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Abstract

We use symbolic regression to estimate daily precipitation amounts at six stations

in the Alpine region from a global reanalysis. Symbolic regression only prescribes

the set of mathematical expressions allowed in the regression model, but not its

structure. The regression models are generated by genetic programming (GP) in

analogy to biological evolution. The two conflicting objectives of a low root-mean-

square error (RMSE) and consistency in the distribution between model and obser-

vations are treated as a multi-objective optimization problem. This allows us to

derive a set of downscaling models that represents different achievable trade-offs

between the two conflicting objectives, a so-called Pareto set. Our GP setup limits

the size of the regression models and uses an analytical quotient instead of a stan-

dard or protected division operator. With this setup we obtain models that have a

generalization performance comparable with generalized linear regression models

(GLMs), which are used as a benchmark. We generate deterministic and stochastic

downscaling models with GP. The deterministic downscaling models with low

RMSE outperform the respective stochastic models. The stochastic models with low

IQD, however, perform slightly better than the respective deterministic models for

the majority of cases. No approach is uniquely superior. The stochastic models with

optimal IQD provide useful distribution estimates that capture the stochastic uncer-

tainty similar to or slightly better than the GLM-based downscaling.
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1 | INTRODUCTION

1.1 | Empirical-statistical downscaling

General circulation models (GCM) simulate the climate
system under past, present and future conditions. GCMs

provide valuable information about the future climate,
but at spatial resolutions that are often too coarse for
impact studies for two reasons: First, GCM simulations
represent values for large grid boxes of up to 100 km and
more, and are thus not directly comparable to local
station observations. Second, effects of subgrid-scale
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heterogeneity, such as local and regional topography or
land–sea distribution, are not resolved in GCMs.

One approach to bridge the scale gap between the
coarse climate model output and the requirements of
impact modellers is empirical-statistical downscaling
(Benestad et al., 2008; Maraun and Widmann, 2018), which
relates a local variable, such as locally observed precipita-
tion at a station, to the larger-scale atmospheric state pro-
vided by a GCM or regional climate model (RCM). Near-
surface temperature and precipitation are the most consid-
ered climate variables in empirical-statistical downscaling
due to their importance in impact studies. Its high spatial
and temporal variability and non-Gaussian distribution over
a wide range of scales make precipitation downscaling par-
ticularly challenging (e.g., Maraun et al., 2010).

Common approaches and methods in empirical-
statistical downscaling include regression methods/transfer
functions, weather typing methods and stochastic weather
generators (Hewitson and Crane, 1996; Wilby and
Wigley, 1997). Regression establishes a statistical relationship,
which estimates the conditional expectation of the local
predictand given the larger-scale predictors. Regression
methods in downscaling comprise linear techniques, such as
multiple linear regression (e.g., Huth, 2002; Gutiérrez
et al., 2013; Huth et al., 2015) or generalized linear models
(GLM) (e.g., Chandler and Wheater, 2002; Abaurrea and
Asín, 2005; San-Martín et al., 2017), and non-linear tech-
niques such as artificial neural networks (e.g., Schoof and
Pryor, 2001; Coulibaly et al., 2005; Huth et al., 2015; Baño-
Medina et al., 2020) or genetic programming
(e.g., Coulibaly, 20004; Hashmi et al., 2011; Sachindra and
Kanae, 2019). Weather typing approaches relate the local var-
iable to the occurrence of a particular weather class defined
on the larger scale (e.g., Zorita et al., 1995; Vrac et al., 2007a;
Cheng et al., 2011). Weather classes can be derived objec-
tively for instance through principal component analysis or
subjectively using for instance established circulation classifi-
cation schemes for the region of interest. Weather generators
(WGs) are stochastic models which aim to reproduce the sta-
tistics such as mean, variance and auto-correlation of the
local observations (Richardson, 1981; Wilks and
Wilby, 1999). A common first step in a WG is to model pre-
cipitation occurrence by a Markov chain. Precipitation inten-
sity is then obtained in a second step by sampling from a
suitable (e.g., gamma or exponential) distribution. The
remaining variables of interest, most commonly temperature,
are modelled by an auto-regressive model conditioned on
precipitation. WGs are not per se downscaling methods, but
are frequently used as such by conditioning the WG parame-
ters on the larger-scale atmospheric state (e.g., Wilby
et al., 2002; Kilsby et al., 2007; Keller et al., 2017).

In the context of empirical-statistical downscaling,
genetic programming (GP) is typically used to perform a

symbolic regression (e.g., Coulibaly, 2004; Hashmi
et al., 2011; Sachindra and Kanae, 2019). In symbolic
regression mathematical expressions, variables and con-
stants are flexibly combined to build regression models.
Optimization proceeds analogous to biological evolution
(Koza, 1992; Banzhaf et al., 1997; Poli et al., 2008), that is,
models are evolved over several generations based on the
principle of the survival of the fittest. Starting from an
initial population of randomly generated models, each
subsequent generation is generated by modifying models
of the previous generation. The better a model performs
with respect to a predefined fitness measure (for symbolic
regression typically the RMSE) the more likely it will
contribute to the new generation.

Several studies have intercompared empirical-statistical
downscaling techniques (e.g., Frost et al., 2011; Gutmann
et al., 2014; San-Martín et al., 2017; Gutiérrez et al., 2019).
These studies usually do not identify one best technique,
but rather provide users with guidance on which
techniques to choose under what conditions. The most
comprehensive intercomparison of empirical-statistical
downscaling methods to date was initiated by the Euro-
pean Cooperation in Science & Technology (COST) Action
VALUE on Validating and Integrating Downscaling
Methods for Climate Change Research (Maraun et al., 2015).
A summary of the results of the over 50 contributing
methods can be found in Gutiérrez et al. (2019), an in
depth evaluation with respect to extremes, spatial variabil-
ity, temporal variability and atmospheric processes in
Hertig et al. (2019); Widmann et al. (2019); Maraun
et al. (2019) and Soares et al. (2019). The COST-VALUE
intercomparison covers variants of the most common
empirical-statistical downscaling approaches, including
regression, weather typing and analog methods, weather
generators as well as bias correction and quantile mapping
techniques. The only GP-based approach contributed is an
earlier variant of the multi-objective GP method used in
the present study. Nevertheless, several studies have
applied evolutionary methods to downscaling, the majority
of which minimize the RMSE or a similar measure
between downscaling estimate and reference/observation
(Coulibaly, 2004; Hashmi et al., 2011; Joshi et al., 2015;
Sachindra et al., 2018a; Sachindra et al., 2018b; Ren
et al., 2019; Sachindra and Kanae, 2019). GP-based sym-
bolic regression typically achieves an about 10% smaller
RMSE compared to linear regression (e.g., Coulibaly, 2004;
Hashmi et al., 2011).

