of skill. Average
improvements are larger in summer (ET‐P: ~27%, P: ~27%, and ET: ~4%). This improvement can be
significantly higher if individual HWU scenarios are inspected. Yet, effects cannot be directly associated
with individual plant functional types, regions, or HWU scenarios (cf. Figure S4). The separation of the
skill score into ET and P shows that the largest increase in skill is coming from an improved simulation of
P, although especially summer skills seem arbitrarily affected due to the chaotic nature of P. Note, while
summer ET at PT‐Esp is significantly improved through the incorporation of HWU for all water use
scenarios (approx. 10% to 40%), the skill of ET‐P does not improve, as P skills are not improved (cf. also
Figure S5).

As the evaluation at FLUXNET sites indicates major improvements for the simulation of P, individual events
are further evaluated with a larger observational data set, to identify an overall added value. Figure 10 shows
spatial maps of the SSMSE for daily summer P for HWU‐ENS and the individual HWU scenarios. Spatially,
the skill improvement varies, and simulated P at single stations is not consistently improved through the
incorporation of HWU. Moreover, all stations, including those in less managed regions, indicate changes
in skill, which emphasizes the remote impacts of HWU. However, there exist some common patterns of skill
improvement for the individual HWU scenarios. The majority of stations over the IB show a negative influ-
ence of HWU on the simulation of daily summer P for all HWU scenarios (on average by−9%, cf. Figure S6).
In contrast, the majority of the stations over Germany and EA, with a focus on the Eastern parts of the
Danube watershed, indicate improved skill (on average by 12.9% over ME). Yet, while the skill of individual
HWU scenarios is affected by varying skill through overerestimated and underestimated P and the

Figure 9. SSMSE for improvements of the water use scenarios over the natural reference run for daily ET‐P, ET, and P for the full year and summer 2003. The
symbols indicate the dominant land use of the FLUXNET tower. The gray points indicate the average improvements of the water use ensemble mean over the
reference run for all stations. The dashed black line shows the average improvement of the water use ensemble over the reference simulation. P = precipitation;
ET = evapotranspiration; MSE = mean squared error; EBF = evergreen broadleaf forest; DBF = deciduous broadleaf forest; ENF = evergreen needleleaf forest;
MF = mixed forest; GRA = grassland.
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incorporated uncertainty of HWU (full year: HWU1‐1 [−0.5%], HWU1‐2 [−0.7%], HWU2‐1 [−0.5%], and
HWU2‐2 [−0.6%]; summer: HWU1‐1 [3.1%], HWU1‐2 [2.9%], HWU2‐1 [6.7%], and HWU2‐2 [−2.7%]), the
skill improvement of the HWU‐ENS indicates an increase of information contained in the simulations
through the incorporation of HWU by +7.85% for the full year and 18.96% for summer.

The associated FBI and PSS are very similar between HWU‐ENS, the individual HWU scenarios, and NAT
(Figures S7 and S8) but indicate that the incorporation of HWU potentially reduces the FBI for VHPD over
ME (from 1.92 to 1.61), FR (from 2.16 to 1.84), MD (from 5.84 to 5.25), and EA (from 1.90 to 1.58) but
increases over IB (from 8.52 to 9.00). However, overall, large uncertainties remain in attributing local skill
improvement, which is potentially related to use of a parameterization scheme for convection and the lack
of stations over large parts of Southern Europe.

5. Discussion
5.1. Observational Uncertainty

This study evaluated the uncertainty of bias estimates from simulations using multiple observational data
sets, from the local to the watershed scale. The obtained biases of approximately 0.5 mm/day for P and
−0.24 mm/day for ET are comparable to other studies (e.g., Katragkou et al., 2015; Kotlarski et al., 2014,
2017; Müller & Seneviratne, 2014; Vautard et al., 2013) and lead to a bias of the net water flux ET‐P on
the order of −0.29 mm/day. While the incorporation of HWU apparently does not remove these wet biases,
this result is subject to observational uncertainty. The influence of observational uncertainty in ET and P on
the net water flux bias varies. It has to be highlighted that the capability of the here used observational pro-
ducts to capture irrigation (HWU) effects remains unknown but might at least partly explain their differ-
ences. While this uncertainty has previously been identified (e.g., Müller et al., 2013, 2011; Prein &
Gobiet, 2017), we have shown here that it exceeds the impact of HWU on the terrestrial water cycle and
hence limits the usefulness of these products to validate and potentially calibrate models. The challenges
and risks of validating hydrologic‐ and land surface models with one gridded observational product of, for
example, ET are obvious, as in situ measurements remain sparsely located and limited in availability. In

