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Modeling the Viscosity of Anhydrous and Hydrous
Volcanic Melts

D. Langhammer® ¢, D. Di Genova', and G. Steinle-Neumann'

'Bayerisches Geoinstitut, Universitit Bayreuth, Bayreuth, Germany

Abstract The viscosity of volcanic melts is a dominant factor in controlling the fluid dynamics

of magmas and thereby eruption style. It can vary by several orders of magnitude, depending on
temperature, chemical composition, and water content. The experimentally accessible temperature range
is restricted by melt crystallization and gas exsolution. Therefore, modeling viscosity as a function of
temperature and water content is central to physical volcanology. We present a model that describes these
dependencies by combining a physically motivated equation for temperature dependence of viscosity and
a glass transition temperature (7,) model for the effects of water. The equation uses the viscosity at infinite
temperature 7, T,, and the steepness factor m as fitting parameters. We investigate the effect of leaving
n,, free as a parameter and fixing its value, by fitting anhydrous viscosity data of 45 volcanic melts using
the temperature dependent model. Both approaches describe experimental data well. Using a constant

n,, therefore provides a viable route for extrapolating viscosity from data restricted to small temperature
intervals. Our model describes hydrous data over a wide compositional range of terrestrial magmas (26
data sets) with comparable or better quality than literature fits. With 77, constrained, we finally apply our
model to viscosities derived by differential scanning calorimetry and find—by comparing to viscometry
based data and models—that this approach can be used to reliably describe the dependence of viscosity
on temperature and water content. This introduces important implications for modeling the effects of
nanostructure formation on viscosity.

Plain Language Summary How violently a volcano erupts strongly depends on the viscosity
of the ascending magma. Temperature and the amount of dissolved water in the magma significantly
impact viscosity. Therefore, models that predict it as a function of these parameters are of great interest
and can be calibrated by measured data. We find a model that performs comparably to or better than
other published ones. One model parameter describes the viscosity at infinite temperature; we investigate
whether this is a constant value for all melts, and find this to be a justifiable assumption that leads to
accurate predictions. Finally, we explore the possibility of deriving viscosity via differential scanning
calorimetry (DSC). This approach avoids or significantly reduces melt crystallization which is a possible
consequence of using more common measurement methods. By combining the constant value for the
infinite temperature viscosity with DSC-derived data, our model can accurately predict viscosity at any
relevant temperature.

1. Introduction

The shear viscosity (77) of naturally occurring aluminosilicate (i.e., volcanic) melts controls their transport
at depth, the way they evolve to a crystal- and/or bubble-bearing system (i.e., magma) and, therefore, mul-
tiphase 7 of magma. The viscosity of a magma also regulates its ascent rate to the Earth's surface, the rheo-
logical response to deformation, the degassing and outgassing regime, and determines the style of volcanic
eruptions (Cassidy et al., 2018; Colucci & Papale, 2021; Di Genova, Kolzenburg, et al., 2017; Dingwell, 1996;
Gonnermann & Manga, 2007; Papale, 1999).

Consequently, the study of magma viscosity remains a central objective in physical volcanology as its par-
ametrization feeds numerical models of volcanic eruptions (Gonnermann & Manga, 2013; Papale, 1999),
pyroclastic density current scenarios (Ongaro et al., 2008), and ash-cloud transport (Mastin et al., 2009)
that are used for operational forecasting of eruption evolution and planning of emergency response and
evacuation (Marzocchi et al., 2012). The viscosity of magmas spans 10~ — 10" Pa s and is controlled by
temperature (7), melt composition (x), micro and nanocrystals (®_), and bubble (®,) volume fraction
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(Bagdassarov & Dingwell, 1992; Caricchi et al., 2007; Chevrel et al., 2015; Cordonnier et al., 2009; Costa
et al., 2009; Davi et al., 2009; Dingwell et al., 1996, 2004; Di Genvova, Brooker, et al., 2020; Di Genova,
Kolzenburg, et al., 2017; Di Genova, Romano, Alletti, et al., 2014; Di Genova, Zandona, & Deubener, 2020;
Dobson et al., 1996; Giordano et al., 2009; Hess et al., 2001; Ishibashi & Sato, 2007; Kolzenburg et al., 2018;
Lejeune et al., 1999; Liebske et al., 2003, 2005; Manga et al., 1998; Misiti et al., 2011; Mueller et al., 2010;
Norton & Pinkerton, 1997; Pistone et al., 2012; Richet et al., 1996; Robert et al., 2013; Romano et al., 2003;
Sehlke et al., 2014; Stabile et al., 2016; Stagno et al., 2018; Stein & Spera, 2002; Vetere et al., 2008, 2013;
Vona et al., 2011, 2016, 2017; Whittington et al., 2001). Oxygen fugacity is a chemical variable that can af-
fect volcanic melt and magma viscosity in different ways (e.g., Bouhifd et al., 2004; Kolzenburg et al., 2018;
Sato, 2005; Stabile et al., 2021; Vetere et al., 2008): it determines the Fe**/Fe?* ratio in the melt, where the
latter acts as a network modifier and the former can act as a network former. This results in opposite effects
on melt viscosity; with increasing Fe** content, the melt viscosity increases. The Fe®*/Fe’* ratio affects
the viscosity in polymerized melts (e.g., rhyolites; Stabile et al., 2021) more strongly than in depolymer-
ized melts (e.g., basalts; Kolzenburg et al., 2018). However, the Fe>*/Fe?* ratio also shifts phase equilibria
(Hamilton et al., 1964; Markl et al., 2010; Wilke, 2005), influencing the melt crystallization path (Toplis &
Carroll, 1995) and rheological evolution (Bouhifd et al., 2004; Kolzenburg et al., 2018; Sato, 2005). Moreover,
it has been demonstrated that changing the dissolved iron content in melts is responsible for iron nano-
lite formation which, in turn, affects melt viscosity (Di Genova, Kolzenburg, et al., 2017). The knowledge
of melt viscosity 7(T,x) represents the foundation on which multiphase descriptions of magma viscosity
n(T,x,®.,®,) are developed (Llewellin & Manga, 2005; Mader et al., 2013; Phan-Thien & Pham, 1997; Pis-
tone et al., 2016; Truby et al., 2015). Therefore, extensive literature provides empirical parametrizations
of 7(T,x) for an ever expanding compositional space (Baker, 1996; Bottinga & Weill, 1972; Duan, 2014;
Giordano & Dingwell, 2003a; Giordano et al., 2006, 2009; Hess & Dingwell, 1996; Hui & Zhang, 2007;
Romine & Whittington, 2015; Shaw, 1972).