1.2 | Conflicting objectives

Solely minimizing the RMSE provides an estimate of the
expected value E(yjX) of the local variable y given the
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larger-scale predictors X. Let us write the time series of
the local variable as

y=E yjXð Þ+ε ð1Þ

with ε (which has mean zero) denoting the error between
the actual values of y and its expectation given X. If E
(yjX) is modelled by linear regression, then ε is the
component of y that cannot be linearly described by X.
The series of expected value predictions yeds = E(yjX)
neglects ε and has thus by design a lower variance
than y. (The subscript eds denotes an expected-value
downscaling). As impact models usually require local
climate information with realistic variability, most
downscaling methods model also ε.

There are two conceptually different approaches to
increasing the variance of an estimated local series: the
deterministic and the stochastic approach; both are used
in this study. The stochastic approach is widespread in
the downscaling community and an integral step in sto-
chastic weather generators. WGs typically obtain realiza-
tions of a local variable ysds by sampling from the
conditional distribution (The acronym sds denotes a sto-
chastic downscaling.). An example of a deterministic
technique that increases the variance of an estimated
local series is variance inflation, pioneered by Klein
et al. (1959) in the context of weather forecasting and by
Karl et al. (1990) in the context of GCM downscaling.
Variance inflation in its most basic form applies a con-
stant factor to a series of expected value estimates yeds in
the form

yidst =
σ yobs,tr
� �
σ yeds,trð Þ yedst −yeds

� �
+yeds, ð2Þ

where σ(yobs,tr) denotes the standard deviation (SD) of
the observations during the training period, σ(yeds,tr) the
SD of the expected value series during the training
period, yedst the expected value estimate at time t, and yeds

the average over the expected value estimates (The acro-
nym ids denotes inflated downscaling.).

There has been some controversy on the validity of
inflation and related deterministic techniques in down-
scaling (see von Storch (1999); Maraun (2013) and com-
ments on the latter by Bürger (2014); Maraun (2014);
Glahn (2016)) of which we here only recall some major
points: It is known that different local observations can
be consistent with the same larger-scale atmospheric
state, that is, a local variable is in fact not deterministi-
cally determined by the larger-scale state (von
Storch, 1999). Moreover, inflation-like techniques trans-
fer the spatio-temporal correlation structure from the

larger to the smaller-scale and can affect local trend esti-
mates (Maraun, 2013). As downscaling estimates inevita-
bly contain uncertainty, that is, there will always be some
εq, a stochastic approach is appropriate. But as pointed
out by Glahn (2016) some users may require a specific
value prediction not a probability density. A fair compari-
son between deterministic and stochastic approaches for
a specific value prediction with realistic variability may
thereby rather compare a single realization of a stochastic
model and the deterministically inflated series.

Both, a deterministically inflated series and a realiza-
tion drawn from a stochastic model will have an
increased RMSE compared with an expected value down-
scaling. One may therefore view the aim of a low RMSE
AND recovering observed variance—or more general the
probability density of the observation—as conflicting
objectives. Evolutionary computation offers a variety of
different algorithms for multi-objective optimization
(e.g., Coello, 2006; Emmerich and Deutz, 2018) which
have been applied in diverse areas such as economics
and finance (e.g., Tapia and Coello, 2007), mechanical
engineering (e.g., Chiandussi et al., 2012), or time sched-
uling (e.g., Silva et al., 2004). Most algorithms for multi-
objective optimization are based on the concept of Pareto
optimality and do not return a single solution for a given
optimization problem, but a set of Pareto optimal solu-
tions as different achievable trade-offs between the con-
flicting objectives.

1.3 | Study outline

We use multi-objective genetic programming to generate
downscaling models for estimating local precipitation
series at six Alpine stations. In this study, each station is
modelled individually, that is, independent of the
remaining five stations. We use a fivefold cross-valida-
tion. The models are trained to simultaneously minimize
the RMSE and the difference between the cumulative
probability densities of downscaled and observed/refer-
ence series. Multi-objective GP does not return a single
downscaling model for each station (and cross-validation
period), but a Pareto set of downscaling models rep-
resenting different trade-offs between optimal RMSE and
variability.

Multi-objective GP has been set up to generate deter-
ministic and stochastic downscaling models. In the
deterministic version, we evolve symbolic regression
equations returning downscaled precipitation as a deter-
ministic function of the larger-scale predictors. In the sto-
chastic version, a two-step procedure is carried out: In
the first step, precipitation occurrence is estimated with a
standard (i.e., not GP-based) logistic regression, and in
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the second step, GP is used to estimate precipitation
amounts by sampling from a gamma distribution with
parameters conditioned on the larger-scale predictors
using GP-based symbolic regression.

A reasonable generalization performance of
empirical-statistical downscaling requires the stationarity
assumption to be sufficiently met and the prevention of
overfitting. The stationarity assumption, that is, the
assumption of stationarity of a relation between local
predictand and larger-scale predictors, is crucial in any
empirical-statistical downscaling and especially impor-
tant for climate change studies (e.g., Frias et al., 2006;
Vrac et al., 2007b; Schmith, 2008; Gutiérrez et al., 2013;
Hewitson et al., 2014; Dayon et al., 2015; Dixon
et al., 2016). Overfitting can be caused by fitting overly
complex downscaling models to an insufficiently large
training data sample; this is especially relevant for a
highly flexible non-linear method like GP. Sachindra
et al. (2018b) raised particular concerns towards the gen-
eralization performance of GP-based downscaling.
Hence, we explicitly compare the generalization perfor-
mance with that of a GLM, which serves as a benchmark.

Each single downscaling model from the stochastic GP
setup contains uncertainty estimates of the downscaled
precipitation in form of the fitted probability distributions
and can hence be viewed and evaluated as an ensemble.
The deterministic downscaling models generated by GP do
not provide uncertainties. However, since we are provided
with a Pareto set of downscaling models, the resulting pre-
dictions may be considered as a pseudo-ensemble. As the
Pareto sets were not generated to provide distributional
estimates and the resulting ensembles were not calibrated,
and further because the members are not independent and
not expected to be equally probable, we refer to the ensem-
bles from the full Pareto sets as ‘pseudo-ensembles’. We
evaluate ensembles generated from selected stochastic
downscaling models as well as pseudo-ensembles gener-
ated from the full sets of deterministic or stochastic Pareto
optimal models using a proper scoring rule.

The deterministic multi-objective GP has originally
been implemented for the downscaling of near-surface
atmospheric fields at the meso-scale (Zerenner et al., 2016).
An earlier version of the deterministic multi-objective GP
for the downscaling of local station observations has con-
tributed to the downscaling method intercomparison coor-
dinated by the European Cooperation in Science &
Technology (COST) action VALUE, Validating and Inte-
grating Downscaling Methods for Climate Change Research
(Gutiérrez et al., 2019). First comparisons of deterministic
and stochastic downscaling of precipitation time series with
multi-objective GP have appeared in the Proceedings of the
Genetic and Evolutionary Computation Conference Com-
panion (Zerenner et al., 2018).