Figure 10. Map of SSMSE for (a) the HWU ensemble mean, (b) HWU1‐1, (c) HWU1‐2, (d) HWU2‐1, and (e) HWU2‐2
relative to the NAT simulation for summer 2003. Blue (red) dots indicate an improved (deteriorated) skill in simulating
precipitation through the incorporation of HWU. MSE = mean squared error; HWU = human water use.
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general and based on the results of this study, multiple observational data
sets should be used and individual simulations should be regarded as sin-
gle scenarios of a multimodel and multiobservational ensemble, in order
to assess uncertainty of water availability under current and future condi-
tions. Note that the true error remains unknown, because the true fluxes
are not known everywhere and everytime from direct measurements.
Therefore, not only more accurate model simulations are required but
also more accurate observational products, which can be used to validate
models and allow to assess changes of the terrestrial water cycle exhibiting
a smaller uncertainty than the observations.

In addition, the high uncertainty of gridded, observation‐based products
of ET and P emphasizes the advantage of coupled modeling systems,
which do not directly rely on external observational data sets and hence
reduce the uncertainty related to, for example, atmospheric forcings
(e.g., Biemans et al., 2009). While thesemodels introduce additional biases
with respect to, for example, P, which may propagate from one compart-
ment to the other, internal feedback processes and storages are physically
consistent. Thus, the origin of biases from observations or simulations

cannot be easily identified and constitutes a major challenge for validating coupled modeling systems
(Bauer et al., 2015). For future studies, we propose the use of probabilistic approaches to tackle these issues,
and the incorporation of observational uncertainty estimates in validation utilizing ensemble approaches
with a very large number of ensemble members to simulate the terrestrial water cycle.

5.2. Potential for Added Value of Incorporating HWU

Furthermore, this study assessed the added value of incorporating HWU in the simulation of monthly
watershed and daily local fluxes of ET and P, as well as ET‐P. The results do not conclusively show that
the incorporation of HWU leads to an added value in the simulation of the terrestrial water cycle, as sum-
marized in Table 3. Especially at the watershed scale, the incorporation of HWU may lead to a decreased
skill of P and ET‐P at the annual time scale and vice versa to a decreased skill of ET in summer. These results
do not agree with the daily, local scale analysis, which indicates average improvements for all fluxes for the
full year and summer. There are several explanations for this apparent inconsistency. First, the SSMSE for
watersheds was calculated using the mean of all observational products, assuming that these represent
the true value. Second, there is a lack of in situ stations, which measure ET and P simultaneously.
Stations are furthermore not equally and only sparsely distributed across Europe, which may also lead to dif-
ferences from the watershed to the regional scales.

Furthermore, there are two reasons why the use of HWU‐ENS leads to significantly better skill scores than
the use of the individual HWU scenarios. As has been mentioned before, the HWU scenarios were not
constructed to represent real‐world conditions but rather to assess the uncertainty of the associated
feedbacks. This might lead to a consistent underestimation and overestimation of individual scenarios,
which is averaged out in HWU‐ENS. The averaging in HWU‐ENS furthermore leads to a much smoother
time series with less extremes, which is potentially causing the increase in skill of simulating VHPDs.

The individual HWU scenarios did not improve the bias from the NAT simulation. Here it is noteworthy that
differences cannot easily be attributed to local effects of HWU or land use, because we are comparing a
156 km2 grid box estimate with an in situ measurement over a much smaller footprint based on a nearest
neighbor interpolation, irrespective of the land cover.

Given the high uncertainty of the gridded observation‐based products and the sparse in situ network, it is
hence difficult to conclude that the incorporation of HWU improves the simulation of ET and P.
Nevertheless, we find consistent patterns, which indicate the potential of an added value.

6. Summary and Conclusion

This study evaluates the potential added value of integrating HWU in simulations of the continental‐scale
integrated TerrSysMP on the simulation of the terrestrial water cycle during the heatwave 2003 in Europe.