A combination of concentric cylinder and falling sphere viscometry is employed to measure melt 77 above
the liquidus 7 in the low-;7/high-T regime (L, 10 Pas < 5 < 10° Pas), while micropenetration and parallel
plate techniques are routinely used in the high-;/low-T regime (Hzy, 10® Pa s < 77 < 10" Pa s) around the
glass transition temperature T, at which

n(T,) = 10"Pas. (1)

Due to experimental inaccessibility of 77 < 10~ Pa s and rapid crystallization or exsolution of volatiles for
10° Pa's < 77 < 10° Pa s on the timescale of measurements, interpolation between the Hy and Lz regimes
is required. This is especially critical when the Lz and Hz intervals of experiments are reduced as a result
of nanostructure formation, primarily nanocrystals and melt demixing, which can lead to a significant in-
crease in 77 (Di Genova, Brooker, et al., 2020; Di Genova, Kolzenburg, et al., 2017; Di Genova, Zandona, &
Deubener, 2020; Liebske et al., 2003). These restrictions on the Hz range accessible to micropenetration and
parallel plate experiments can lead to the virtual absence of data near 7, (Al-Mukadam et al., 2020; Chevrel
et al., 2013; Dingwell et al., 2004).

Here, we present a new fitting approach for 7 of volcanic melts motivated by physically based equations
that describe the temperature dependence of viscosity (Mauro et al., 2009) and water dependence of T,
(Schneider et al., 1997). This represents one of the first attempts to combine physically based equations in
order to provide a single formulation for the viscosity of volcanic melts as a function of temperature and
water over a large chemical space, with a set of 1,603 7 data points, containing both multicomponent dry
and hydrous systems as indicated in the total alkali-silica (TAS) diagram (Le Bas et al., 1986, Figure 1). To
characterize the behavior of anhydrous melts in a systematic way, we order them according to the chemical
parameter SM, which is a proxy of the degree of structural polymerization (Giordano & Dingwell, 2003a).
We calculate SM as

SM = Xpeo + ngO + XMno + Xcao xNazO + szO7 (2)

with x in mol%; for compositions that only report total iron, we distribute it equally between FeO and Fe, 0O,
with an adjustment factor of 1.11 (reflecting the higher molar weight of Fe,0,) in terms of wt% before
conversion.

LANGHAMMER ET AL.

20f 26



Ay
AUV
ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2021GC009918

First we investigate the fit of 7 for anhydrous samples using a model developed by Mauro et al. (2009) for
technical glasses. We discuss the connection between Arrhenian behavior of volcanic melt 7 and the degree
of structural polymerization (SM) as well as the hypothesis of a common viscosity value at infinite 7' (77x) for
glass-forming melts. We do so by significantly expanding previous chemical and experimental data sets of
melt viscosity data (Russell et al., 2003). For a given silicate melt, the addition of H,O can reduce the viscos-
ity in the Hz regime by several orders of magnitude (e.g. Richet et al., 1996). We ignore the pressure effect on
melt viscosity at fixed water content at shallow conditions typical of volcanic systems (Giordano et al., 2008;
Hui & Zhang, 2007; Persikov, 1998; Zhang et al., 2003), but our model implicitly accounts for the pressure
effect by varying the water content. Many studies (e.g., Dingwell et al., 1998b; Giordano et al., 2009; Misiti
et al., 2011; Robert et al., 2015; Vetere et al., 2006; Whittington et al., 2009) have modeled the influence of
H,O0 on 7 by various differing empirical expressions. We apply a single formulation for water dependence
of 7 and compare our results to published models from the literature. We show that our physically based
viscosity equation can perform comparably or better than empirical formulations in the literature. Further-
more, we compare results of our fit with predictions of general chemical models (Duan, 2014; Giordano
et al., 2008; Hui & Zhang, 2007). Finally, we apply our model to describe 7 of hydrous volcanic melts based
on differential scanning calorimetry (DSC) measurements, which minimizes or avoids nanocrystallization
that can occur during standard viscosity measurement around T, (Di Genova, Zandona, & Deubener, 2020).
We implement our model with a constant log7,, and show that the combination of our fitting approach with
DSC data allows both the accurate prediction of high-temperature 7 and the quantification of the effect
nanocrystal formation has on melt viscosity around 7,

2. Approaches for Modeling Silicate Melt Viscosity
2.1. Viscosity Models for Anhydrous Systems

The most popular parametrization to describe the viscosity of volcanic melts is the empirical VFT equation
named after Vogel (Vogel, 1921), Fulcher (Fulcher, 1925), and Tammann (Tammann & Hesse, 1926). It has
been used to fit isochemical 7 data (e.g. Richet et al., 1996; Whittington et al., 2001) and takes the form

B VET

logn = A + .
g7 VFT T “Curr

3
Aygs Byprs Cygrp are fitting parameters, where Aypr = logz,,. The VFT equation has been successful in
modeling the viscosity of silicate melts. Due to its empirical nature, assigning physical meaning to the fitting
parameters Bypp and Cygy is difficult. Nevertheless, Cyyy is often identified with the Kauzmann tempera-
ture (Tx) (Angell, 1997), at which the liquid and crystalline entropies are equal. At 7, the VFT equation
in combination with the Adam-Gibbs equation (Adam & Gibbs, 1965) yields a configurational entropy (S,)
of zero (Mauro et al., 2009; Scherer, 1992), although S, = 0 is only possible at absolute zero temperature
(Avramov & Milchev, 1988; Mauro et al., 2009). On the other hand, Gibbs and DiMarzio (1958) have derived
a possible thermodynamic equilibrium glass transition. Overall the physical meaning of the VFT fitting
parameters continue to be a subject of discussions (e.g., Hecksher et al., 2008; Schmelzer et al., 2018; Still-
inger, 1988). Finally, the VFT equation is also known to break down at low 7 (Laughlin & Uhlmann, 1972;
Mauro et al., 2009; Scherer, 1992).

Therefore, a physically based parametrization of 7 for glass-forming melts remains an interesting subject of
research. For example, the viscosity description given in the model for glass-forming liquids by Adam and
Gibbs (1965) (AG) has a physical foundation. It assumes the cooperative rearrangement of independent
regions within the liquid and that the potential energy of the system can be expressed by its own partition
function. This leads to

B
logn = Axg + TgG ) €))

c

where A,g = log7,, and B, is an effective activation barrier (Adam & Gibbs, 1965; Richet, 1984). As the
configurational entropy S, cannot be measured, the use of the AG equation requires an additional fit for S, at
T, and the measurement of configurational heat capacity of the melt (Cp ) via DSC (Bouhifd et al., 2006;
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Di Genova, Romano, Giordano, & Alletti, 2014; Giordano & Russell, 2017; Richet, 1987; Robert et al., 2014;
Russell & Giordano, 2017; Sehlke & Whittington, 2016; Stebbins et al., 1984; Toplis, 1998; Webb, 2008).