2 | EXPERIMENT DESIGN
AND DATA

We follow the Experiment 1(a) set up by the COST action
VALUE for which detailed descriptions and data are available
online at http://www.value-cost.eu/validation\#Experiment_
1a (last accessed June 2020). Experiment 1(a) uses predictors
from the ERA-Interim reanalysis (Dee et al., 2011; Mar-
aun et al., 2015). The experiment tests the capability of a
downscaling technique to estimate point (station) data
from the European Climate Assessment and Data
(ECA&D) data set (Klein Tank et al., 2002) for tempera-
ture (daily maximum, minimum and mean) and daily
accumulated precipitation at 86 European stations. In
this study we downscale daily accumulated precipitation
for six stations in the Alpine region (Figure 1, Table 1).
We picked the Alpine region as it contains mountain sta-
tions such as Saentis with high precipitation amounts
and strong temporal variability for which downscaling is
expected to be challenging as well as stations like Salz-
burg where GCM precipitation and local observations
differ comparably little.

The COST-VALUE experiment provides a standard
pre-selection of commonly used predictors (http://www.
value-cost.eu/WG2_predictors; last accessed June 2020)
of which we have selected a subset by excluding strongly
correlated predictors. We have applied some transforma-
tions to make the search for downscaling models more
efficient (Table 2). For instance, instead of using the tem-
peratures at 500 and 850 hPa, we have used their average
and difference, the latter serving as an indicator of atmo-
spheric stability. Instead of the u − and v − components
of the wind vector, we have used wind speed and direc-
tion (angle). All predictors have been normalized to zero

FIGURE 1 Location of the six stations in the alpine region

within terrain [Colour figure can be viewed at

wileyonlinelibrary.com]
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mean and unit variance, except for precipitation, which
has been normalized to unit variance only.

The experiment covers the time period from January
1, 1979, to December 31, 2008, and is carried out as a five-
fold cross-validation by splitting the data set into five
sub-periods of 6 years each (1979 to 1984, …, 2003 to
2008). Each sub-period is successively used as the valida-
tion period, while the other 4 sub-periods are used for
training.

3 | METHODOLOGY

3.1 | Multi-objective optimization

Multi-objective optimization algorithms address optimi-
zation tasks involving multiple conflicting objectives—in
the context of downscaling for instance a low RMSE and
consistency between the probability distributions of
downscaled and observed time series. For optimization
problems with conflicting objectives, there is usually no

optimal solution in the absolute sense, but a set of possi-
ble compromises between the conflicting objectives. This
so-called Pareto set—in the case of two objectives also
called Pareto front—contains the Pareto optimal solu-
tions, that is, the solutions for which no other solution
exist that is better with respect to all objectives. Figure 2
shows an example of a Pareto front w.r.t. two conflicting
objectives s1 and s2. The theoretical optimum solution in
the lower left corner is unattainable. The black dots indi-
cate the best achievable compromises, that is, the Pareto
set or front. For any pair of Pareto optimal solutions (any
two black dots) one performs better w.r.t. s1 (lower value
on the s1-axis) and the other performs better w.r.t. s2
(lower value on the s2-axis). All non-optimal solutions
(grey dots) are outperformed by at least one Pareto opti-
mal solution.

Simply adding up multiple objectives to a single fit-
ness function usually makes no sense, because the objec-
tives may have different, a priori unknown, ranges, or

TABLE 1 Name, location and

altitude of the six stations in the Alpine

region

Id Name Lon (
�
E) Lat (

�
N) Altitude (m.a.s.l.)

14 Salzburg 13.0000 47.8000 437

15 Sonnblick 12.9500 47.0500 3,106

48 Hohenpreissenberg 11.0117 47.8017 977

173 Milam 9.1892 45.4717 150

243 Saentis 9.3500 47.2500 2,502

244 Zuerich 8.5667 47.3831 556

TABLE 2 GCM grid scale predictors available to GP

Variable Description

X1 �z Average over 500 and 850 hPa
geopotential height �z= z500+z850ð Þ=2

X2 z1000 1,000 hPa geopotential height

X3 �T Average over temperatures in 500 and
850 hPa �T= T500+T850ð Þ=2

X4 ΔT Temperature difference between 500
and 800 hPa ΔT = T500 − T850

X5 Q500 Specific humidity in 500 hPa height

X6 Q850 Specific humidity in 850 hPa height

X7 v500 Horizontal wind speed in 500 hPa

X8 φ500 Wind direction (angle) in 500 hPa

X9 v850 Horizontal wind speed in 850 hPa

X10 φ850 Wind direction (angle) in 850 hPa

X11 P Daily accumulated precipitation

Note: Predictors have been normalized to zero mean and unit variance,
except for P which has been normalized to unit variance only.

FIGURE 2 The concept of Pareto optimality for two

conflicting objectives s1 and s2. The arrows point in the direction of

improvement/reduction of error. The theoretical optimum in the

lower-left corner is unattainable. The black points are the Pareto

optimal solutions, that is, the feasible trade-offs between optimizing

w.r.t. s1 and s2. The grey points are the non-optimal solutions,

meaning for each grey point there is at least one solution

performing favourably for both s1 and s2
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even units, and also because a complex fitness function
may have multiple local minima, making optimization
more difficult. Numerous algorithms deal with multi-
objective optimization by means of evolutionary
approaches (Emmerich and Deutz, 2018). In this study
we use the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele, 1999). In SPEA the fitness of
a solution does not depend on the actual values that it
achieves for the different objectives, but on a ranking of
the solutions of a generation. The fitness of a solution in
SPEA is thereby invariant to normalization or scaling of
the objectives. SPEA returns not a single optimal solution
but a set of Pareto optimal solutions—downscaling
models in our application.

3.2 | Deterministic downscaling with
multi-objective GP

Genetic programming (GP) belongs to automatic pro-
gramming, that is, it generates code to solve a given task
without the user having to specify the structure of the
solution. Instead, the user prescribes the allowed ele-
ments of the solution and a fitness function that quan-
tifies how well a suggested solution solves the given task.
GP is an evolutionary computation technique; thus,
potential solutions for the given task are evolved in anal-
ogy to biological evolution. A general introduction to GP
can be found for instance in Poli et al. (2008).

In tree-based GP the solutions—the downscaling
models in our application—are encoded as parse trees
(cf. Figure 3). A parse tree is evaluated from the bottom
to the top and contains two types of elements also
referred to as nodes: functions and terminals. Functions
require one or more inputs, that is, one or more branches
initiate at each function node. Terminals are zero-
argument functions that terminate the tree branches.

Our terminal set comprises the large-scale predictors Xi

(cf. Table 2) and numerical constants, which are randomly
drawn from a uniform distribution on [0, 1]. By choosing
the large-scale predictors for the terminal set, the user per-
forms a pre-selection of predictors. However, how many
and which predictors to use in a downscaling model is up
to GP and optimized during the evolution. Our function set
includes arithmetic functions (addition, multiplication,
subtraction), the arctangent (atan), and the analytical quo-
tient (AQ) of two variables a and b which is defined as

AQ a,bð Þ= affiffiffiffiffiffiffiffiffiffiffi
1+b2

p : ð3Þ

Using AQ instead of a standard or protected division
operator avoids the singularity at b = 0 and steep gradi-
ents in its vicinity. It has been shown that including AQ
instead of protected division results in lower errors for
various regression tasks (Ni et al., 2012). The parse trees
encoding the deterministic downscaling models are
allowed to contain 8 levels at maximum.

