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ABSTRACT
In this paper, the methods of digital rock physics are applied to determine pressure-
dependent effective thermal conductivity in rock samples. Simulations are performed
with an in-house three-dimensional finite volume code. In the first step, four numerical
models are derived from a given tomographic scan of Berea sandstone. Consequently,
simulations of the thermal conductivity at ambient conditions are performed and vali-
dated with experimental data. In a second step, a new workflow for the determination
of the pressure-dependent thermal conductivity in rock samples is elaborated, tested
and calibrated. Results originating from the derived workflow show very good agree-
ment with experimental data.

Key words: Numerical study, Pressure-dependent thermal conductivity, Digital rock
physics, Tomography.

1 INTRODUCTION

For the technical use of geothermal applications, detailed
knowledge of the thermal conductivity of the underlying
rock formation is of great importance. Typical examples are
basin modelling for the prediction of hydrocarbon maturation
(Chekhonin et al., 2019), analysis of geothermal reservoirs for
energy production or storage (Sipio et al., 2013) and finding
suitable locations for nuclear waste disposal (Mirkovich and
Soles, 1978).

In general, the thermal conductivity of rocks can be un-
derstood as a macroscopic quantity, which mainly depends
on the material composition as well as its pore structure.
Due to the depth-dependent geothermal and geobaric gradient
(Lowrie and Fichtner, 2020; Tiab and Donaldson, 2016), it is
also reasonable to consider temperature and pressure effects.

The determination of thermal conductivity of rocks can
be performed experimentally or numerically. A large collec-
tion of experimental data can be found in Cermak and Ry-
bach (1982),Horai (1971),Desai et al. (1974) andClauser and
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Huenges (2013). Experimental studies with an increased focus
on temperature and pressure effects can be found inWoodside
and Messmer (1961), Abdulagatov et al. (2006) and Lin et al.
(2011). A good summary of numerical approaches is given in
Wang and Pan (2008).

Concerning the above-mentioned example of basin
modelling, Hicks et al. (2012) and Blackwell and Steele
(1989) have pointed out that the quality of the simulations
might be strongly dependent on the input values for thermal
conductivity. If no experimental data are available, one relies
on numerical approaches. One such approach is digital rock
physics (DRP). In DRP, a three-dimensional model of the
underlying microstructure, based on a tomographic scan of
the investigated rock, is created. This model is used as an
input for a numerical solver. From the results of the numerical
simulation, the macroscopic quantities can be determined.
Examples of this approach can be found in Qin et al. (2020),
Do and Hoxha (2013), Yang et al. (2019), Jones and Pascal
(1995) and Petrasch et al. (2008). Although a wide variety
of DRP models for the determination of thermal conductivity
are available, to this date there are no models that mimic the
influence of pressure.
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Figure 1 Typical workflow of the digital rock physics approach.

The main objective of this study is the development of
a new DRP workflow for the determination of pressure-
dependent thermal conductivity based on the microstructure
of rock samples. Generally, our model is based on the ideas
of Quintal et al. (2011), Madonna et al. (2012) and Saenger
et al. (2016). In these publications, a DRP workflow for the
determination of pressure-dependent elasticity was discussed
and successfully tested. In particular, the model is based on
the assumption that the contact area between the individual
grains of the rock plays a decisive role. By applying pressure,
the contact area is increased and the macroscopic property
under consideration changes.

Pimienta et al. (2014) observed that the pressure-
dependent elasticity and thermal conductivity of sandstones
might behave similarly. Based on this observation, we attempt
to transfer the above-mentioned elasticity approach to the
modelling of pressure-dependent thermal conductivity. For the
validation of the model, we restrict ourselves to sedimentary
rocks, in our case Berea sandstone. Simulation results are com-
pared with experimental data of up to 50 MPa. Addition-
ally, to optimize the agreement between simulation and exper-
iment, a physically motivated calibration process is presented
and tested.

The paper is divided into four parts. We start with a dis-
cussion of the computational approach and present the rock
sample studied here. Building on this, we carry out our in-

vestigations. Thermal conductivities at ambient conditions are
simulated. The results are validated and compared with exper-
imental data. Furthermore, the numerical error is analysed.
Different numerical approaches are used, and mesh refine-
ment studies are performed. Subsequently, simulations for the
pressure-dependent thermal conductivity are carried out and
tested. The paper ends with a discussion of the results.

2 METHOD

We follow a workflow commonly used in DRP to simulate ef-
fective properties of rock samples. As a starting point, a tomo-
graphic scan of a rock sample is taken. The resulting greyscale
image is segmented to determine all phases of the sample, for
example minerals and pore space. Each phase is prescribed
with a given material property and loaded into a numerical
solver. The related governing equations will be solved, and the
effective property can be calculated.An overview of this work-
flow is given in Figure 1. In our case, we want to determine
the effective thermal conductivity of rock samples. All simula-
tions will be performed with our in-house code (Siegert et al.,
2021). Assuming a steady heatflow solely influenced by pure
heat conduction using Fourier’s law (Fourier, 1822), the gov-
erning equation reads as follows:

−∇(k∇T ) = q, (1)
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Figure 2 Schematic representation of boundary conditions in two di-
mensions.

with k is thermal conductivity and q is heat sources. The tem-
perature field being solved for is represented by the variable
T . This equation is solved numerically using the finite vol-
ume method. The corresponding numerical mesh is directly
derived from the segmented tomographic scan. Every voxel is
translated to a control volume, and the corresponding thermal
conductivity is assigned.

During the simulation process, equation (1) is discretized
and evaluated for every single control volume. The result-
ing linear system of equations is solved with an iterative
method. In particular, we use the conjugated gradients method
(Hestenes and Stiefel, 1952). As a stopping criterion, the L1-
residual is computed. Once the residual is below 10−10 simu-
lations are terminated.

In general, all simulations are performed with cuboid
meshes. Thus, modelling of directional dependencies is rel-
atively straightforward. This is done by applying Dirichlet
boundary conditions on two opposing sides, leading to a fixed
temperature difference of �T = 1 across the sample. The re-
maining sides are treated adiabatically with Neumann bound-
ary conditions, that is, a zero gradient normal to the surface
∇T = 0. The resulting temperature field will be used to calcu-
late heat fluxes across both sides, which in turn can be used
to predict the effective thermal conductivity in the direction of
one given basis vector (see Fig. 2)

k = Q̇�x
A�T

, (2)

with Q̇ being the heat flux flowing through the sample, �x

the dimension of the sample parallel to the heat flux, A the
cross-sectional area of the sample perpendicular to the heat
flux and �T the applied temperature difference. Additional
simulations for the two remaining pairs of opposing sides lead
to the effective thermal conductivity in all basis vector direc-
tions, namely kxx, kyy and kzz.

Figure 3 Pore size distributions of the Berea sandstone samples used
in Madonna et al. (2013) and Lin et al. (2011).

As shown in Patankar (1980) and Liu and Ma (2005),
a crucial point in the numerical process is the averaging of
the interfacial conductivity between two control volumes.Our
solver supports two methods, namely the harmonic mean and
the arithmetic mean. During this study, both approaches will
be used, allowing to estimate the numerical error. For further
information about these approaches, we refer to Maddix et al.
(2018), Siegert et al. (2021), Kadioglu et al. (2008) andMacK-
innon and Carey (1988).