One can avoid fitting S, and measuring Cp ¢ by using the MYEGA model by Mauro et al. (2009). It de-
scribes S, in the AG expression (Equation 4) using constraint theory and an energy landscape analysis, and
takes the form

logn = A+ —exp| — |, 5
gn T p[Tj 3

where A, K and C are fitting parameters, with A = log7,, as above. An alternative, physically insightful,
parametrization of Equation 5, suggested by Mauro et al. (2009), can be obtained by inserting the definition
of T, (Equation 1) and making use of the steepness index m (fragility), which quantifies the deviation of 7
from Arrhenian behavior at T, (Angell, 1995),

ologn K C C
m=|———— =—|14+—|exp| — | (6)
oT, I'T) ror, T, T, T,
Reformulating Equation 5 with respect to these parameters yields:
T, m T,
logn = A+ (12 - A)—Sex —1||E-1]] 7
gn ( )= p[[lz_A ][T ﬂ ™
An analogous reformulation can be performed for the VFT model (Equation 3):
(12 = Aypp)?
logn = Aygr + A ®)

mypr (T / Tyypr =) + (12 = Aypp)

A comparison between the performance of the MYEGA (Equation 7) and VFT models (Equation 8), using
anhydrous simple and multicomponent oxide systems, that is, technical glasses, and molecular liquids cov-
ering a wide range of m from 20 to 115, revealed that the MYEGA equation provides a superior fit for 7 in
all systems (Mauro et al., 2009). Moreover, using 568 different technical silicate liquids with widely varying
compositions and 7 data in the range of 10'-10® Pa s, Mauro et al. (2009) also showed that the MYEGA model
predicted the 10'' Pa s isokom T better. Finally, unlike the VFT parametrization, the MYEGA equation offers
a realistic extrapolation of S_ to both the high- and low-T limits, with consequences for the estimate of A and
the description of the low-T scaling for  (Mauro et al., 2009).

2.2. Modeling the Effect of Water on the Viscosity of Silicate Melts

The presence of water in volcanic melts adds complexity to fitting 7, as even a small amount of H,O gen-
erally leads to a strong decreases of 7. While the Hz; and Lz regimes are usually accessible for anhydrous
melts and provide strong constraints on the parametrization over a large 7 range, the lack of Ly data for
hydrous compositions challenges the quality of the fit. This can lead, for example, to an unphysical cross-
over of 7 at different H,O content when viscosity is extrapolated to the Ly domain (Figure S1). To avoid
crossovers, Aygr, Bypr, and Cypr in Equation 3 are often empirically expressed as a function of H,O content
(e.g., Giordano et al., 2008, 2009; Hess & Dingwell, 1996; Romine & Whittington, 2015; Vetere et al., 2013;
Whittington et al., 2009). While resulting fits usually provide a good description, there is no systematic
approach and no physical interpretation of parameters involved, which results in a plethora of different
models based on VFT.

Here we expand the MYEGA parametrization (Equation 7) in a physically motivated way to fit anhydrous
and hydrous data for a given volcanic melt with varying H,O content. We assume A to be independent of
H,O content (i.e., fixed by the anhydrous measurements), which reduces the water-dependent parameters
to m and T,. We base our 7 description on a 7, model by Schneider et al. (1997), who implemented a power
concentration expansion of the Gordon-Taylor equation (Gordon & Taylor, 1952).

T, (tzO) = Wng,HZO Fwyly g + cwwy(Ty 4 — Tg,HzO) + dwmz% (Tya - Tg,HzO)’ 9)

with
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5100 ~ xy1,0)

(100 — Xy,0) + Xpayo

_ tzO
b(100 — x11,0) + Xi1,0

w, and w,

(10)

where 7, ; is the glass transition T of the anhydrous (dry) composition and Ty 150 that of water (136K,
—137 °C) (Kohl et al., 2005); *H,0 is given in mol%. There are three fitting parameters in this H,O-dependent
model of Ty b, c and d.

Reformulating the MYEGA equation (Equation 5), m can be expressed as
12-A
m= (12—A){1+ln( e Tgﬂ. 11)

Assuming that the parameter K does not depend on *n,0, that is, takes the value of the anhydrous melt
results in m, depending on H,0 content through 7, (*Hy0) only,

T,
m=my + (12~ A)ln[T—é]. (12)

gd

The parameter mj is the melt fragility of the anhydrous sample.

2.3. Fitting the Viscosity of Hydrous Silicate Melts

To fit a set of viscosity data including anhydrous and hydrous measurements of one specific melt composi-
tion, we follow these steps:

1. We fit the anhydrous data using the MYEGA model (Equation 7). These data sets often include Hzn and
Ln measurements constraining the values of A, 7, ; and m, well.

2. We insert Equations 9 and 12 into the MYEGA equation (Equation 7) and fit the resulting model to the
remaining hydrous data. This constrains parameters b, ¢ and d.

To evaluate the quality of the fit, we employ the root-mean-square error (RMSE),

N _ 2

RMSE = y| Z2nztUen =) 13)
N

where 7., and 7, , are calculated and measured values respectively. N is the number of data points for

which the error is calculated.

3. Viscosity Database

We use 50 viscosity data sets (1,603 data points) from the literature for fitting (Tables 1-3), displayed in a
TAS diagram (Figure 1). The data sets span a large compositional space with SiO, content ranging from 44
Wwt% to 79 wt% and total alkali content ranges from 0 wt% to 17 wt% (mol% reported in Tables 1-3). Virtually
all types of magma erupted on Earth are represented.

Of the 50 data sets, 45 include viscosity measurements in the Hz and Lz region for anhydrous melts (Ta-
ble 1), 26 sets additionally contain data for hydrous compositions (marked by * in Table 1 and listed in
Table 2). All anhydrous data are used in Section 4 to explore the parameters A, m and T,; in Section 5, we
explore the quality of our model for the 26 H,O-bearing liquids (Table 2).

Table 3 lists five data sets. One only includes anhydrous measurements, while for the remaining four an-
hydrous and hydrous measurements are available. The 7 values for melts in Table 3 are derived from DSC
measurements using the approach reviewed in Stabile et al. (2021) (for further discussion see Section 6).
They complement viscometry measurements on glasses from eruptions already included in our database
(Tables 1 and 2). With DSC, 7 is determined in the Hz; range only. In Section 6, we use DSC-derived 7 to
illustrate that for high-quality data a reliable and predictive extrapolation of the MYEGA model from the H
77 to Ly range is possible, assuming a fixed value for A.
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Figure 1. Total alkali-silica representation of the data sets used in our study (Tables 1-3). Data sets are color coded
according to dry only data (orange squares), those including dry and hydrous data (blue) and differential scanning
calorimetry (DSC)-derived viscosities (red triangles). Open blue circles denote samples that are used to illustrate the
combined fits of the MYEGA (Equation 7) and H,0 model (Equations 9-12) in Section 5.