Figure 3 shows an example of the tree representation of
a deterministic downscaling rule. The lowest node of the tree
is a numerical constant (0.60752). The constant serves as an
input argument to an arcus tangens (atan). The atan
(0.60752) is then multiplied by X5 and so on. The evaluation
of the top node, also called root node—a multiplication in
our example—returns the final downscaled precipitation.

As an evolutionary computation technique, GP works
with a population of trees which evolves over several gen-
erations, and which we limit to 200 trees. The initial
generation is randomly generated from the available
functions and terminals. Each tree is applied to the given
task and evaluated according to the fitness function(s).
To generate the next generation the following three steps
are repeated until 200 trees have been produced: (a) The
operation (crossover or mutation) for generating a new tree
is selected. Crossover is selected with a probability of
pc = 0.8, mutation with a probability of pm = 0.2. (b) The
parent trees are selected from the current generation. The
better a tree performs according to the fitness measure(s),
the more likely it is to be selected. For crossover two parent
trees are required. For mutation only one parent tree is
required. (c) The operation is performed on the parent
trees. For mutation the tree is cut at a randomly selected

0.80451

0.15153

  atan

X5

X5

0.60752

  atan

  times

  AQ

  plus

  plus

X7

  atan

0.91534 X11

  times
0.15971

  minus

  atan

  plus

  times

FIGURE 3 Tree representation of a deterministic downscaling

model evolved with GP. Shown is one of the downscaling models

from the Pareto set for the station Salzburg for cross-validation

period 4 (1997–2002)

ZERENNER ET AL. 6167



node and the subtree below that node is replaced by a new
randomly generated tree. Each mutation thus generates
one tree for the next generation. For crossover the two par-
ent trees are cut at randomly selected nodes and the sub-
trees below those nodes are exchanged. Each crossover
thus generates two trees for the next generation. Evolution
stops when the termination criterion—in our case 500 gen-
erations—is reached.

Our GP code is based on the GPLAB by Silva and
Almeida (2003), our setup is summarized in Table 3. As in
previous studies employing GP to downscaling
(e.g., Coulibaly, 2004; Sachindra et al., 2018a; Sachindra and
Kanae, 2019), we use GP to perform a symbolic regression.
Symbolic regression is a common real-world application of
GP and typically aims at minimizing the root-mean-square
error (RMSE) between regression estimates and reference.
In this study, we include the difference between empirical
cumulative densities of regression estimates and reference as
an additional objective.

As outlined in Section 1.2 a low RMSE and consis-
tency between the probability distributions of downscaled
and observed series are conflicting objectives and can
hence be treated as a multi-objective optimization prob-
lem. Our first objective, the RMSE between downscaling
estimate and reference is given by

RMSE yds,yobs
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t=1

ydst −yobst

� �2s
ð4Þ

where yobst denotes the station observations and ydst the
downscaled precipitation with t indexing the time.

Our second objective, the integrated quadratic dis-
tance (IQD), measures how well the observed cumulative
distributions are restored by the downscaling. The IQD is
a proper distance measure between probability distribu-
tions (Gneiting and Raftery, 2007; Thorarinsdottir
et al., 2013). The IQD between the empirical cumulative
distribution functions (CDF) of downscaled Fds and
observed precipitation Fobs is given by

IQD yds,yobs
� �

=
ð∞
−∞

Fds yð Þ−Fobs yð Þ� �2
dy: ð5Þ

The downscaled and observed time series have been
used as samples to estimate the respective (empirical)
CDFs as

Fds=obs yð Þ= 1
n

Xn
t=1

1
yds=obst ≤y ð6Þ

where 1u is an index function with 1u = 1 if the condition
u is true.

With the described setup we run GP for each station
and cross-validation period (cf. Section 2). For each sta-
tion and cross-validation period we obtain a set of up to
100 Pareto optimal downscaling models.

3.3 | Stochastic downscaling with multi-
objective GP

The multi-objective GP setup described thus far produces
deterministic downscaling models; thus each model
produces a deterministic (fixed value) estimate of
downscaled precipitation at each time t. To set up multi-
objective GP to generate stochastic downscaling models
we impose certain constraints on the GP trees. Our setup
may be viewed as a hybrid of GP-based symbolic regres-
sion and a GLM. In fact GP comes in only in the estima-
tion of precipitation amounts, while the probability of
precipitation occurrence is modelled using a standard
(i.e., not GP-based) logistic regression, as summarized in
Table 4. Logistic regression provides the probability of
precipitation occurrence p(y0/1 = 1jX) given the larger-
scale predictors X from Table 2. To obtain a time series of
0 (no precipitation) and 1 (precipitation) we draw a ran-
dom number zt from a uniform distribution on the inter-
val [0,1] for each day t and whenever p y0=1=1jXt

� �
>zt

we set y0=1t =1 , that is, day t is a wet day; otherwise
y0=1t =0, that is, day t is a dry day.

To obtain stochastic estimates of precipitation
amounts with GP we prescribe the uppermost function of
the trees, the root node, to be a random number

TABLE 3 Genetic programming setup for deterministic (GPd)

and stochastic (GPs) precipitation downscaling

Parameter Value

Function set Arithmetic functions (+, −, ×), AQ, atan

Terminal set Predictor variables (Table 2),
random numbers � [0, 1]

Stop
criterion

Reaching generation 500

Population
size

200

Max. Pareto
set size

100

Genetic
operators

(subtree-)mutation (pm = 0.2), crossover
(pc = 0.8)

Max. tree
levels

8

Objectives RMSE, IQD (GPs additionally RMSE of
deterministic subtree only)
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generator (compare Figure 4). The root node is the last
function to be executed in the evaluation of a tree and
thus produces the final outcome of the tree. As we are
estimating precipitation amounts, we implement a ran-
dom number generator, that draws a random number ya

from a gamma distribution. The random number genera-
tor has two input arguments, the mean μ and the SD σ of
the gamma distribution, which are evolved by GP. The
available functions and terminals are, except for the ran-
dom number generator at the root node, the same as in
the deterministic GP setup (cf. Table 3). GP may there-
fore generate negative μ or σ. We deal with this by dis-
tinguishing between μout and σout returned by the

functions one level below the root node and μin and σin,
the input to the random number generator at the root
node which draws the precipitation amount ya from the
gamma distribution Γ(μin, σin). We set σin = jσoutj; for
μout > 0 we set μin = μout and for μout ≤ 0 we directly set
the precipitation amount ya = 0. By combining logistic
regression and stochastic GP trees we obtain the final
precipitation series as yds = y0/1ya. The downscaled time
series yds are then used to compute the objectives both
during evolution, that is, the fitting of the stochastic GP
trees, and for the validation later on. In our current
implementation a fitness assignment is based on a single
realization of yds.