2.1 Investigated rock sample

In the present study, the main object of investigation is the
pressure-dependent thermal conductivity of Berea sandstone.
Berea sandstone is a well-known reservoir rock, which has
been extensively analysed in previous studies (Desai et al.,
1974).

Generally, all present simulations are based on the tomo-
graphic scan published byMadonna et al. (2013). The numeri-
cal results are compared with the experimental data published
by Lin et al. (2011). Unfortunately, both investigations were
carried out separately and are therefore not based on the ex-
act same rock sample. However, in both studies mercury in-
trusion porosimetry measurements have been performed. The
results are shown in Figure 3. As can be seen, the pore size
distribution of both samples is very similar. In particular, the
course of the intermediate pore radius interval between 0.1
and 20 μm is almost identical. Suggesting a comparison of
both datasets is possible. The comparison of the total poros-
ity with φLin = 19.7% and φMadonna ≈ 20% points in the same
direction.
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Figure 4 Pressure-dependent thermal conductivity of Berea sand-
stone, measured in its dry and wet state, originally published by Lin
et al. (2011).

2.1.1 Experimental data

As mentioned earlier, the experimental data used in this study
were originally published by Lin et al. (2011). In his work,
Lin et al. analysed pressure-dependent thermal conductivity of
four rock samples, one of which is Berea sandstone. All mea-
surements were performed at room temperature and cover the
pressure range from 0.1 to 50 MPa. The pressure is applied
in a hydrostatic manner. Anisotropic effects are not analysed.
In order to track hysteresis effects, each measurement run is
divided into loading and unloading curves. Additionally, the
sample was measured in its dry (pores are filled with air) and
wet (pores are filled with ion-exchanged water) state. Each
curve was measured multiple times, and the average was com-
puted. Relative differences within one measuring point are be-
low 2.4% for the dry sample and below 5.9% for the wet
sample. The experimental data are shown in Figure 4.

As one can see, the thermal conductivity of the dry sam-
ple is always lower than the thermal conductivity of the wet
sample. This observation is convincing since the thermal con-
ductivity of water is roughly 23 times higher than the thermal
conductivity of air under ambient conditions. Regarding the
overall trend of the dry sample, the steep gradient at low pres-
sures with the later almost linear behaviour stands out. This
trend was also reported by Woodside and Messmer (1961)
and is also observed for other material properties like elasticity
and electric resistivity (Madonna et al., 2012; Pimienta et al.,
2017). In contrast, the thermal conductivity of the wet sample
seems to behave more or less linear for all pressure levels. At
least, a steep gradient cannot be observed with the given mea-
surement accuracy. Regarding hysteresis effects, both probes
seem to show slight deviations between loading and unload-

Figure 5 Representative slice of the tomographic image of the Berea
sandstone sample, and four different phases are marked. The white
circle separates the image artifacts, which mostly occur in the corners
of the xy-plane, from the original image.

ing curves, though, the overall courses indicate that this might
be related to a precision problem.

2.1.2 Tomographic data

The numerical model developed during this work is based on
the tomographic data published by Madonna et al. (2013). In
their work, Madonna et al. took tomographic scans of five
different rock samples, one of which is Berea sandstone. The
Berea-scan has been taken with a synchrotron radiation x-ray
tomographic microscopy and a voxel resolution of 0.74 μm.
The scanned sample is cubic in dimension with an edge length
of 757.76 μm, resulting in a total voxel count of 10243. In or-
der to analyse material composition, additional scanning elec-
tron microscope (SEM) images were taken. Madonna et al.
concluded that five minerals appear in the SEM image, namely
quartz, K-spar, clay, ankerite and zircon. Due to the poorer
image quality of the tomographic scan, they assumed that
only quartz, ankerite and zircon are distinguishable there (see
Fig. 5).

Two points have to be taken into account when building
the numerical model: First, as can be seen from Figure 5, im-
age artefacts are present in the original tomographic dataset.
These artefacts may cause issues during the segmentation
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Figure 6 Graphical representation of all three subsamples, with the lightest grey representing zircon, second lightest grey ankerite, third lightest
grey quartz, darkest grey pore and yellow contact phase. Sample 1 is placed on the top left, sample 2 on the bottom left and sample 3 on the
right. The edge length of samples 1 and 2 is 296 μm, and the diameter of sample 3 is approximately 758 μm.

process and should be avoided for further analysis. Second,
computational power is limited. With our current setup, a
cluster with 240CPU cores and 1.152 TBRAM, themaximum
number of cells we can successfully handle is about 12003.
Thus, the important step of mesh refinement and the associ-
ated numerical error analysis can only be done for sufficiently
small datasets.

Taking these points into account, two subsamples from
the original dataset are derived. The first subsample shall rep-
resent the material composition of the original dataset. It can
be used to investigate the influence of the material compo-
sition during numerical simulations. The second sample was
placed in such a way that mainly quartz is present. It forms the
basis for the contact phase detection step using the watershed
method (Beucher and Meyer, 2018) and will be used for the
pressure-dependent simulations (see Section 4.1). In addition,
a cylindrical subsample is cut out as a reference for the ma-
terial composition of the entire sample, eliminating possible
problems arising from the image artefacts mentioned above.
This last sample is not used for simulation purposes.

Segmentation of all three subsamples is performed using
the software Dragonfly (Object Research Systems, 2020). Ar-
tificial neural networks for the detection of each phase, namely

Table 1 Porosity and relative mineral composition of all three samples

Porosity Vquartz
Vminerals

Vankerite
Vminerals

Vzircon
Vminerals

Vcontact
Vminerals

Sample 1 16.24% 95.57% 4.08% 0.35% 0.00%
Sample 2 17.37% 97.86% 0.00% 0.00% 2.14%
Sample 3 17.31% 94.62% 4.93% 0.45% 0.00%

pore, quartz, ankerite and zircon, were trained. For the deter-
mination of the contact phase, the marker-controlled water-
shed algorithm of the software package ImagJ, MorphoLibJ
plugin, is used (Legland et al., 2016). The placement of the
markers was carried out manually. A graphical representation
of each sample is given in Figure 6, and the corresponding
characteristics are shown in Table 1.

As can be seen, the general trend of the material compo-
sition is similar for all samples. All samples have a porosity
of approximately 16–17.5%. In addition, quartz is the domi-
nant mineral with a relative mineral content of at least 94%,
followed by ankerite (approximately 5%) and zircon (approx-
imately 0.5%). In comparison with the experimental data, it
is also noticeable that the porosity of the samples is generally
too low by about 3 percentage points. If the contact phase of
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Figure 7 Temperature dependency of the thermal conductivity of
quartz at ambient pressure (Eucken, 1911; Birch and Clark, 1940;
Kanamori et al., 1968).

sample 2 is added to the pore phase, the porosity is about 19%,
and the deviation from the experimental data decreases ac-
cordingly.

2.2 Material Properties

To simulate the effective thermal conductivity in porous rocks,
corresponding thermal conductivities must be assigned to each
phase. In general, we assume that each phase can be properly
modelled by the value of its related pure substance. As de-
scribed above, to simulate the present Berea sandstone sam-
ple, thermal conductivities of five phases have to be known,
namely air, water, quartz, ankerite and zircon. At large, these
values depend on pressure and temperature. The determina-
tion of these values is not necessarily straightforward; a lack
of available data, as well as anisotropic effects, might be a
cause for that.