4. Anhydrous Melts
4.1. MYEGA Fit

We use the MYEGA (Equation 7) and VFT models (Equation 8) to fit 7 data from 45 different anhydrous sil-
icate melts, all of which include measurements in the Hy; and Lz range (MYEGA: Figure 2, VFT: Figure S3).
Including Hz; and Ln measurements provides a good constraint on the fits, as two of the parameters used in
the MYEGA model, Tg,d and my, are quantities defined at high 7 (Equations 1 and 6); A, on the other hand,
is a low-n quantity for T — oo. Data and fits are grouped according to increasing SM values (Equation 2) in
Figure 2. The often employed structural NBO/T parameter (Mysen, 1988) was not used as it correlates pos-
itively with the chemical parameter SM (Figure S2), and Giordano and Dingwell (2003a) have shown that
SM is a valid empirical parameter to infer the degree of structural polymerization of the melt. Moreover, SM
is easier to calculate and therefore used here.

Figure 2a shows measurements of samples with SM < 10, which are the most polymerized melts with
Xsio, > 80 mol%. Their interval of 7 measurements ranges from 107 to 10'* Pa's, with 785 °C < T < 1650 °C.
For these melts, the 1 / T dependence of 7 is quasi-linear, that is, they exhibit an Arrhenian behavior. Fig-
ure 2b displays 7 for liquids with 10 <SM < 20. For these less polymerized melts, » and T ranges are 10' —10"
Pas, and 585 — 1710 °C, respectively. Some melts (e.g., Rhyl4, Pho3) display Arrhenian behavior, while oth-
ers (e.g., Rhyl2, And3) exhibit a weak, but significant departure from linearity, that is, behave in a non-Ar-
rhenian fashion. Figure 2c shows 7 data and fits for relatively depolymerized melts with 20 < SM < 30.
Viscosity measurements range from 107! to 10'* Pa s, and 615 — 1570 °C. The majority of these melts exhibit
a pronounced non-Arrhenian behavior for , with the exception of the shoshonite sample (Sho), for which
the Ly range appears poorly constrained (see discussion on A below). Finally, Figure 2d shows 7 for the
most depolymerized melts with SM > 30, with 10° Pa s < 7 < 10" Pa s and 635 °C < T < 1560 °C. Our re-
sults thus agree with the expected scenario that Arrhenian liquids are characterized by a polymerized melt
structure due to their high content of network-forming cations (low SM), while liquids with larger values of
SM exhibit non-Arrhenian behavior (e.g., Angell, 1995; Mysen, 1988; Ni et al., 2015).

Fitting parameters A, 7, and m are shown as a function of SM in Figure 3 for the MYEGA model. The fits re-
veal a steep decrease in 7, from 842 °C (Rhy2) to 741 °C (Rhy10) for the most polymerized melts in the inter-
val6.5 < SM < 10 (Figure 3b); with further increase of SM to 48.9 (Foi), 7, decreases to 643 °C. This behavior
reflects the control of melt structure on 7,: Highly polymerized melts exhibit high 7,, and the addition of a
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Table 3
Differential Scanning Calorimetry (DSC)-Derived Viscosity Data Sets Used for Fitting, Ordered With Increasing SM
# #
dry H,O  hydrous
Sample data SM  SiO, TA  range data A Toa my b € d RMSE Reference Comment
Rhy14-DSC 4 1416 77.46 9.06 0-11.91 16 —293 79949 20.23 009 182 -199 0.14 DiGenova, Romano, PS
Giordano, and
Alletti (2014)
Tra3-DSC 4 1985 66.14 991 0-15.96 16 —2.93 910.88 2511 024 0.95 -127 0.17 DiGenova, Romano, AMS-B1
Giordano, and
Alletti (2014)
Lat-DSC 4 2206 6356 8.20 0-5.71 4 —2.93 92995 3336 098 1.53 —4.64 025 DiGenova, Romano, FR
Giordano, and
Alletti (2014)
Bas1-DSC 4 31.19 5382 526 0-8.30 8 —2.93 909.08 40.35 1.12 1.75 -—-4.61 0.53 DiGenova, Romano, ETN
Giordano, and
Alletti (2014)
Di-DSC 10 56.19 43.75 0.00 —2.93 1000.06 59.14 0.09 Al-Mukadam Di

et al. (2020)

Note. The first block lists chemical composition (including the H,O content in mol%) and contains information on the data, the third block information on
references. In the second block the fitting parameters for the constrained hydrous MYEGA model (Equation 7 with A =— 2.9, 9, and 10) and the RMSE are
given. “Comment” indicates the sample name in the respective publication. Measurements mentioned to have crystallized/lost water and so on in the respective
reference are excluded from fitting. Bas, Basalt; Di, Diopside; Lat, Latite; Rhy, Rhyolite; RMSE, root-mean-square error; Tra, Trachyte.

small amount of network modifying cations leads to a dramatic decrease in 7,. Rhy14 with SM = 14.6 shows
T, significantly lower than its low-SM SiO,-rich counterparts. Rhy14 is a peralkaline rhyolite (pantellerite),
characterized by an excess of alkali and alkaline earth cations over Al,O; which induces a dramatic depo-
lymerization of the melt structure within rhyolite chemistry (Di Genova et al., 2013; Dingwell et al., 1998a),
leading to relatively low 7 (Figure 2b). As expected from Figure 2, melt fragility (m) positively correlates
with SM (Figure 3c). In particular, we find that the strongest melt (m = 20.4) is Rhy3 with SM = 7.6, the
most fragile melt is Di (m = 61.1) with SM = 56.2 (Table 1).

Finally, the parameter A increases significantly from —9.6 for Rhy3 to —1.9 for Tep with SM (Figure 3a, Ta-
ble 1). We find the largest variation of A for SM < 10, and a relatively constant value of A ~ -3 for SM > 20.
The low values of A for the polymerized melts with SM < 10 is likely caused by the limited 7 range accessi-
ble for measurements in the laboratory. For example, the viscosity of the polymerized melt Rhy3 (SM = 7.6,
A = -9.6) that follows an Arrhenian behavior (Figure 2a), was measured in the range of 3.24 < logn < 11.15
(T < 1591°C. It is not possible to extend measurements to significantly lower 7 values for such polymerized
melts with 7 becoming too high for the measuring system and causing volatilization of alkalis from the
melt. Therefore, A is not well constrained by this measurement interval. The sample Sho deviates from the
expected behavior with SM = 29.3and A = —9.4. This is a very low value of A compared to melts with simi-
lar SM. For Sho, only three data points exist in the Lz range with the lowest measured viscosity logn = 1.27
(Vetere et al., 2007). This restricted Ly range may not permit an accurate determination of the 7 depend-
ence in the Ly region and thus a reliable estimate of A.