The described setup offers GP the possibility to pro-
duce stochastic models for the precipitation amounts.
Whether this possibility is used is up to GP. If it proves
advantageous, GP can also develop purely deterministic
models by producing σout = 0. To reward GP for consider-
ing unexplained variability in a stochastic way, we add a
third objective in the stochastic GP runs, namely the
RMSE of μin, as

RMSE μin,yobs
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t=1

yobst −μint
� �2s

: ð7Þ

The first two objectives, the RMSE and IQD between
downscaling estimate and observations, are the same as
in the deterministic setup (Equations (4) and (5)).

Like the deterministic setup, we also run the stochas-
tic GP setup for each station and cross-validation period
(cf. Section 2). Thus, we obtain a set of up to 100 stochas-
tic Pareto optimal downscaling models for each station
and cross-validation period. It is expected that each
Pareto set will contain models with a strong stochastic
component (large σ) and a comparatively low IQD as well
as models with a weak stochastic component (small or
zero σ) that achieve a low RMSE at the expense of a com-
paratively high IQD.

3.4 | Performance assessment

As a baseline to evaluate performance and generalization
performance of the GP-based downscaling, we use a
GLM based downscaling approach. Our implementation
follows Chandler and Wheater (2002) who have adopted
the two-stage approach of Coe and Stern (1982); Stern
and Coe (1984). In stage one precipitation occurrence is
modelled with a logistic regression. We use the same
large-scale predictors that we have used for the GP-based
downscaling. That is, our GLM for precipitation occur-
rence provides the probability of precipitation on day

TABLE 4 Generation of the downscaled precipitation series yds

in the stochastic GP setup. Two steps are carried out successively

Step 1: Precipitation yes/no (y0/1)
Step 2: Precipitation
amount (ya)

(standard) logistic regression !p
(y0/1 = 1jX)

GP !Γ(μ(X), σ(X))

If p(y0/1 = 1jX) > z then y0/1 = 1 else
y0/1 = 0 with z � unif(0, 1)

ya � Γ(μin, σin)

Note: The logistic regression (fitted using maximum likelihood estimation)

provides the probability of precipitation occurrence. Precipitation amount is
estimated with GP. Precisely, GP estimates the parameters μ and σ of a
gamma distribution Γ as functions of the larger-scale predictors X, that is,
Γ(μ(X), σ(X)). Precipitation amounts ya are then drawn from Γ(μ(X), σ(X)).
The objectives are computed from the final precipitation estimates
yds = y0/1ya for evaluation in hindsight as well as during evolution.

0.51062 0.75377

  times
X11

  plus

X7 X7

  times

  times
0.79144

  plus

  atan

0.8797

X2 0.16101

  AQ

  AQ
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  draw_rand_gamma

FIGURE 4 Tree representation of a stochastic downscaling

model evolved with GP. Shown is one of the downscaling models

from the Pareto set for the station Salzburg for cross-validation

period 1 (1979–1984)
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t conditioned on the large-scale predictors from Table 2.
In stage two precipitation amounts are modelled by
fitting gamma distributions to the observed precipitation
amounts on wet days only. The mean of the gamma dis-
tributions is conditioned on the large-scale predictors
from Table 2. The shape parameter is assumed to be con-
stant. To obtain individual time series from our fitted
GLMs we proceed analogously to the generation of time
series from the stochastic GP models (see Section 3.3).

To assess the performance of GP- and GLM-based
downscaling we use the skill scores of the objectives,gRMSE and gIQD, which we calculate as

gIQD=1−
IQD yds,yobs

� �
IQD ygcm,yobsð Þ ð8Þ

gRMSE=1−
RMSE yds,yobs

� �
RMSE ygcm,yobsð Þ : ð9Þ

The precipitation time series of the GCM grid box con-
taining the considered station ygcm serves as our reference.
Hence, the skill scores quantify the improvement w.r.t. an
objective that is achieved by a downscaling model compared
with the raw GCM precipitation. For the six stations (and
five cross-validation periods) considered the RMSE(ygcm, yobs)
ranges from 5.2 mm (Milan, cross-validation period 5) to
13.8 mm (Saentis, cross-validation period 4). The IQD(ygcm,
yobs) ranges from 0.01 mm2 (Salzburg, cross-validation
period 5) to 0.57 mm2 (Saentis, cross-validation period 4). A
positive skill score indicates that downscaling obtains an
improvement compared with the raw GCM (the larger the
skill score the better). Note that the skill scores �(−∞, 1].
Further note that due to the different magnitudes of the
errors (especially for the IQD) of the raw GCM precipitation
at distinct stations, one should not use the skill scores for a
direct comparison between different stations.

Finally, we study if the GP-based downscaling provides
useful uncertainty estimates. We evaluate the performance
of ensembles generated from selected stochastic downscal-
ing models as well as pseudo-ensembles generated from
the full sets of Pareto optimal models. To do so we use the
continuous rank probability score (CRPS), a popular verifi-
cation tool for ensemble forecasts (Hersbach, 2000; Jordan
et al., 2017), which is for a predictive distribution Fens and
observations yobs given by

CRPS Fens,yobs
� �

=
1
n

Xn
t

ðy=∞

y= −∞
Fens
t yð Þ−1y≥yobst

� �2
dy: ð10Þ

where 1 is a unit step function, that is, 1y≥yobst
=1 for

y≥yobst and 0 else. The empirical cumulative density Fens
t

at time t is computed from the ensemble (≈ 100 members,
compare Table 5) at the respective point in time yit as

Fens
t yð Þ =

1
N

XN
i=1

1yit≤y ð11Þ

where i indexes the ensemble members, N denotes the
total number of members and index function 1u = 1 if the
condition u is true and 0 else. The lower the CRPS, the
better. A CRPS of zero is only achieved when all ensem-
ble members match the observations exactly, that is, for a
perfect forecast with zero uncertainty.

4 | RESULTS

In the following we first study the performance of the
Pareto optimal downscaling models from deterministic
and stochastic GP setups w.r.t. the objectives RMSE
and IQD. As some studies have reported problems
with the generalization ability of GP-based downscal-
ing (e.g., Sachindra et al., 2018b), we focus in particu-
lar on the generalization performance. Performance
and generalization performance of the GLM-based
downscaling serves as a reference. As outlined in Sec-
tion 1.2 impact models typically require local climate
information with realistic variability. We therefore
take a closer look at the performance of the downscal-
ing models with the lowest IQD. Finally, we evaluate
ensembles generated from selected stochastic down-
scaling models as well as pseudo-ensembles generated
from the full sets of Pareto optimal models to study if
the GP-based downscaling provides useful uncertainty
estimates.