Table 3
Summary of MSE Skill Scores Evaluated in This Study

Spatial
scale

Time
scale

SSMSE
(P)

SSMSE
(ET)

SSMSE
(ET‐P)

Year Watershed Monthly −1.23% +0.25% −1.01%

Local Daily +13.12% +3.17% +12.82%

+7.85%

Summer Watershed Monthly +11.64% −0.60% +8.03%

Local Daily +27.30% +3.88% +26.52%

+18.96%

Note. The skill scores are illustrated for the HWU ensemble relative to the
natural reference simulation. The watershed mean relates to the mean of
all observations. The two values for the local, daily scale relate to
FLUXNET stations (19 stations; top value) and the ECA&D stations
(1,033 stations; bottom value), respectively. Green (red) colored grid cells
indicate an average improvement (deterioration) of the MSE through the
incorporation of HWU. P = precipitation; ET = evapotranspiration; MSE
= mean squared error; HWU = human water use.
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In the first part, the reference simulation at the seasonal to annual watershed scale is evaluated, considering
observational uncertainty. The study finds that observational products of the net moisture flux, ET‐P, exhibit
a relatively large spatial uncertainty at the watershed scale, which is highest in mountainous watersheds.
TerrSysMP simulations reveal a wet bias at the annual and seasonal watershed scale, which is on the order
of 0.2 to 2 mm/day but is strongly dependent on the observational product used for validation. The incor-
poration of HWU does not remove this wet bias in general; however, the observational uncertainty in moun-
tainous watersheds is larger than differences induced by HWU, which precludes the identification of an
added value at the watershed scale. While the annual cycle of all fluxes is well reproduced, especially
Southern European watersheds exhibit a wet bias, which stems from overestimated P. Watershed averaged
ET is especially uncertain during dry and hot summers under predominantly water‐limited conditions, dur-
ing which irrigation is applied. These effects are not consistently captured by the observation‐based ET pro-
ducts used in this study, due to the small footprint of the eddy‐covariance stations and the time and space
limitations of satellite soil moisture to capture irrigation effects (Lawston et al., 2017). Analogously, it
remains unclear to which extent eddy covariance observations capture the impact of irrigation.
Furthermore, gridded observational P data sets are prone to diverge in regions with a low density of rain
gauge observations, which adds to the uncertainty from the different interpolation methods used.

While this study does not conclusively show that the incorporation of HWU leads to an added value in the
simulation of the terrestrial water cycle, potential skill improvement for daily ET and P at the local scale is
apparent. Unfortunately, colocatedmeasurements of ET and P are scarce, but the 19 FLUXNET stations over
Europe indicate an average improvement of daily ET and P values, which is independent from the local land
cover. A separation of ET and P shows that the major improvements are in fact arising from an improved
simulation of P. A skill assessment with a larger, daily in situ P data set indicates that the incorporation of
HWU in an integrated modeling system exhibits a potential added value. In case of TerrSysMP, skill is
mainly improved in ME and FR but deteriorated over the IB. In fact, P events over the IB do not show
any skill in any of the simulations and show high FBIs for heavy and very heavy P events.

In general, a more accurate simulation of P is needed to improve the simulation of the terrestrial water cycle.
The high uncertainty associated with P suggests the largest potential for improvement. This can either be
achieved through bias correction (Rojas et al., 2011), an increasing resolution to circumvent the use of sim-
plified convection parameterizations, or data assimilation. The actual added value might still be larger, if
assessed at the meso‐β scale (Feser, 2006). Moreover, an improved simulation of ET does not necessarily lead
to an improved simulation of P, which is highly dependent on the convection parameterization (Hohenegger
et al., 2009). In the future, one could bridge the gap between land surface ET and P by using, for example,
sounding profiles to assess the propagation of improved land surface states into the atmosphere.
Ultimately, remote sensing products should be used to validate long‐term changes, also in subsurface storage
(using, for example, data from the Gravity Recovery and Climate Experiment), to evaluate an intensification
of the terrestrial water cycle due to anthropogenic influences and identify the origin of biases in integrated
simulations. Here also longer simulations are needed to assess the long‐term impacts of HWU, as the
response of the subsurface is much slower.
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