4.2. The Viscosity at Infinite Temperature

A common assumption is that the viscosity of glass-forming melts converge to constant valueof Aas7 — «
(Angell et al., 2000), an assumption that can be integrated into the fitting by fixing the parameter A (Sec-
tion 2.1). Maxwell's equation = G,z provides an order-of-magnitude estimate. G, is the shear modulus at
infinite frequency and 7 the relaxation time. For silicate melts at infinite 7', they are estimated as G,, = 10"
Pa (Dingwell & Webb, 1989) and 7,, ~ 107'* s (Angell, 1997; Bérjesson et al., 1987; Fujimori & Oguni, 1995),
resultingin A = logn,, = —4.
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Figure 2. Fits to viscosity measurements of 45 anhydrous samples (Table 1) using the MYEGA model (Equation 7). Data are grouped according to the chemical
parameter SM (Equation 2): Intervals are (a) SM < 10, (b) 10 < SM < 20, (c) 20 < SM < 30 and (d) SM > 30. A corresponding figure using the VFT model
(Equation 8) can be found in the Supporting Information (Figure S3). Abbreviations and references for the different data sets can be found in Table 1: * denotes
samples for which hydrous measurements are also reported (Table 2). Symbols are assigned as follows: X for rhyolites, empty circles for HPGS, triangles to the
left for trachytes, squares for dacites, pentagons for phonolites, empty crosses for andesites, empty X for latites, diamonds for basaltic andesites, stars for tephri-
phonolites, octagons for shoshonite, hexagons for basalts, upwards triangles for phono-tephrites, triangles to the right for tephrites, tripods for foidite, crosses

for diopside.

The VFT (Equation 3) and AG models (Equation 4) have been used in the literature to explore the range of A
values for volcanic melts. Russell et al. (2003) obtained an average A = —4.3 + 0.7 (VFT)and A = -3.2 £ 0.7
(AG) for a compilation of 20 silicate melts. Subsequent work by Giordano et al. (2008) included more data
(198 compositions) and found a value of A = —4.6 + 0.2 using a VFT equation dependent on chemical com-
position. For 946 technical silicate and 31 other glass-forming technical liquids, Zheng et al. (2011) deter-
mined A = —2.9 + 0.3 for MYEGA (Equation 7) and A = —-3.9 + 0.3 for VFT. The literature data as well as
the discussion by Mauro et al. (2009) show that the MYEGA model results in a larger value for A than VFT.

We observe a larger A for MYEGA than VFT with Ayypga = —4.3 £ 1.9 and Ay = —5.1 £ 1.5, respectively.
The difference between them is consistent with the results of Zheng et al. (2011). The trend to low values
of A that we observe stems largely from the 11 Arrhenian data sets with SM < 10 for which the quasi-linear
extrapolation of 7 to high T yields very low values of A (Figure 3). When the eleven A values for melts with
SM < 10 are excluded from averaging, Ayz; = —4.6 + 1.2, in agreement with the value found by Giordano
et al. (2008) and close to that of Russell et al. (2003). Nine of the 11 melts in Table 1 with SM < 10 were
not used in these two studies, but we assume they would have a similar influence on the values of A. A
significant—but smaller—difference in A remains compared to the technical data set of Zheng et al. (2011).
Excluding the A values for SM < 10 for the MYEGA fits, we obtain Ayypga = 3.7 + 1.5.
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Figure 3. Values of the fitting parameters A (a), 7, (b), and m (c) calculated by applying the MYEGA model (Equation 7) to 45 anhydrous measurements,

plotted against the structure parameter SM (Equat?on 2). Blue symbols are samples which were fit with parameter A free for optimization and red symbols used
A = -2.9. Open symbols denote the two samples used as examples of hydrous melts in Section 5. Numerical values of fitting parameters for the MYEGA model
can be found in Table 1. Symbols for different melt compositions are assigned according to Figure 2.
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Low values of A also correlate with low values of the steepness factor (Figure 3), highlighting a difference
between the current data set and that of Zheng et al. (2011). In their database, all m > 25.9. If we restrict
averaging of A to melts with such m values, we obtain Ayypga = —3.2 * 1.0, in excellent agreement with
Zheng et al. (2011). This underlines the observation that the measurable T interval for highly polymerized
melts (low SM/low m) often is to narrow to constrain A.

4.3. Fitting With a Constant Value of A

In order to explore differences in the MYEGA fitting parameters when A is fixed or left as a free parameter,
we refit the anhydrous data sets (Table 1) using A = —2.9 (Zheng et al., 2011). This may also be important
for cases where only a small number of measurements over a limited Hzn range are available, including
DSC measurements which we address in Section 6. The RMSE values reported in Table 1 show an expected
increase due to the reduction in fitting parameters, but overall the fitting quality is still high.

Values for 7, (Table 1 and Figure 3b) are very similar to the fits with free A since 7, is generally well con-
strained by measurements in the vicinity of 7 = 10'? Pa s (Equation 1). The largest differences in T, exist
for melts with SM < 10, which exhibit the lowest values of A in the MYEGA fit and show quasi-Arrhenian
behavior; with the shift of A to larger values, T, are also shifted to larger values, but differences do not exceed
20°C. For SM > 10, notable differences exist for Tral and Pho6. For these samples the lowest 7' of measure-
ments is significantly larger than 7, (Figure 2), leading to a less effective constraint.

Similarly, m values for fixed A = —2.9 in the interval SM < 10 are systematically larger. This is readily ra-
tionalized by reversing the argument given in Section 4.2 that an Arrhenian behavior of 7 leads to small A.
With A = -2.9 constrained, the fit is forced to become more non-Arrhenian, increasing the curvature near
T, For10 < SM < 20, the majority of m values associated with fixed A are larger but the deviation is less pro-
nounced. In the interval SM > 20, deviations are generally small and not systematic. A notable difference
is Sho, for which Lz data are scarce as discussed in Section 4.1, with m = 35.39 for A = -2.9, compared to
m = 25.47 for a fitted A = -9.44.

General trends discussed for the MYEGA fit with variable A are preserved for fixed A = —2.9, and become
more systematic: T, decreases with SM, and the fragility m increases with SM. Fixing A leads to a narrower
distribution of m and indicates a quasi-linear correlation with SM.

5. Hydrous Silicate Melts

After fitting anhydrous viscosity data using the MYEGA model (Figure 2), we explore the H,O-dependent
model of Equations 9-12 for the 26 samples with hydrous data (Table 2). As examples, we show two com-
positions in Figure 4 that are also highlighted in Figures 1 and 3: a Basaltic Andesite (BasAnd2) (Robert
et al., 2013) and a Phonolite (Pho1) (Giordano et al., 2009). The maximum H,O content of the samples ex-
ceeds 11 mol% for viscosity measurements in the Hz range, with a large number of H,O concentrations per
composition (Table 2, Figure 4). The BasAnd2 data also include two falling sphere measurements of an H,O
bearing melts with 6.96 mol%. For both samples, H,0-dependent models for 7 are published in the original
work which provide a basis for comparing the quality of fits.

Our model describes the » measurements for BasAnd2 by Robert et al. (2013) significantly better than
the literature model (Figure 4a)—with the exception of the two Lz falling sphere data—which is most
clearly visible for 12 mol% H,O. In addition, our model shows a tendency toward larger curvature in logz
-1/ T (stronger non-Arrhenian behavior, larger m). For Phol (Figure 4d), the data are well described by
both our fit and the model used in Giordano et al. (2009), with the exception of the highest H,O content
(14.39 mol%), which neither of the models match. With a high alkaline content (Figure 1 and Table 2), Phol
shows Arrhenian behavior.