TABLE 5 Short description of the four downscaling ensembles

Abbreviation
#
members Description

GPs 100 100 realizations from a single
downscaling model (smallest
IQD in training) from the
stochastic GP setup

GLM 100 100 realizations from a
generalized linear model

~GPs 97–100 Full set of Pareto optimal
models from the stochastic
GP setup (1 realization from
each model)

~GPd 97–100 Full set of Pareto optimal
models from the deterministic
GP setup
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4.1 | Pareto sets

The Pareto optimal trees returned by the GP algorithm
have on average about 50 nodes in the deterministic and
about 40 nodes in the stochastic setup. The majority of
trees have 8 levels, which is the maximum number of
levels allowed in our setups. Figure 3 shows one of the
downscaling models for the station Salzburg (cross-
validation period 4) from the deterministic GP setup.
Figure 4 shows one of the trees for Salzburg (cross-
validation period 1) from the stochastic GP setup. The
trees shown are comparatively small. The deterministic
tree has 21 nodes arranged on 7 levels. The stochastic tree
has 20 nodes on 7 levels. Both trees use only 3 out of the
11 predictors offered to GP; both use horizontal wind
speed in 500 hPa and daily accumulated precipitation.
The deterministic tree further uses specific humidity in
500 hPa as a predictor; the stochastic tree uses the
1,000 hPa geopotential height instead (cf. Table 2).

Figure 5 shows excerpts of the downscaled precipita-
tion time series at Salzburg. Shown are the models with
smallest RMSE (6.3 mm; the error values given in this
paragraph were obtained from the original, that is, non-
normalized, time series.) and the smallest IQD
(1.6 × 10−4 mm2) in training from the deterministic GP
setup (GPd) together with the observations. We show
excerpts from the training period as this allows us to
illustrate the systematic difference between the models

irrespective of their generalization performance. As
expected, the model with the smallest RMSE underesti-
mates variability in general and extremes in particular
and therefore has a comparable high IQD (0.2 mm2),
while the model with the lowest IQD better represents
variability at the expense of a higher RMSE (8.7 mm).

Figure 6 shows the full Pareto sets from the determin-
istic and the stochastic GP setup as well as the GLM for
all six stations for validation periods 1 and 5. The area of
positive skill is indicated by grey hatching. The determin-
istic GP provides the expected line-like Pareto front. For
most stations and validation periods this shape is largely
preserved during validation. The Pareto fronts from the
stochastic GP setup are comparably scattered due to
the stochastic nature of the models. Note that Figure 6
shows the average skill scores over 100 realizations of a
stochastic model, while the fitness assessment during
evolution was based on single realizations. Moreover, the
stochastic GP setup uses the RMSE of the deterministic
subtree as a third objective while Figure 6 shows only
two dimensions of the three-dimensional space spanned
by the objectives of the stochastic setup.

The Pareto sets in Figure 6 illustrate that RMSE and
IQD are indeed conflicting objectives; downscaling
models that are optimal w.r.t. the RMSE are suboptimal
w.r.t. the IQD and vice versa. Reproducing the temporal
variability of the local stations goes along with an
increase in RMSE compared to an expected value
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FIGURE 5 Excerpt of the series of daily accumulated precipitation P at Salzburg. Shown is the year 1979. The grey bars show the

station observations. The lines show the GCM precipitation at the closest grid point (a) and the downscaled series from the two different

downscaling models from the deterministic GP setup (GPd): The model with the best performance concerning RMSE (b) and the model with

the best performance concerning IQD (c). Note that here we show a year from the training period to illustrate the conceptual difference

between optimizing for RMSE and IQD irrespective of the generalization performance of the downscaling models
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(d)
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(f)

FIGURE 6 IQD skill score ( ~IQD) and RMSE skill score ( ~RMSE) of the Pareto optimal models returned by deterministic GP setup (GPd),

stochastic GP setup (GPs) and GLM. For stochastic GP and GLM the average ~IQD and ~RMSE over 100 realizations of each model are plotted.

The plotted regions are adjusted to the ranges of ~IQD and ~RMSE for the GP-based downscaling at the respective station. For cases where the

GLM lies outside the plotted region, numbers are given in the respective panel [Colour figure can be viewed at wileyonlinelibrary.com]

6172 ZERENNER ET AL.

http://wileyonlinelibrary.com


downscaling. We find the maximum IQD skill to reach
values close to 1 for all methods, while the RMSE skill
does not exceed 0.25 for any of the methods and cases
studied. The deterministic downscaling models with opti-
mum RMSE outperform the stochastic models. Hence, in
Figure 6 the Pareto fronts from the deterministic GP
setup are shifted to the right compared with the stochas-
tic models, which is most obvious for Salzburg. For the
majority of cases deterministic and stochastic models are
able to recover variability to a similar extent and perform
comparably in terms of IQD. The deterministic models,
however, appear to restore variability at a lower RMSE.
This is in line with Bürger and Chen (2005) who have
shown that (for the training period) restoring variability
by randomization in general leads to larger errors than
deterministic inflation. However, the stochastic models
with optimum IQD outperform the deterministic ones in
validation for the majority of cases (most obvious for
Milan and Sonnblick). This difference appears relatively
small. Nevertheless, no approach is uniquely superior.

The GLM downscaling achieves a similar IQD skill as
the GP-based downscaling, but for three stations
(Hohenpreissenberg, Milan and Saentis) the realizations
drawn from the GLM exhibit much lower RMSE skill.
For almost all cases the shapes of the Pareto sets in vali-
dation closely resemble the training performance, but
with slightly lower skill. Note, that a slightly lower IQD
skill for the validation periods is expected as the cumula-
tive densities are estimated from fewer samples (6 years
validation compared with 24 years training). The general-
ization performance of the GP-based downscaling is
throughout on par with the generalization performance
of the GLM downscaling. For some cases we find differ-
ences in generalization performance between the
methods: For Sonnblick (validation period 1) the stochas-
tic GP downscaling outperforms the deterministic GP in
validation. A similar behaviour, but less pronounced, is
observed for Milan. For Seantis (validation period 1) all
methods fail; the SD of the observed precipitation is 28%
smaller in validation than in training and none of the
downscaling methods appropriately reproduces this
difference.

4.2 | Selected downscaling models

We now take a closer look at the performance and gener-
alization performance of the downscaling models that
best represent variability; that is, from each Pareto set we
select the downscaling model with the smallest IQD on
the training data set. Figure 7 shows the IQD skill score
for the respective deterministic GP model and for
100 realizations of the respective stochastic GP model

together with the GLM. Again, results strongly vary
between stations and validation periods. There are cases,
Zuerich and Salzburg (except for cross-validation period
5) for instance, where none of the models is clearly supe-
rior. For Milan, Hohenpreissenberg and Saentis the GP
models tend to achieve a higher IQD skill compared to
the GLM; exceptions are validation period 2 for
Hohenpreissenberg, validation period 5 for Milan, and
validation period 1 for Saentis. For Sonnblick we find a
lower IQD skill for the deterministic GP models com-
pared with the stochastic ones for cross-validation
periods 1 and 5. Here the deterministic GP models appear
to generalize less well than stochastic GP and GLM. A
similar situation is found for Hohenpreissenberg for vali-
dation period 2 and for Salzburg for validation period
5. As already observed in Figure 6 the most difficult case
appears to be Saentis, validation period 1 for which all
3 methods yield a much lower IQD skill in validation
compared with training.