Experimental data for the present pore phase fluids are
well documented and readily accessible. As shown by Span
(2013) andWagner and Kretzschmar (2013), thermal conduc-
tivity of air and water might be heavily dependent on temper-
ature and pressure. However, it must be taken into account
that in Lin’s measurement setup, the pressure acts exclusively
on the matrix structure of the rock sample, that is the pore
pressure remains constant. Furthermore, the measurements
are carried out at a constant temperature. Therefore, in the
present case, pressure and temperature dependencies of the
thermal conductivity of the pore phase can be neglected.

The determination of the thermal conductivity of themin-
eral phases is more demanding. Some insight into this problem
will be discussed using the example of quartz. Its temperature
dependence is given in Figure 7. As can be seen, the determi-
nation of the thermal conductivity is not unambiguous. On
the one hand, a directional dependence on the thermal con-

Table 2 Thermal conductivity of the materials used in the present
study, based on Span (2013), Wagner and Kretzschmar (2013) and
Horai (1971)

Air Water Quartz Ankerite Zircon

K [W m−1K−1] 0.026 0.61 7.69 5.51 4.54

ductivity can be observed. As a possible explanation for this
anisotropy, the crystal structure of quartz can be referenced.
Apparently, the thermal conductivity in the direction of the c-
axis is generally greater than that of the a-axis. An approach
widely used in the literature (Horai and Simmons, 1969; Prib-
now and Umsonst, 1993) to average the directional depen-
dence takes the weighting of the individual axes into account
and results in

keff = 1
3
kc−axis + 2

3
ka−axis. (3)

On the other hand, deviations occur between the individual
measurement series. Especially in the range around 300 K,
which is of particular interest in the present investigation, the
largest differences are present.Due to this variation, the widely
used literature value of 7.69 W m−1 K−1 was chosen (Ho-
rai, 1971; Cermak and Rybach, 1982; Clauser and Huenges,
2013).

Regarding the influence of pressure, we refer to the in-
vestigations of Beck et al. (1978). There, a relative increase in
the thermal conductivity of up to 31% was observed for pres-
sures in the range of 0.1 and 1950 MPa. Assuming a linear
progression between these two measuring points, this means
that for the pressure range of 0.1–50 MPa considered here,
an expected relative change of less than 1% occurs. Conse-
quently, pressure dependence is not taken into account.

In terms of data availability, quartz is considered an
important material for technical applications, so its prop-
erties are well documented. In contrast, ankerite and zir-
con are less studied. Therefore, some assumptions to fill the
gap of available data have to be made. First, we assume
that the pressure dependence of ankerite and zircon is sim-
ilar to that of quartz and can therefore be neglected. Sec-
ond, to the best of our knowledge, no data are available for
ankerite. Hence, it is assumed that the thermal conductiv-
ity of ankerite is similar to that of dolomite. This assump-
tion is motivated by their corresponding chemical formulas,
namely Ca(Fe2+

,Mg,Mn2+)(CO3)2 in the case of ankerite
and CaMg(CO3)2 in the case of dolomite.

All thermal conductivities used in the present study are
given in Table 2. All data are given at ambient conditions
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(298.15 K, 0.1 MPa). As can be seen, the thermal conductivity
of water is approximately one order of magnitude greater than
that of air. In turn, the thermal conductivity of the minerals is
about one order of magnitude greater than that of water.

3 THERMAL CONDUCTIVITY AT AMBIENT
CONDITIONS

Within the scope of the first investigation,we restrict ourselves
to the simulation of the thermal conductivity at ambient con-
ditions, that is a temperature of 298.15 K and a pressure of 0.1
MPa.The investigation is divided into two parts. In a first step,
basic trends are established using sample 1 and it is observed
how well the numerical solution reproduces the experimen-
tal data. Subsequently, the influence of the individual samples
is compared.

3.1 General numerical trend

This investigation will exclusively be performed with sample
1 (see Fig. 6). Within the numerical workflow, the follow-
ing three points will be considered: First, the anisotropy of
the thermal conductivity is taken into account. By adjusting
the boundary conditions, the thermal conductivity of all three
basis vector directions is calculated. Second, the influence of
the averaging method at the cell interfaces is investigated. In
particular, the harmonic and arithmetic mean are being used.
Third, a mesh refinement study is performed. The simulations
are executed on the base mesh with 4003 cells as well as on a
systematically refined mesh with 23 × 4003 cells. These data
will be used to extrapolate the analytical result, applying

kana ≈
kmesh,1 − kmesh,2

(
�xmesh,1
�xmesh,2

)p

1 −
(

�xmesh,1
�xmesh,2

)p , (4)

with kmesh,i is the numerical results, �xi is the edge length of
the corresponding mesh cells and p is the order of convergence
(Roache, 1997). Here, the observations published by Siegert
et al. (2021) are considered, namely ph = 2 for the harmonic
mean and pa = 1 for the arithmetic mean. A graphical repre-
sentation of the numerical results is given in Figure 8 (consider
dark grey areas only).

Overall, the simulated results lie above the experimen-
tal data. Regardless of the direction of the thermal conduc-
tivity, numerical results are approximately two times greater
than the experimental data. Furthermore, it can be stated
that the numerical results show a slight anisotropy, namely
kyy > kzz > kxx.Whereas the relative deviation of kxx from the

Figure 8 Anisotropic simulation results of all four samples in x, y and
z-direction, and experimental data are given as a reference (black line).
The dark grey area represents sample 1a, third lightest area sample 1b,
second lightest area sample 2a and lightest area sample 2b. Results of
the arithmetic mean are given in red, with light red being the results
of the refined mesh. Results of the harmonic mean are given in blue,
with light blue being the results of the refined mesh.

other two directions is with up to 10% of the largest, numer-
ical trends of kyy and kzz are closer with a maximum relative
deviation of 2.5%.With regard to the numerical error, the fol-
lowing trends can be observed: First, the thermal conductiv-
ities resulting from the simulations based on the arithmetic
mean are generally greater than those of the harmonic mean.
This observation is consistent with theory (Gwanyama, 2004)
and can be taken as an indication of reasonable numerics. Sec-
ond, taking into account the results of the refined meshes, the
impression arises that the two averaging methods converge
towards a final value. The arithmetic mean has the character
of an overestimator and the harmonic is mean that of an un-
derestimator. This tendency is also largely supported by the
extrapolated values, with the thermal conductivities of 4.56,
5.11 and 4.98 W m−1 K−1 for the arithmetic mean in the x, y
and z-directions and 4.67, 5.10 and 4.98 W m−1 K−1 for the
harmonic mean in the corresponding directions. The only ex-
ception occurs for the thermal conductivity in the x-direction.
There, the extrapolated value of the arithmetic mean is lower
than that of the harmonic mean. This might be an indication
of insufficient mesh refinement. Third, the comparison of the
averaging methods for a given direction reveals a maximum
relative deviation between arithmetic and harmonic mean on
the unrefined base mesh in the x-direction. With a value of
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Figure 9 Two-dimensional slices of samples 1a, 1b, 2a and 2b, and blue areas represent the pore phase, grey areas the quartz phase, red areas
the ankerite phase and pink areas the zircon phase.