Through its definition (Equation 1), 7, is well constrained in all data sets by measurements in the Hy re-
gime. Reported values and our results for BasAnd2 and Phol agree well, and 7, decreases monotonically
with H,O content. In our model, the extrapolation of 7, to 100 mol% H,0 is constrained to 7, ,, = —137°
C (Kohl et al., 2005).
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Figure 4. Hydrous viscosity data and fits for a Basaltic Andesite, BasAnd2 by Robert et al. (2013) (left column) and a Phonolite, Phol by Giordano et al. (2009)
(right column). Solid lines are fits using the MYEGA model and the parametrization of water dependence formulated in the current work. Dotted lines show
the fits for BasAnd2 and Phol from the original publications. Fitting parameters 7, (b and ) and m (¢ and f) for BasAnd2 and Phol were calculated by applying
our parametrization (blue) and using the model given in the respective reference (red) to each data set of constant H,O content. The insets cover the H,O
-content of the experiments, the full figures show the extrapolation to 100% of H,O. For T, the stars at 0 mol% and 100 mol% H,O show values that are fixed in
the fit. Fitting parameters and root-mean-square error values are given in Table 2.
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The steepness parameter m deviates between our model and literature fits (Figure 4) for the non-Arrheni-
an melt BasAnd2, which is already apparent in the fits themselves. m, reported by Robert et al. (2013) is
slightly higher than the value calculated here, and their m shows a steeper decrease with H,O, resulting in
an increasing deviation between the two models. For Phol, our model formulation leads to lower values of
m with H,O compared to the fit by Giordano et al. (2009). The initial decrease is more pronounced than for
BasAnd2. This behavior reflects that BasAnd2 has lower degree of polymerization, with the SM = 29.3 and
Xsio, = 56.9 mol% (Table 2), an effect that is not clearly visible in the models from the literature.

In some cases—illustrated by Phol for our model (Figure 4f), but also apparent in some trends from the
literature—m extrapolates to negative values at high H,O content, which constitutes unphysical behavior.
Such behavior should serve as warning against extrapolating models of melt viscosity far beyond the H,0
content actually measured in the experiments used for fitting.

Figure 5 shows a comparison of our fit calculation with RMSE = 0.17 against the measured viscosities as
well as prediction of three general chemical viscosity models for these compositions (Duan, 2014; Giordano
et al., 2008; Hui & Zhang, 2007). The model by Duan (2014) is the only viscosity model that accounts for the
pressure effect on melt viscosity, which we fixed to 1 bar. Also, this model requires the partitioning of the
total iron in FeO and Fe,O,. Here, for the melts for which iron partitioning was not provided, we assigned
1/ 2 of the total iron (always given as FeO,,) as FeO and 1.11 / 2 as Fe,0;. The RMSE across all calculations
is 1.95. The models by Giordano et al. (2008) and Hui and Zhang (2007) have RMSE values of 0.74 and 0.69
respectively. Table 2 documents the RMSE values for all three general chemical models and literature mod-
els for the individual compositions. Compared to the latter our model performs with comparable or better
quality (Figure S5). However, previously published models differ in their formulations of H,O dependence,
while we use the same model for all melts (Equations 9-12). In the Supporting Information we provide an
excel file to calculate viscosities for the melts referenced here.

Parameters c and d in Equation 9 obtained for six samples (Rhy8, Dac2, Tra3, Pho4, Pho5, Pho6) show strong
deviations from the other values (¢ > 19 and d < —24, Table 2). This leads to unphysical extrapolations of
T, and—via Equation 12—m, that is, to an increase of T, with H,O content (Figure S4). Nevertheless, our
model accurately reproduces the measured 7 data with RMSE = 0.09—0.35 for these six compositions. The
anomalous behavior of 7, and m with H,O appears to result from minimizing the residuals during the fit
process. The unphysical extrapolation behavior serves as reminder to use our model—like any other mod-
el—not to extrapolate far beyond the experimental H,O range.

6. Using DSC for Modeling Melt Viscosity

During viscometry experiments in the Hz; regime volcanic melts can be subjected to nanostructural mod-
ification (i.e., crystallization and demixing) (Di Genova, Zandona, & Deubener, 2020), and DSC measure-
ments provide an alternative route to obtain 7 data (e.g., Stabile et al., 2021). DSC measurements require a
few mg of glass, which is exposed to 7' > T, for a few minutes only (Di Genova, Zandona, & Deubener, 2020;
Stabile et al., 2021; Zheng et al., 2019). This is in stark contrast to experiments using micropenetration and
parallel plate techniques that require large and double-polished samples (ideally with a thickness of ~ 3
mm) and expose the melt to T > 7, for significantly longer periods of time (Douglas et al., 1965) which can
lead to severe chemical and textural changes in anhydrous and hydrous samples (Bouhifd et al., 2004; Di
Genova, Zandona, & Deubener, 2020; Liebske et al., 2003; Richet et al., 1996). However, only temperatures
around 7, can be probed using DSC, leaving the L7, range unexplored, complicating 7 fitting. In Sections 4.2
and 4.3, we have explored the role of A for the 7 model, and found that using A = 2.9 (Zhenget al., 2011)—
constraining the high 7" behavior—provides a systematic and good description of melt viscosity in the Lz
range. Using A = —2.9 in the MYEGA fit and applying our description of H,O dependence to DSC-derived
7 can therefore provide an alternative route to attain high-quality and reliable predictions.

6.1. Diopside: A Test Case

We test this approach for DSC-based data of a diopside melt (Di), an Fe-free system that is a good proxy
of volcanic melt not prone to crystallization around 7,, and for which a large number of viscometry
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Figure 5. Viscosity values calculated using the hydrous fitting model (7;,) developed here (Equations 7 and 9-12) (red
crosses) plotted against measured values (7,,) for the data from the 26 hydrous data sets (Table 2). As comparison, the
chemical models by Duan (2014) (top), Giordano et al. (2008) (middle) and Hui and Zhang (2007) (bottom) are shown
as blue circles. The solid line indicates the 1:1 correspondence. The root-mean-square error (RMSE) across all 1,251
datapoints for our model is RMSE = 0.17 log units. The general chemical models have RMSE values of 1.95, 0.74, and
0.69, respectively. Values of the fitting parameters and the RMSE for individual data sets and the respective references
can be found in Table 2.
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Figure 6. Comparison of differential scanning calorimetry (DSC)-derived viscosity data (green symbols) with
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(green line) and to the viscometric measurements (red line) both use A =—2.9. The MYEGA fit to the viscometry data
by Al-Mukadam et al. (2020) (A20) is shown by the blue line.

measurements in both Hz and Lz ranges as well as DSC data exist. Al-Mukadam et al. (2020) performed
calorimetric measurements of Di and provided two rate-dependent characteristic T in the vicinity of 7,;:
TDHSEI
minimum of the heat flow undershoot of the glass transformation interval. T,

marks the sudden drop in heat flow measured in DSC, and T, corresponds to the (endothermic)
and 7, were measured at
five heating rates, leading to 10 data points. We use the approach of Scherer (1984) to calculate 7 via

nset

logn(Tonset/peak) = Konse!/peak - lOg ‘qc.hl’ (14)

where K is the chemically independent parallel shift factor and | ¢ , | the heating rate in K sHfor T,

onset/peak (Dl
Genova, Zandona, & Deubener, 2020).