The downscaling models performing well w.r.t. the
IQD have a higher RMSE than the original (not down-
scaled) GCM precipitation (Figure 8). Since the GCM pre-
cipitation represents grid box averages its time series
typically exhibit lower temporal variability than local sta-
tion observations and downscaling typically increases
variability. The GP models have a higher RMSE skill
compared with the GLM because the RMSE serves as an
objective in our GP setup. The GP models thus try to
recover the observed cumulative density while increasing
the RMSE as little as possible. For the majority of cases
the deterministic GP yields the highest RMSE skill,
followed by the stochastic GP, and the GLM. For the sta-
tions Hohenpreissenberg, Milan, and Saentis we find the
RMSE skill to vary strongly between the GLM realiza-
tions which is caused by the pronounced tail of the fitted
gamma distributions for these stations. For the RMSE
skill, we again observe differences between training and
validation periods, but unlike for the IQD in both positive
and negative direction. Overall the differences are the
smallest for the stochastic GP models.

4.3 | Ensembles

In the following we evaluate the capability of the GP-
based downscaling to provide distributional estimates
that capture the stochastic uncertainty. We evaluate the
performance using the CRPS (Equation (10)). We evalu-
ate three different GP-based (pseudo-) ensembles. An
ensemble generated from the GLM serves as a reference.
Figure 9 shows all four ensembles each containing �100
members (see also Table 5) for the station Salzburg. gGPs

contains a single realization of each Pareto optimal
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downscaling model from the stochastic GP setup. GPs
denotes an ensemble based on a single stochastic down-
scaling model. To obtain the GPs ensemble we draw
100 realizations from the stochastic GP model with the
lowest IQD on the training data set. gGPd contains all
Pareto optimal downscaling models from the determinis-
tic GP setup. For comparison we also include a GLM
ensemble of 100 realizations. Note that the pseudo-
ensembles gGPs and gGPd occasionally contain fewer than
100 members; Typically the Pareto sets reach the

maximum allowed number of 100 members during evo-
lution, but in each generation it can happen that more
models are removed than added, for instance when a
newly evolved model outperforms two or more members
of the Pareto set.

Already from the 1-year excerpts from Salzburg
shown in Figure 9 we obtain a first insight into the
ensemble performances: gGPd exhibits the smallest spread,
followed by GPs and gGPs with similar spread, and finally
the GLM with the largest spread, most obvious for the

(a) (b)

(c) (d)

(e) (f)

FIGURE 7 IQD skill score ( ~IQD, top) and difference in IQD skill between validation (val) and training (tr) period (bottom) for all five

cross-validation periods (left to right) for all six stations (a–f). Shown are one model from the deterministic GP setup (GPd), one model from

the stochastic GP setup (GPs) and a generalized linear model (GLM). From the Pareto sets returned by GP, we have selected those models

that yield the lowest IQD during training. For stochastic GP and the GLM 100 realizations have been drawn for each station/cross-validation

period. For the bottom panels we have first computed the average IQD skill over 100 realizations for training and validation separately and

then taken the difference of the average skill between the training and validation period [Colour figure can be viewed at

wileyonlinelibrary.com]

6174 ZERENNER ET AL.

http://wileyonlinelibrary.com


months June to August. Figure 10 shows the CRPS of
the four ensembles for all stations and validation periods.
The CRPS is highest for the gGPd ensemble foremost due
to its too small spread caused by ensemble members with
low RMSE. The GLM and the two stochastic GP ensem-
bles are comparably close to each other with station-
dependent ranking. We find, however, that for GPs the
CRPS is smaller than for gGPs for all cases. The larger
CRPS for the gGPs pseudo-ensemble is, similar to gGPd ,

presumably caused by ensemble members with low
RMSE. For the majority of cases the GPs ensemble
achieves a lower CRPS than the GLM ensemble. Hence,
the stochastic GP solutions with optimum IQD, although
optimized using the two objectives RMSE and IQD, pro-
vide an ensemble that performs well also in terms of the
CRPS. This is especially obvious for the stations
Hohenpreissenberg, Milan and Saentis. For the
stations Salzburg, Sonnblick and Zuerich the differences

(a) (b)

(c) (d)

(e) (f)

FIGURE 8 RMSE skill score ( ~RMSE, top) and difference in RMSE skill between validation (val) and training (tr) period (bottom) for all

five cross-validation periods (left to right) for all six stations (a–f). Shown are one model from the deterministic GP setup (GPd), one model

from the stochastic GP setup (GPs) and a generalized linear model (GLM). From the Pareto sets returned by GP, we have selected those

models that yield the lowest IQD during training. For stochastic GP and the GLM 100 realizations have been drawn for each station/cross-

validation period. For the bottom panels we have first computed the average RMSE skill over 100 realizations for training and validation

separately and then computed the difference of the average skill between training and validation period [Colour figure can be viewed at

wileyonlinelibrary.com]
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are minor. The differences in CRPS between training and
validation period are similar for all four ensembles. The
GP-based ensembles thus exhibit a similar generalization
performance as the GLM ensemble.

5 | DISCUSSION

We have introduced deterministic and stochastic GP-
based approaches for multi-objective precipitation down-
scaling, which simultaneously minimize the RMSE
between observed and downscaled time series and the
IQD, which measures the difference between the proba-
bility densities of downscaled and observed time series.
The Pareto optimal downscaling models in terms of
RMSE and IQD show how a low RMSE and a realistic
variability are indeed conflicting objectives. As outlined
in the introduction it is widely known that restoring vari-
ability in regression-based downscaling, either determin-
istically or by drawing a realization from a stochastic
model, increases the RMSE compared with an expected

value downscaling. Our multi-objective downscaling pro-
vides an additional approach to restoring variability by
minimizing the IQD while keeping the RMSE as small as
possible. The multi-objective optimization finds Pareto-
optimal solutions within the range from (purely deter-
ministic) expected value downscaling to a fully stochastic
downscaling.

The stochastic GP-generated downscaling models
with lowest IQD, perform slightly better than the GLM in
terms of IQD (Figure 7). The GP-generated downscaling
models further achieve a smaller RMSE than the realiza-
tions drawn from the GLM (Figures 6 and 8). In our
study the generalization performance of both determinis-
tic and stochastic GP-based downscaling is on par with
the GLM-based downscaling (Figures 6,7,8). The stochas-
tic solutions with optimum IQD, while optimized using
the two objectives RMSE and IQD, provide an ensemble
that performs well in terms of the CRPS. The GLM and a
single appropriately selected stochastic GP-based model
achieve a comparable CRPS (Figure 10), with the stochas-
tic GP model being slightly better for most stations. The
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FIGURE 9 Excerpt of the series of daily accumulated precipitation P at Salzburg. Shown in the year 2003. The black bars show the

station observations. The shaded areas show the predictions from the four different ensembles of ≈ 100 members each. The area between

minimum and maximum over the ≈ 100 members is shaded in the lightest colour, followed by the range between 5- and 95%-quantile and

the interquartile range in the darkest colour [Colour figure can be viewed at wileyonlinelibrary.com]
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spread of the pseudo-ensembles derived from the variety
of solutions within the Pareto set does not appropriately
represent the stochastic uncertainty. This is due to the
nature of the Pareto set, which contains solutions that
are distinct with respect to the objectives and are there-
fore not realizations from the same population.