9%, we observe that the averaging method can indeed have a
strong influence on the numerical outcome. Fourth, with re-
gard to the influence of the mesh refinement, for a given aver-
aging method the maximum relative deviation of two succes-
sive meshes is up to 4.5%.

3.2 Influence of the sample

In the next step, the influence of individual samples on the
effective thermal conductivity is investigated. In total, the re-
sults of four samples are compared. All samples are based on
samples 1 and 2 presented in Section 2.1.2. By changing the
thermal conductivity of the individual phases, two additional
samples are generated. The overall picture is as follows:
• Sample 1a is equal to the original sample 1 and contains

four phases. The results of this sample are already known
from the previous section (Section 3.1) and are used as a
reference. For all directions, voxels 301–700 of the original
10243 sample are used.

• Sample 1b is identical to the structure of sample 1a, but all
mineral phases are declared as quartz. Using this sample,
the influence of the ankerite and zircon phases on the total
thermal conductivity can be studied.

• Sample 2a originates from the data of sample 2. The contact
phase is assigned to the quartz phase. This sample can be
used to check whether the position of the sample has an
influence on the effective thermal conductivity. Based on
the original 10243 sample, voxels 249–648 are used in the
x-direction, 181–580 in the y-direction and 625–1024 in
the z-direction.

• Sample 2b is based on the data of sample 2; here the contact
phase is completely assigned to the pore phase. The influ-
ence of grain-to-grain contacts can thus be studied.

A graphical representation of all samples is given in Figure 9.
From a numerical point of view, the same aspects as in the
previous investigation are considered. That is, the directional
dependence as well as the influence of the mesh resolution is
studied. Extrapolated values are not determined. The results
of the investigation are shown in Figure 8. Initially, the focus is
shifted to the numerical error of the individual samples.While
samples 1b and 2a reveal a similar trend as the already anal-
ysed sample 1a, the numerical behaviour of sample 2b shows
unique features. In particular, the numerical behaviour of the
arithmetic mean of the non-refined base mesh can be consid-
ered as an outlier. Whereas most numerical results of sample
2b generally underestimate the experimental value, an overes-
timation takes place for the arithmetic mean on the first mesh.
This can be explained by considering that the contact phase in
sample 2 is often only one voxel wide. Using the current mate-
rial properties (kair � kquartz), the thermal conductivity at the
interfaces between pore and mineral cells differ significantly

kh = 2kairkquartz
kair + kquartz

= 0.052 W m−1 K−1, (5)

ka = kair + kquartz
2

= 3.858 W m−1 K−1. (6)

That is, the harmonic mean detects the isolating effect of
the contact phase much better than the arithmetic mean. Only
when the resolution of the contact-line is increased, in other
words one numerical cell is halved in all spatial directions
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during mesh refinement, the arithmetic mean starts to de-
tect the isolating effect of the contact phase. It can be con-
cluded that the arithmetic mean is not a good choice for low-
resolution contact phases. Therefore, for further analysis of
the sample influence, the results of the arithmetic mean on the
first mesh of sample 2b are omitted.

In a second step of the analysis, the influence of the in-
dividual phases on the effective thermal conductivity is in-
vestigated. As can be seen in Figure 8, all samples show a
slightly anisotropic character with kyy > kzz > kxx. Further-
more, a clear distinction can be made between samples 1a, 1b
and 2a on the one hand and sample 2b on the other.While 1a,
1b and 2a overpredict the experimental results, sample 2b un-
derpredicts the experimental results.One reason for this might
be the insufficient resolution of the tomographic dataset. As
can be seen from Figure 3, the current voxel resolution of
0.74 μm only captures 85% of the pores that can be detected
by mercury porosimetry. The pores that form the grain-to-
grain contact are expected to have a large impact on the over-
all thermal conductivity.While these areas are underestimated
in samples 1a, 1b and 2a, sample 2b artificially captures these
areas. In fact, the results suggest that the present application
of the watershed approach overestimates this effect, resulting
in a thermal conductivity that is lower than that of the exper-
imental data.

For samples 1a, 1b and 2a, the general trend k1b > k1a >

k2a can be observed. The first part of this observation, namely
k1b > k1a, can be explained by the choice of material proper-
ties. While sample 1b consists only of quartz and air, sample
1a consists of four phases, namely quartz, air, ankerite and zir-
con. Since ankerite and zircon have a lower thermal conduc-
tivity than quartz, the effective thermal conductivity should
be lower. The explanation for the observation k1a > k2a is not
straightforward as both samples have slightly different origins.
In general, it was observed that sample 2 has a higher poros-
ity than sample 1 (see Table 1). Therefore, a lower effective
thermal conductivity might be assumed for sample 2.

With a deviation of about 10% between samples 1b and
2a, it is evident that the positioning of the samples might play
a significant role. The influence of ankerite and zircon on the
effective thermal conductivity is small. This fits to their min-
eral composition of roughly 4.5% and 0.5%.

4 S IMULATION OF PRESSURE-DEPENDENT
THERMAL CONDUCTIVITY

In the scope of the second main investigation, the focus is
shifted to the influence of pressure on the effective thermal

conductivity. All simulations are performed with sample 2 (see
Fig. 9). In the first step, the approach on which the pressure-
dependent simulations are based on is introduced.Afterwards,
a full run of this workflow is performed. In an additional step,
the influence of the proposed calibration process is analysed.
Finally, the pressure-dependent thermal conductivity of the
wet sample is investigated.

4.1 Pressure dependence modelling and calibration
workflow

Our idea for numerically modelling the influence of pres-
sure on the thermal conductivity of rock samples is shown in
Figure 10. It is assumed that in reality an increase in pres-
sure provokes a reorientation of the rock grains (upper half of
Fig. 10, from left to right). In particular, the grains are com-
pressed and the yellow marked interfacial volume between
grains (also referred to as contact phase) is minimized. In addi-
tion, microcracks are gradually closed. Within the framework
of the presented numerical approach, it is assumed that the
reduction of the interfacial volume has a decisive influence
on the effective thermal conductivity. This influence is mod-
elled with the ideas presented in the lower half of Figure 10.
In general, the workflow is restricted to numerical models con-
sisting of three phases, that is pore phase, grain phase and
contact phase. The pore and grain phases can be determined
directly from the tomographic scan by segmentation. The con-
tact phase is detected with the already mentioned watershed
algorithm (see Section 3.2). Based on this configuration, a va-
riety of simulations are performed.Whereas the assigned ther-
mal conductivity of the pore and grain phase is fixed using lit-
erature values, the thermal conductivity of the contact phase
is varied from simulation to simulation. In the first simula-
tion, the contact phase thermal conductivity is set equal to
that of the pores kcontact = kpore (see the bottom left image of
Fig. 10). For the subsequent simulations, the thermal conduc-
tivity of the contact phase is increased step by step (see the
bottom centre image of Fig. 10) until finally, in the last sim-
ulation, the thermal conductivity of the grain phase is spec-
ified kcontact = kgrain (see the bottom right image of Fig. 10).
The pressure effect is thus mimicked by adjusting the ther-
mal conductivity of the contact phase. The number of simula-
tions is user dependent. In the present work, at least 20 sim-
ulations are usually used to trace a full pressure-dependent
curve.