Here we fit both the DSC-based values, that is, 10 data points with 5 = 10° — 10> Pa s (Figure 6) as well as
the viscometric measurements compiled by Al-Mukadam et al. (2020), using the MYEGA expression (Equa-
tion 7) and assuming A = —2.9 (Zheng et al., 2011). Our fit and that by Al-Mukadam et al. (2020)—which
leaves A free—to viscometry data show good agreement overall. The deviation at high 7 stems from the dif-
fering values in A. The MYEGA model based on DSC-derived viscosities (at Hz) predicts the Lz viscometry
data well. Our approach shows that a predictive extrapolation from the Hz regime over more than 10 orders
of magnitudes is reliably possible, spanning the entire 7 range relevant to volcanic eruptions.

6.2. Predicting Viscosities Using DSC

After testing this fitting approach on Di, we move to natural melts with fewer DSC data points and more
complex oxide chemistry, which can lead to nanocrystallization even in the DSC experiments (Di Genova,
Zandona, & Deubener, 2020). We compare the results from the fit to DSC-derived data with models that
are based on viscometry measurement on melts of the same eruptions (Table 3): a Trachy-Basalt from Mt.
Etna (Bas1-DSC), a Trachyte from Agnano-Monte Spina (Tra3-DSC), a Latite from Fondo Riccio (Lat-DSC),
both located in the Phlegraean Fields, and a peralkaline Rhyolite from the island of Pantelleria (Rhy14-
DSC), with Basl, Tra3, Lat and Rhy14 (Table 2), the corresponding compositions with viscometry measure-
ments. From the DSC measurements of Di Genova, Romano, Giordano, and Alletti (2014), we use selective
data only, as even DSC upscans can induce nanocrystallization in volcanic melts (Di Genova, Zandona, &
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Deubener, 2020). The presence of FeO-bearing nanocrystals in some samples has been suggested by Raman
spectroscopy (Di Genova, Sicola, et al., 2017) and documented by transmission electron microscope (TEM)
images for an anhydrous basalt from Mt. Etna following a DSC experiment (Di Genova, Zandona, & Deu-
bener, 2020). We therefore take a conservative approach and use the characteristic temperatures from the
first matching heating rate of 20 K min™" to minimize the effect of possible alteration during the experiment.
In additionto 7, and T,

nset peak described in Section 6.1, we also use Ty,;q and its K factor, provided in Di Gen-

ova, Zandona, and Deubener (2020). With the 20 K min ! heating rate, only data above T, are generated, not

constraining the slope () of 5 at 10'* Pa s well. To minimize the use of DSC data points beyond the initial

heating, we use one more point for 5 Kmin™', which provides 7T for logz = 12.3.

4 Tonset

Our model fit to the anhydrous DSC-derived data using A = —2.9 shows diverging behavior for Tra3, Basl,
and Lat in the Hz range when compared to 77-models based on micropenetration measurements (Section 5)
(Figure 7). A possible explanation for this discrepancy is nanostructure formation before or during mi-
cropenetration measurements at low 7 (Di Genova, Zandona, & Deubener, 2020). In particular, Di Gen-
ova, Zandona, and Deubener (2020) reported TEM images and Raman spectra of a nanolite-bearing Mt.
Etna glass (i.e., Bas-1 composition) previously subjected to micropenetration and DSC measurements. They
proved both scanning electron microscope and X-ray diffraction to be inconclusive in inferring the pres-
ence of nanolites due to their small size and low volume fraction. It was observed that with increasing
nanocrystallization, viscosity increased toward values from melts of similar basaltic composition. Converse-
ly, viscometry measurements in the L7 range are well predicted by the DSC-derived model. DSC-derived 7
for Rhy14 (Figure 7d) shows excellent agreement with micropenetration data (Di Genova et al., 2013), and
agrees with their VFT model up to ~1200°C. Contrary to the other three samples, a slight deviation can
be observed between the DSC model prediction and the high-T viscometry measurements which can be
traced to differences in m between the fits, DSC being better constrained at 10'? Pa s and showing a stronger
non-Arrhenian behavior.

Similar to Di, n7 determined by viscometry at high 7 is well predicted by the extrapolation of the DSC-based
description. This suggests that it is possible to accurately describe the L7 regime of volcanic melts using only
measurements of the Hz; range with (Zheng et al., 2011). This observation is further supported when con-
sidering the # differences between anhydrous viscometry- and DSC-based models at eruptive T of the melts
that fall between the Hz and Lz region, with 900 °C for Lat (Cannatelli, 2012), 945 °C for Tra3, 1225 °C for
Basl, 750 °C for Rhy-14 (Di Genova et al., 2013), which therefore requires interpolation and extrapolation
of 7, respectively. Differences for the anhydrous compositions are small, ranging from 0.1 and 0.6 log units
for Basl and Lat, respectively (Figure 8).

Now we extend our analysis to the hydrous DSC and viscometry measurements: for Lat-DSC, only DSC-
based 7 values of one hydrous composition (5.71 mol%) are used from the data reported in Di Genova,
Sicola, et al. (2017), for Bas1-DSC two hydrous compositions (5.24 mol% and 8.30 mol%); further data (3.6,
3.8 wt% for Bas1-DSC and 2.7, 3.8, 6.3 wt% for Lat-DSC) are excluded due to the presence of nanocrystals in
the starting material (Di Genova, Sicola, et al., 2017).