In the stochastic GP setup one may in the future
rather use a probabilistic score such as the CRPS as objec-
tive. We expect a stochastic GP-based downscaling
trained to optimize the CRPS to exhibit comparable
(or slightly better) performance in terms of CRPS than
the stochastic downscaling models trained to minimize
the IQD under the constraint of keeping the RMSE as
low as possible. However, such a change in objectives
would forbid a direct comparison between deterministic
and stochastic GP setups. One may further consider the
decomposition of the CRPS into reliability and resolution
(Hersbach, 2000) for a multi-objective optimization of
stochastic downscaling models. The reproduction of tem-
poral (auto-)correlation, and spatial (inter-station) corre-
lation are also considered important for many
downscaling products (Maraun et al., 2019; Widmann
et al., 2019); such measures could be included easily in a
multi-objective GP-based downscaling.

Algorithmic diversity as well as predictor diversity is
beneficial in downscaling. Also, in this study it depends

on the station and on the evaluation criterion which
downscaling method and which predictors perform
favourable. Intercomparisons of downscaling techniques
seldom identify a single technique as best (Frost
et al., 2011; Gutmann et al., 2014; San-Martín et al., 2017;
Gutiérrez et al., 2019; Hertig et al., 2019; Maraun
et al., 2019; Soares et al., 2019; Widmann et al., 2019).
The choice of a downscaling method is best guided by the
requirements of a particular application. Especially when
comparing many different methods, the concept of Pareto
optimality may be useful. Given a set of user-selected per-
formance criteria, the methods can be reduced to a subset
of Pareto optimal methods to choose from. The Pareto
front or projections of the higher-dimensional
Pareto plane may help to visualize trade-offs and contrib-
ute to a better informed choice of a particular downscal-
ing method.

We have demonstrated that GP is a flexible technique
and not restricted to regression like applications solely
producing expected value estimates. The stochastic GP
downscaling models provide useful distributional esti-
mates (Figure 10). In the current stochastic GP setup we
have assumed precipitation amounts to follow a gamma
distribution; thus our GP setup may be viewed as a
cross-over between a vectorized GLM and GP-based
symbolic regression. Further extensions (implementing

(a) (b) (c)

(d) (e) (f)

FIGURE 10 CRPS of the four different ensembles for all five cross-validation periods (left to right) and for all six stations (a–f) [Colour
figure can be viewed at wileyonlinelibrary.com]
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appropriate functions and constraints on the tree struc-
tures) may allow for a selection or combination of differ-
ent probability distributions, similar to mixture models.
In addition, downscaling models containing both deter-
ministic and stochastic components could be realized.
Further studies combining established downscaling tech-
niques with evolutionary optimization can be found in
Horton et al. (2017, 2018); Horton (2019) who optimize
an analog method using genetic algorithms.

An example of a study considering distributional
downscaling by means of a neural network can be found
in Carreau and Vrac (2011), who utilized neural net-
works to fit conditional mixture models for precipitation
downscaling. In a recent study by Shi (2020) con-
volutional neural networks have been trained to partition
given data into extreme and non-extreme precipitation
allowing for an explicit downscaling of extreme precipita-
tion events. Also in ensemble post-processing evolution-
ary and neural network based approaches have gained
attention (e.g., Bakhshaii and Stull, 2009; Roebber, 2015;
Dufek et al., 2017; Rasp and Lerch, 2018; Bremnes, 2020;
Taillardat and Mestre, 2020; Grönquist et al., 2021).

Stationarity of the relations between local predictands
and the larger-scale atmospheric predictors is a basic
assumption of any empirical-statistical downscaling and
particularly important for obtaining a satisfactory generali-
zation performance under changing climate (Frias
et al., 2006; Vrac et al., 2007b; Schmith, 2008; Gutiérrez
et al., 2013; Hewitson et al., 2014; Dayon et al., 2015; Dixon
et al., 2016). A recent study by Sachindra et al. (2018b)
raised particular concerns towards the generalization per-
formance of GP-based downscaling. Sachindra et al. (2018b)
argue that the generalization performance of GP-based
downscaling suffers from GP not identifying a unique set of
optimal predictors. When rerunning GP several times one
will typically obtain different downscaling models using dif-
ferent predictors as GP in itself is a stochastic technique.
The user only prescribes the potential predictors, that is, the
predictors available to GP, but not how many and which of
these to use in a downscaling model. While we fully agree
that highly flexible and potentially nonlinear methods like
GP need to be treated with caution, we do not see the non-
unique predictor selection as problematic in itself. The GP-
based downscaling models represent empirical-statistical
relations between predictors and predictands which arise
from the physics and dynamics of the atmospheric circula-
tion, but cannot itself be viewed as physical relations. The
predictors representing different aspects of atmospheric cir-
culation are not independent; thus predictors do—to some
extent—contain common information. Methods such as lin-
ear regression identify a single optimal set of predictors but
there may exist other predictor combinations which do not
perform significantly inferior and only infinite sampling

would allow one to be sure of detecting a true unique best
predictor set.

We believe the limited generalization performance of
GP-based downscaling reported in Sachindra
et al. (2018b) might not be caused by a non-optimal pre-
dictor selection. First, extreme conditions such as
drought periods are hard for any empirical-statistical
downscaling method, especially when not included in the
training period. We observed a similar case for the station
Saentis (validation period 1), where both GP and GLM
struggle. Second, the use of standard or protected division
a/b in symbolic regression is problematic due to the sin-
gularity at b = 0 and the steep gradient in its vicinity.
Replacing the division operator by an analytical quotient
has been shown to improve the generalization perfor-
mance for a wide range of regression tasks
(Ni et al., 2012). Hence, a rather conservative function
set, excluding exponential function and logarithm, and
replacing division operators by an analytical quotient can
be beneficial for the generalization performance of
GP-based downscaling and may reduce or even prevent
GP models from producing unrealistic large outliers as
reported in Sachindra et al. (2018b) and Sachindra and
Kanae (2019).

Even though there is likely not a single, uniquely iden-
tifiable optimal predictor set as discussed above, an appro-
priate predictor selection is crucial for downscaling models,
which are robust under changing climate (Schmith, 2008;
Gutiérrez et al., 2013). In the present study predictor pre-
selection has gained comparably little attention, as our
main focus has been the intercomparison of the different
downscaling approaches (deterministic and stochastic GP
and a GLM). Especially moving away from solely offering
grid-point predictors to the GP algorithm, but incorporat-
ing principal components of the atmospheric circulation or
weather classes may further improve the downscaling per-
formance. Also the use of state-of-the-art reanalysis such as
the ERA5 (Hersbach et al., 2020) might further improve
downscaling performance. The use of predictors from
ERA-Interim in the present study allows a comparison
with the results of the COST-VALUE intercomparison
studies. Gutiérrez et al. (2019) in particular contains an in
depth evaluation (e.g., w.r.t. wet-day frequency and season-
ality) of a previous version of deterministic multi-objective
GP downscaling among and in comparison to a variety of
other empirical-statistical downscaling technique. Hertig
et al. (2019) provides an in-depth evaluation
w.r.t. extremes.
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