While the effective thermal conductivity resulting from
these simulations can be plotted as a function of contact phase
thermal conductivity, the effective thermal conductivities of
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Figure 10 Top: Effect of increasing pressure (p0 < p1 < p2, from left to right) on the microstructure of a rock, with grey representing grains,
white pore space, yellow grain contact zones and black microcracks. An increase in pressure closes the microcracks and reduces the area of the
grain contact zone. Bottom: General idea on how to mimic pressure increase in our numerical model. Assigned thermal conductivity of the grain
contact zone is increased during the simulation process (from left to right) in order to mimic the pressure effect.

the experimental data are given as a function of pressure. If
the two datasets are to be compared, a transformation rule
between pressure and contact phase thermal conductivity is
required. Following the example of Quintal et al. (2011),
Madonna et al. (2012) and Saenger et al. (2016), a linear re-
lationship is assumed

kcontact(p) = ap+ b. (7)

To determine the two unknown quantities a and b, two pres-
sure information from the experimental dataset are used. The
minimum thermal conductivity of the contact phase k(0)

min =
kpore is correlated with the lower pressure pmin. The maximum
thermal conductivity of the contact phase k(0)

max = kgrain is cor-
related with the upper pressure pmax (see Fig. 11). This results
in

k(0)
contact(p) = kgrain − kpore

pmax − pmin
(p− pmin) + kpore. (8)

As will be seen in Section 4.2, this non-calibrated approach
does not necessarily result in a perfect fit between numerical
and experimental data. In order to optimize this fit, a cali-
bration workflow is introduced. The basic idea of the cali-

Figure 11 Setup for the non-calibrated curve; the x-axis of the nu-
merical model is linearly correlated with experimentally determined
pressure.

bration workflow is the adjustment of the thermal conductiv-
ity of the grain and contact phase. Here we will focus on the
mathematical description of our calibration process. A visual
motivated explanation is given in Appendix A. Overall, the
calibration process is iterative in nature (see Fig. 12). Based
on a given simulation dataset (superscript n), adjusted ma-
terial properties for the grain phase and the contact phase
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Figure 12 Flowchart of the presented calibration workflow.

(superscript n+ 1) can be calculated as

k(n+1)
grain = k(n)

grain

kexp,max

k(n)
sim,max

, (9)

k(n+1)
contact(p) = a(n+1)p+ b(n+1), (10)

with

a(n+1) = k(n+1)
contact,upper − k(n+1)

contact,lower

pmax − pmin
, (11)

b(n+1) = k(n+1)
contact,lower − apmin, (12)

and

k(n+1)
contact,upper = k(n+1)

grain , (13)

k(n+1)
contact,lower = k̃(n)

contact,NB2 − k̃(n)
contact,NB1

k̃(n)
sim,NB2 − k̃(n)

sim,NB1

(kexp,min − k̃(n)
sim,NB2)

+ k̃(n)
contact,NB2, (14)

with k̃sim,i being the simulation results of the current simulated
dataset normalized by

k̃(n)
sim,i = k(n)

sim,i

kexp,max

k(n)
sim,max

. (15)

The normalized simulation results k̃(n)
sim,NB1 and k̃(n)

sim,NB2 repre-
sent the nearest neighbours of kexp,min

k̃(n)
sim,NB1 ≤ kexp,min ≤ k̃(n)

sim,NB2. (16)

If no upper or lower bound exists, both bounds are set equal
k̃(n)
sim,NB1 = k̃(n)

sim,NB2. The values k̃(n)
contact,NB1 and k̃(n)

contact,NB2 are
given as their corresponding contact phase values

k̃(n)
contact,i = k̃(n)

contact(k̃
(n)
sim,i), (17)

whereby k̃(n)
contact,i are the linear interpolated contact values be-

tween the new grain value k(n+1)
grain and the fixed pore value kpore

k̃(n)
contact,i = k(n+1)

grain − kpore

k(n)
grain − kpore

(
k(n)
contact,i − kpore

)
+ kpore. (18)

This approach ensures that the thermal conductivity of the
contact phase (see equation (10)) will always be equal or
greater than that of the pore phase.

In contrast to the grain phase and contact phase, the
thermal conductivity of the pore phase is held constant at
kpore = kfluid and will not change during the whole calibration
process. For a better practical understanding of this workflow,
a sample calculation is given in Appendix B.

4.2 Simulation of the non-calibrated model

In the next step, the non-calibrated curve is simulated. The
pressure influence is imitated by adjusting the thermal con-
ductivity of the contact phase. A total of 20 different values
are assigned to the contact phase. All values lie in the inter-
val between the thermal conductivities of air and quartz. The
first and last simulations are carried out with the values of the
associated interval limit.

In order to capture numerical errors, a mesh refinement
study is performed. Both averaging methods are being used.
Due to the previously observed low directional dependence,
the investigation of the anisotropic behaviour is omitted. As
a measure for the numerical quality, the root mean square
(RMS) of the difference between numerical and experimental
data is calculated

RMS =
√
1
n

∑
n
(knum,i − kexp,i)2, (19)

assuming the linear dependence between pressure and the ther-
mal conductivity of the contact phase given by equation (8).
The results of this investigation are shown in Figure 13.

As can be seen, the basic trend of the numerical and
the experimental curves is similar. All curves show a steep
slope at the beginning, which changes into an almost linear
course with increasing pressure. The maximum thermal con-
ductivity is well matched by all numerical curves, and the
maximum relative difference is below 13%. For the classifica-
tion of the minimum thermal conductivity, the already known
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Figure 13 Simulation results of the non-calibrated model. Left: Pressure-dependent effective thermal conductivity; the results are mapped to the
experimental data between 0.1 and 50.47MPa. Right: RMS values of all simulation setups, divided into RMS values of the loading, unloading
and total experimental curve.

trend from Section 3.2 can be observed. Whereas the arith-
metic mean on the non-refined mesh overestimates the mini-
mum experimental thermal conductivity, the remaining simu-
lations have an underestimating character. In addition to the
explanation of Section 3.2, we want to add that the under-
estimating character can also be interpreted physically. For
the minimum pressure, the thermal conductivity of the con-
tact phase is set to kcontact = kair. In a physical sense, this
means that the grains are completely isolated and virtually
float in the air. In reality, contact points will always occur
between the grains. We suspect that this difference between
reality and numerical models can be a reason for the observed
underestimation.

With regard to the influence of mesh refinement, a con-
verging trend can generally be observed. The refinement of
the mesh ensures that the differences between arithmetic and
harmonic means become smaller.

Concerning the general quality of the results, the RMS
values confirm the already discussed trends. Whereas the sim-
ulation results of the arithmetic mean on the unrefined mesh
reveal the greatest deviations from the experimental data with
RMS values of up to 1, the RMS values of the remaining sim-
ulations are all lower and on a similar level at about 0.5. Ad-
ditionally, it is observed that all simulation results generally
match the experimental data of the unloading curve better
than those of the loading curve.

4.3 Simulation of the calibrated model

In the context of this investigation, the match between the nu-
merical model and experimental data is optimized by using

the calibration approach presented in Section 4.1. Based on
the data from the previous investigation and the calibration
points Pmin(0.1 MPa, 2.29 W m−1 K−1) and Pmax(50.47 MPa,
4.17 W m−1 K−1), a template for the material properties is de-
veloped. Specifically, calibrated thermal conductivities for the
grain and contact phases are determined. The thermal con-
ductivity of the pore phase is not changed. All simulations
performed here are based on the harmonic mean and the unre-
finedmesh only. The calibrationmodel has an iterative charac-
ter. The results of the first three iterations are given in Table 3.
A graphical representation can be found in Figure 14.