The DSC-derived 7 of Tra3-DSC (Figure 7a) exhibits a T-dependence that our model describes well, and
DSC- and viscometry-based models show good agreement for ; in the ~ 4 mol% and 12-13 mol% H,O
ranges; they fit all experimental data well, with some deviations for 9.07 mol% H,O. The difference in
dependence of 77 on H,O becomes apparent when the models are evaluated for 15.96 mol% H,O: While
the DSC-based model shows a further decrease of z with H,O content at given 7, the trend for the vis-
cometry-based model reverses, with an unphysical increase. This behavior reflects the ill-behaved fitting
parameters for Tra3 mentioned in Section 5 (Figure S4), reiterating the warning against using models for
H,O0 concentrations outside the range of fitting. This is also reflected in the change to a positive slope of
Tra3 for ~ 12 mol% at eruptive T (Figure 8). Data for Bas1-DSC with 5.24 mol% and 8.30 mol% of H,O do
not provide a consistent picture in terms of 77 — 1 / T (Figure 7b). The two low T and two high T points show
different slope, and an offset. The two high T points represent the DSC measurements at 7., and Tjg;q

for the 20 Kmin™' heating rate, most likely reflecting nanocrystallization during the heating cycle in the
DSC measurements, as mentioned above. Consequently, not all data can be fit with the same quality as for
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Figure 7. Comparison of viscosity data for Trachyte Tra3 (a), Basalt Basl (b), Latite Lat (c), and Rhyolite Rhy14 (d). Differential scanning calorimetry (DSC)-
derived viscosities (filled circles) (Di Genova, Romano, Giordano, & Alletti, 2014) were obtained by using the shift factors K; from Di Genova, Zandona, and
Deubener (2020). Viscometry measurements (open circles) for Tra3 are from Romano et al. (2003), for Basl from Giordano and Dingwell (2003b), for Lat from
Misiti et al. (2011), and for Rhy14 from Di Genova et al. (2013). Our MYEGA fits to the DSC data (solid lines) are calculated using A =— 2.9. For comparison,
our fits to the viscometric data from Section 5 are included (dashed lines). H,O content indicated in the legends by solid lines only (DSC column) show curves
for which the DSC model is evaluated, without DSC-derived 7 data available.

Tra3-DSC. Nevertheless, Bas1-DSC and Bas1 models agree well for ~ 5 mol% H,0, and Bas1-DSC is able to
predict the 2.34 mol% H,O viscometric data accurately, without this water content being part of the DSC-
based fit. At eruptive 7', Bas1 and Bas1-DSC (Figure 8) show a consistent decrease of  with H,O.

The Lat-DSC model deviates significantly for 5.71 mol% of H,O from that of Lat (Figure 7c). This is caused
by the n measurements of Misiti et al. (2011) showing little variation for 1.12 — 4.37 mol% H,0, while the
DSC-derived 7 values, based on the measurements with 5.71 mol% H,O only, vary significantly over this
range of water content. The Lat-DSC model reasonably reproduces viscometry-based » with a water content
of 2 mol% (Misiti et al., 2011). Both models describe the Lz data at 10-11 mol% H,O similarly well; for the
viscometry-based Lat model they are used as input data, in Lat-DSC not. At eruptive 7, the Lat-DSC model
shows a well behaved, monotonically decreasing » with H,O content (Figure 8), while Lat has a plateau
at H,O contents of ~ 2.5 mol% due to the clustering of similar 7 values for 1.12 — 4.37 mol% H,0O (Misiti
et al., 2011). Consistent with the anhydrous data, viscometry measurements for Rhy14 show a steeper slope
in 5 — 1/ T compared to the DSC values for hydrous compositions (Figure 7d). Therefore the Rhy14 model
predicts lower values in the Lz regime compared to Rhy14-DSC, and higher values in the Hn regime. At
eruptive T, Rhy14 and Rhy14-DSC (Figure 8) show similar behavior, with the viscometric model generating
lower 7 values; the difference between both models increases until it becomes approximately constant at
~ 7.5 mol% (2 wt%) with 0.8 — 0.9 log units.
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Our results for this set of examples indicate that hydrous DSC-derived 7 can be used to calibrate the model
developed here (Equation 7 with A = -2.9 and Equations 9-12). Viscosity values of different H,O concen-
tration can not only be described well, but accurately predicted (Figure 7). Resulting 7 at eruptive T are
well behaved with H,O for all DSC-derived models. However, to fully validate this approach and explain
the deviations between viscometry and DSC-derived models comprehensively, more DSC and viscometry
measurements carried out on samples of equivalent compositions are necessary. As we have pointed out
explicitly for Basl, the formation of nanostructures appears to not only affect viscometry measurements,
but also DSC experiments, albeit to a much smaller extent. Careful analysis of samples after experiments,
for example, by Raman spectroscopy or TEM, is necessary to check for the formation of nanostructures (Di
Genova, Zandona, & Deubener, 2020).

7. Conclusions

We present a new approach to fit the temperature and water dependence of viscosity for volcanic melts. It
is based on a combination of the physically motivated MYEGA model (Mauro et al., 2009) (Equation 7) for
an isochemical fit to anhydrous data and a two-component model (Schneider et al., 1997) to describe the
influence of water. In the MYEGA model, the fitting parameters are the viscosity at infinite 7' (A = log7,,),
the glass transition temperature 7, and the steepness factor m. In the two-component model, we formulate
a dependence of T, only between the endmembers of the anhydrous melt composition and that of water
(Equations 9 and 10). For the dependence of m on water content, we derive an analytical expression depend-
ent on 7, (Equation 12) and thereby on H,0.

For a suite of 45 anhydrous melts (Table 1), we show that the MYEGA model describes the data comparably
to—or better than—the more commonly used VFT fit. We further explore the performance of the MYEGA
model by assuming a global constant value of A = —2.9 (Zheng et al., 2011); naturally, the misfit to the data
increases, but the fits remain good overall. We also find that highly polymerized Arrhenian melts tend to
yield smaller values of A due to the experimental inaccessibility of higher 7 measurements for these types
of melts. For 26 data sets with both anhydrous and hydrous measurements, we apply the MYEGA model in
combination with the H,O-dependent description of 7,. We find that our model performs with comparable
or better quality than various differing literature models (Table 2), including global chemical models. An
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excel file to calculate viscosities of all melts considered here using our model is provided as Supporting
Information.

We further investigate and fit viscosities derived from DSC which is an attractive experimental approach
that avoids or reduces nanocrystallization and demixing of samples during the measurements compared to
viscometric methods. The lack of low viscosity data due to DSC only probing 7' around 7, is compensated
by using a constrained A = —2.9. For a small set of five examples (Table 3), we illustrate that such a fit ex-
trapolates well to high 7 when compared to viscometry measurements. We apply the H,O dependent model
with A = —2.9 to hydrous DSC-derived viscosities, and find the model to show good fitting and predictive
capabilities. Investigating these models at eruptive T also shows well behaved functions; viscosities mono-
tonically decrease with H,O content. This underlines the viability of determining » with DSC.

Since nanostructures have been shown to significantly influence 7 of volcanic melts (Di Genova, Brooker,
et al., 2020; Di Genova, Kolzenburg, et al., 2017; Di Genova, Zandona, & Deubener, 2020), understand-
ing and quantifying their impact on magma transport is an important task in physical volcanology. The
characterization of samples exposed to DSC and viscometry measurements by Raman spectroscopy and
transmission electron microscopy gives insight into the structural and textural impact of nanostructures. In
combination with fitting the DSC-derived viscosities with A = —2.9 as well as viscometric measurements,
this opens up the possibility to quantify the impact of nanostructure formation on the viscosity of volcanic
melts. This in turn may improve our understanding of the eruptive dynamics of volcanoes.

Data Availability Statement

Data can be found in the cited references (Tables 1 and 3). An Excel file to compute viscosities with our
model using fitting parameters of Table 2 is supplied as Supporting Information.
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