As described in Section 4.1, all templates suggest a
minimum thermal conductivity of the contact phase that is
greater than that of the pore phase. Figuratively speaking, the
templates require that the grains do not float. This can be seen
as a confirmation of the physical interpretation formulated in
Section 4.2 regarding the necessity of contact points between
the individual grains. Furthermore, it can be stated that all
templates do not differ greatly from each other. All thermal
conductivities of the grain phase are below the original quartz
value and only differ slightly from each other (relative differ-
ences below 0.1%). The linear courses of the contact phase
thermal conductivity are very similar as well. We, therefore,
decide to use the dataset of the first iteration for further in-
vestigation. The corresponding results are given in Figure 15.

Overall, it can be stated that the calibration process im-
proves the fit between the numerical model and the experi-
mental data. While the non-calibrated curve has a total RMS
value of 0.53, the total RMS value of the calibrated curve is
only 0.15. In particular, the first and last points are very well
represented by the calibrated curve, with relative differences
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Table 3 Calibration templates for iterations one, two and three of the dry sample. Iteration zero is equal to the non-calibrated model. All thermal
conductivities are given in unit W m−1 K−1

Contact Phase

Iteration Pore Phase Lower Pressure Dependence Upper Grain Phase

0 0.026 0.0260 0.1522p+ 0.0108 7.6900 7.6900
1 0.026 0.1442 0.1384p+ 0.1304 7.1179 7.1179
2 0.026 0.1441 0.1383p+ 0.1303 7.1111 7.1111
3 0.026 0.1441 0.1383p+ 0.1303 7.1110 7.1110

Figure 14 Graphical representation of the calibration template for the
dry (black) and wet (blue) sample. Results of the second iteration are
shown. Dotted lines show the suggested thermal conductivities for an
optimized fit between numerical model and experimental data. The
solid green line represents the literature value of quartz. The grey area
marks the region between the calibration points.

Figure 15 Simulated pressure-dependent thermal conductivity for the
dry and wet model, experimental data are given as a reference. Results
of the non-calibrated as well as the calibrated model are shown.

below 2%. The intermediate points can be grouped into three
ranges, namely low pressure, medium pressure and high pres-
sure. While the low- and high-pressure ranges are well cap-
tured, the results of the medium pressure range do not match
as well.

In terms of the loading and unloading curves, it can be
seen that the fit to the unloading curve (RMS value of 0.09) is
better than the fit to the loading curve (RMS value of 0.18).
Overall, the results show that the assumptions of the calibra-
tion procedure, especially the linear relation between pressure
and contact phase thermal conductivity, can provide a good
agreement with the experimental data. Even the results from
the extrapolated range seem to give a reasonable outcome by
continuing the linear trend (see Section 4.4).

4.4 Influence of the calibration points

We have seen from the previous investigations that the calibra-
tion process seems toworkwell for the problem at hand.Using
the non-calibrated model, as well as two calibration points,
we were able to optimize the agreement between the numer-
ical model and experimental data. Here, the focus is shifted
to the choice of the calibration points and its influence on the
numerical results.

When choosing the calibration points, it is taken into ac-
count that the measurement of the thermal conductivity at
ambient pressure is relatively straightforward. In contrast, the
choice of the maximum possible pressure will depend on the
technical limitations of the measurement setup. Consequently,
it is decided to fix the minimum calibration point at ambient
pressure, namely Pmin(0.1 MPa, 2.29 W m−1 K−1). The maxi-
mum calibration point Pmax will be varied. From a numerical
point of view, simulations are again restricted to the harmonic
mean and the unrefined mesh. Also, as before, the calibration
model is based on the results of the first iteration. In the first
step, the resulting templates are presented. A total of seven
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Table 4 Calibrated models for all calibration point configurations investigated here, the minimum calibration point is fixed at Pmin(0.1 MPa,
2.29 W m−1 K−1), the maximum calibration point is given in columns one and two. All thermal conductivities are given in unit W m−1 K−1.
All pressures are given in unit MPa

Calibration Point Contact Phase

Calibration Point kmax Pore Phase Lower Pressure Dependence Upper Grain Phase

50.47 4.17 0.026 0.1442 0.1384p+ 0.1304 7.1179 7.1179
40.15 4.12 0.026 0.1484 0.1715p+ 0.1313 7.0182 7.0182
29.95 4.05 0.026 0.1531 0.2263p+ 0.1304 6.9093 6.9093
19.75 3.76 0.026 0.1842 0.3171p+ 0.1525 6.4148 6.4148
10.36 3.61 0.026 0.2034 0.5800p+ 0.1454 6.1547 6.1547
5.36 3.46 0.026 0.2296 1.0785p+ 0.1217 5.9026 5.9026
1.56 3.06 0.026 0.3521 3.3316p+ 0.0189 5.2163 5.2163

Figure 16 Simulation results of all calibrated models, showing the influence of the selected calibration points: (a) plot of effective thermal
conductivity vs. pressure and (b) RMS error of the individual investigations.

calibration configurations are examined. The results are
shown in Table 4.

As can be seen, the thermal conductivity of the grain
phase generally decreases with decreasing pmax values. Fur-
thermore, the slope of the linear equation underlying the con-
tact phase increases. In addition, it should be mentioned that
all templates suggest an initial value for the thermal conduc-
tivity of the contact phases, which is greater than that of the
pore phase.

Based on these templates, the numerical simulations of
the calibrated curves can be carried out. For better compara-
bility of the individual curves, all simulations are performed
in the pressure range from 0.1 to 70 MPa. The results of this
study are shown in Figure 16.

In general, three main tendencies can be deduced from the
results. First, the higher the calibration point, the smaller the
total RMS value becomes.With one exception, this behaviour
is also confirmed by the RMS values of the loading and un-
loading curves. Regarding the course of the individual curves,
we observe that higher calibration points tend to lead to bet-
ter results. Second, the RMS errors of the unloading curves
are generally smaller than those of the loading curve. This is
convenient, since most of the lower calibration points (pmax <

15MPa) belong to the unloading curve. Third, no matter how
the calibration point is chosen, all curves are characterized by
the already known course. That is, for small pressure values a
steep slope arises, which changes into an almost linear course
with increasing pressure.
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In conclusion, the choice of calibration points can have a
great influence on the quality of the results.A possible physical
interpretation is given by Pimienta et al. (2014). In this study,
Pimienta et al. investigated the pressure dependence of rock
samples. In particular, they found for Berea sandstone that the
transition from the steep slope to linear progression starts at a
certain characteristic pressure value. From a physical point of
view, they explain this behaviour with the idea that the total
porosity of a rock sample is composed of two parts, namely
stiff main pores and smaller and more easily deformable
micropores. According to Pimienta et al., it can be assumed
that in the case of the Berea sandstone, most micropores are
already closed at a pressure of 30 MPa and the behaviour of
the main pores dominates the effective thermal conductivity.
Taking into account the results obtained here, this finding
suggests that the second calibration point should ideally
be placed in the area in which the micropores are already
closed.

4.5 Calibration of the water-filled sample

Whereas all previous investigations refer to the experimental
data of the dry sample, here the pressure-dependent thermal
conductivity of the wet sample will be investigated. The com-
plete calibration process is carried out. Starting with the sim-
ulation of the non-calibrated curve, followed by the determi-
nation of the calibration template and ending with the cali-
brated curve.

In the context of this investigation, simulations
are restricted to the calibration points Pmin (0.1 MPa,
4.87 W m−1 K−1) and Pmax (49.32 MPa, 5.49 W m−1 K−1).
From a numerical point of view, again only the harmonic
mean and the non-refined mesh are used. Directional de-
pendencies are not investigated. In general, it should be
noted that for the simulation of the wet sample the thermal
conductivity of the pore phase has to be adjusted. Hence, the
thermal conductivity of water is assigned. The results of the
non-calibrated curve are shown in Figure 15. As a reference,
the data of the dry sample are plotted as well.

Already without making use of the proposed calibration
process, very good results can be obtained. In particular, the
two limits of the measurement interval are already hit well
with a relative difference of below 4%. In addition, it becomes
clear that the basic course of the wet sample is similar to that
of the dry sample. For low-pressure values, a strong gradient
occurs that continuously decreases and finally leads to a lin-
ear course. In direct comparison, however, it is clear that the
gradient is much less pronounced than that of the dry sample.

Based on this dataset, the calibration template is created.
The results of iterations one to three are shown in Table 5.
A graphical representation can be found in Figure 14. As can
be seen, within the first iteration the template predicts a min-
imum contact phase value that is identical to that of the pore
phase kcontact,lower = kpore. Considering the previously used in-
terpretation logic of Section 4.3, this behaviour can be consid-
ered non-physical. Consequently, iterations two and three are
performed. Resulting in a contact phase thermal conductivity
that is slightly higher than that of the pore phase and therefore
fulfills the physical intuition of non-floating grains. In addi-
tion, it should be mentioned that the thermal conductivity of
the grain phase is above that of quartz. In the preceding inves-
tigation (see Table 4), the opposite trend can be observed.

The results of the calibrated curve of the second iteration
are shown in Figure 15. As a reference, the results of the dry
sample are given as well. Overall, the result of the calibrated
curve is convincing. However, due to the already very high
quality of the non-calibrated dataset, the improvement is only
marginal with a decrease in the total RMS value by 0.02. In
contrast, the calibration process of the dry sample reveals a
much greater improvement with respect to the non-calibrated
curve, with an RMS value of 0.53 before calibration and a
RMS value of 0.15 after calibration. Furthermore, it can be
seen that the agreement between the calibrated curve and the
experimental data in the intermediate pressure range from 10
to 30 MPa is not good. However, in this range, the quality
of the measurement should also be questioned. For example,
the measured thermal conductivity of 5 MPa is higher than
that of 10 MPa. With regard to the before observed trends,
this behaviour seems at least questionable. Finally, it should be
mentioned that the RMS values of the loading and unloading
curves are very similar with approximately 0.15.

Overall, the presented calibration process shows good
agreement with the experimental data and thus confirms the
already observed trend for the dry sample.

5 DISCUSS ION

Based on the example of Berea sandstone, it is shown how
pressure-dependent effective thermal conductivity of rock
samples can be simulated using the methods of digital
rock physics. On the basis of a given tomographic scan
(Madonna et al., 2013), four segmented subsamples are
created. These subsamples can generally be divided into
two groups (see Fig. 9). While the subsamples of the first
group are directly derived from the segmented tomographic
scan, the second group is characterized by an additional
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Table 5 Calibration templates for iterations one, two and three of the wet sample. Iteration zero is equal to the non-calibrated model. All thermal
conductivities are given in unit W m−1 K−1. All pressures are given in unit MPa

Contact Phase

Iteration Pore Phase Lower Pressure Dependence Upper Grain Phase

0 0.61 0.6100 0.1522p+ 0.0108 7.6900 7.6900
1 0.61 0.6100 0.1500p+ 0.5950 7.9933 7.9933
2 0.61 0.6385 0.1501p+ 0.6235 8.0259 8.0259
3 0.61 0.6429 0.1501p+ 0.6279 8.0294 8.0294

artificial reconstruction of the grain boundaries using the
watershed algorithm. Two main questions are investigated:
First, how well do the samples represent the effective thermal
conductivity under ambient conditions? And second, how can
pressure-dependent thermal conductivity be modelled? All
results are validated with the experimental data of Lin et al.
(2011).

With regard to the first question, it is observed that the
simulation results of the non-manipulated subsamples (first
group) generally deviate strongly from the measured thermal
conductivities. Only when taking into account the artificially
modelled grain boundaries (second group), a thermal conduc-
tivity close to that of the experimental data was obtained.
In particular, the following tendency is observed: While the
non-manipulated samples generally overestimate the findings
of the experimental data, the manipulated sample results in
a simulated thermal conductivity that is too low. As a pos-
sible explanation, it is assumed that the given resolution of
the investigated rock sample is not sufficient to represent all
essential structures (e.g. grain boundaries) for the numerical
modelling of effective thermal conductivity. Furthermore, the
fact that the numerical model has a different origin than the
sample of experimental data should be considered as another
source of error.

With regard to the second question, it is observed that
derived workflow provides satisfactory results. Good agree-
ment between simulation and experimental data is obtained
for both dry and wet samples. Especially, the proposed linear
correlation between the thermal conductivity of the contact
phase and experimentally measured pressure leads to reason-
able results. Regarding the choice of calibration points, it is
observed that the second calibration point should optimally
be placed in the region that is weakly dependent on pressure,
here p ≥30 MPa. For a classification of our results, we re-
fer to Saenger et al. (2016). Saenger et al. carried out a similar
workflow for the numerical determination of elasticity in rock
samples and found analogous trends. The fact that pressure-
dependent thermal conductivity and elasticity behave likewise

Figure 17 Pressure-dependent thermal conductivity, calibrations are
based on two different experimental datasets (Woodside and Mess-
mer, 1961; Lin et al., 2011).

in the case of Berea sandstone was also noted by Pimienta et al.
(2014).

With regard to future investigations, we refer to Fig-
ure 17. Starting from the non-calibrated model created in
the present work, an additional calibration using the experi-
mental data published by Woodside and Messmer (1961) is
performed. While these data were also recorded for Berea
sandstone and the corresponding porosity is relatively sim-
ilar to that of Lin et al. (2011), with φWoodside = 22% and
φLin = 19.7%, experimental results differ significantly from
each other. Neglecting possible measurement errors, this be-
haviour suggests that the microstructures of the two samples
are different. Despite these variations, the calibrated models
show very good agreement with both datasets. This indicates
that the here developed model has a certain generality for the
pressure-dependent thermal conductivity of Berea sandstone.
Further investigations should examine to what extent these
models can be generally applied to arbitrary datasets.

Another point that should be questioned is the applica-
tion of the watershed algorithm for modelling grain bound-
aries. In general, due to themanual inputs that have to bemade
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Figure 18 Typical result of the grain-to-grain contact reconstruction, original greyscale image on the left, artificially determined grain-to-grain
contact (yellow lines) on the right. Circles mark examples of the reconstruction quality. The green circle as an example for a very good recon-
struction of the contact zone, orange circle as an example for a reconstruction with artifacts and red circle as an example of the non-existent
reconstruction for cracked grains.

during the watershed algorithm (e.g. placing markers) the ob-
jectivity and reproducibility of the grain boundary modelling
is questionable and should be investigated more closely (see
Fig. 18). In this regard, future investigations might also include
a detailed analysis of the representative elementary volume.

6 CONCLUSION

A newworkflow for determining the pressure-dependent ther-
mal conductivity of rock samples was developed. Using the
approach of digital rock physics as a starting point, the work-
flow was tested for a given tomographic scan of Berea sand-
stone. As a first investigation, the capabilities of the derived
numerical models are tested by performing simulations under
ambient conditions. It is observed that all numerical models
overpredict the experimentally measured data by a factor of
roughly two. This behaviour is attributed to the resolution of
the scan. Concluding that the resolution of the tomographic
scan is too low to correctly represent all structures influencing
the effective thermal conductivity. In particular, it is assumed
that the insulating boundaries between individual grains are
not captured with sufficient accuracy. To test this hypothesis,
the grain boundaries were artificially reconstructed and added
to an additional model. The results of this new model show a
better fit to the experimental data.

Building on these results, the proposed workflow for the
determination of the pressure-dependent thermal conductiv-
ity in rock samples is introduced. Starting from the numerical

model with reconstructed grain boundaries, the influence of
pressure is represented by an adjustment of the thermal con-
ductivity in the grain boundary regions. As a direct transla-
tion rule, a linear dependence between the adjusted thermal
conductivity of the grain boundaries and experimentally mea-
sured pressure values is used. Following this approach, it is
observed that the numerical results do generally reflect basic
trends of experimental data. In order to improve the fit further,
a calibration workflow is presented and tested. In general, the
results show that the application of the proposed workflow
leads to an optimized fit for all investigated configurations.
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APPENDIX A: VISUAL EXPLANATION OF
THE PRESENT CALIBRATION WORKFLOW

Generally, the present calibration workflow is based on the
following four requirements:
1. A linear dependence between the thermal conductivity of
the contact phase and the experimentally determined pressure
is assumed for the translation of the numerical results and the
experimental data.
2. The thermal conductivity of the pore phase is constant and
will not be adjusted. The thermal conductivity of the grain
phase may be adjusted and is independent of the pressure. The
thermal conductivity of the contact phase may be adjusted and
lies between those of the pore and grain phase.
3. For mapping the second calibration point, the thermal con-
ductivity of the contact phase shall be identical to that of the
grain phase.
4. The thermal conductivity of the contact phase shall be
equal to or greater than that of the pore phase.

These demands are represented by the equations of the
calibration workflow given in Section 4.1. Here we want to
visually explain the general ideas.

In the first step, it is assumed that the simulated maxi-
mum thermal conductivity does not match with the data of
the upper calibration point ksim,max 	= kexp,max. To minimize
this deviation, according to equation (15), a uniform scal-
ing of the numerical results is performed (see the first row of
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Figure A1 Visualization of the presented calibration workflow: first step of uniform scaling is given in row one, second step of linear mapping
is given in the second row, third and fourth steps of linear interpolation and correlation of the experimental pressure with the numerical contact
phase thermal conductivity is given in the third row. Former states are represented by grey lines.

Figure A1). It is assumed that this value can be achieved, if the
thermal conductivity of the grain phase is scaled accordingly
at the beginning of the simulation (see equation (9)). Whereas
the thermal conductivity of the pore phase is not allowed to
be manipulated in compliance with requirement 2, the ther-
mal conductivity of the contact phase has to be adjusted un-
der consideration of requirement 3. Additionally, in order to
maintain requirement 4, a linearmapping in the abscissa direc-
tion is carried out. Following equation (18), the contact phase
data originally lying between kpore and kngrain are interpolated
to the new boundaries kpore and kn+1

grain (see the second row of

Figure A1). The resulting datasets k̃(n)
sim and k̃(n)

contact represent
an estimate for the simulation results achievable with the cali-
brated model. They can be used to determine the lower limit of
the necessary contact phase thermal conductivity. According
to equation (14), this value is linearly interpolated from the
nearest neighbours of the thermal conductivity of the lower
calibration point. In a final step, as specified by requirement
1, the minimum and maximum thermal conductivities of the
contact phase are correlated with the pressures of both cal-
ibration points via the linear relationship (10) (see the third
row of Figure A1).
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Figure B1 Calculation example of the calibration workflow, presented data are based on the simulation of the dry sample.

APPENDIX B: CALCULATION EXAMPLE
FOR THE PRESENT CALIBRATION
WORKFLOW

For a better understanding of the presented workflow for the
determination of the pressure-dependent thermal conductivity
(see Section 4.1), a calculation example is given below. The
example is based on the setup from Section 4.2.

To determine the non-calibrated curve, the thermal con-
ductivity of the grain and pore phase is set to the given lit-
erature values, that is kgrain = 7.69 Wm−1K−1, and kpore =
0.026 Wm−1K−1. According to the requirements discussed in
Section 4.1, the thermal conductivity of the contact phase is
therefore limited by kcontact ∈ [0.026, 7.69]Wm−1 K−1. Here,
a total of 10 simulations with gradually increased contact
phase thermal conductivities are performed. The results are
shown in Figure B1. The two pressure information, neces-
sary for comparability between numerical and experimental
data are set to pmin = 0.1MPa and pmax = 50.47MPa. Using
equation (8), we thus obtain the following transformation
rule k(0)

contact(p) = 0.152p+ 0.011. A graphical representation
of this result is shown in Figure 15.

In order to optimize the agreement, the calibration
step can be performed. As calibration points the experi-
mental values of pmin and pmax are used, that is kexp,min =
2.293Wm−1 K−1 and kexp,max = 4.175Wm−1 K−1. Based on

these data, the required adjustments to the thermal conduc-
tivity of the grain and contact phase has to be calculated.
The determination of the new thermal conductivity of the
grain phase is performed by using equation (9) and results
in k(1)

grain = 7.118 Wm−1 K−1. The computation of the new
transformation rule (see equation (10)) is more complex.
First, auxiliary values are computed using equations (15) and
(18) (see the right-side table of Figure B1). Then, the near-
est neighbours of kexp,min are taken according to requirement
(16), in our case k̃(0)

sim,NB1 = 2.035 Wm−1 K−1 and k̃(0)
sim,NB2 =

2.421 Wm−1 K−1. The corresponding contact phase val-
ues result in k̃(0)

contact,NB1 = 0.097 Wm−1 K−1 and k̃(0)
contact,NB2 =

0.168 Wm−1 K−1 (see equation (17)). Using these neighbour
values, one can now determine k(1)

contact,lower = 0.144Wm−1 K−1

and k(1)
contact,upper = 7.118 Wm−1 K−1 (see equations (13) and

(14)). With these two values, the quantities a(1) and b(1) are
determined according to equations (11) and (12). The cali-
brated dependence between contact phase thermal conduc-
tivity and pressure is obtained from equation (10), resulting
in k(1)

contact(p) = 0.138p+ 0.130.With this new transformation
rule, as well as the adjusted thermal conductivity of the grain
phase, the simulation of the calibrated curve can be performed.
By repeatedly applying this workflow, the agreement between
the numerical model and experimental data can further be op-
timized.
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