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Scientific Significance Statement

Constraining which nutrients limit phytoplankton growth is important for understanding ocean productivity, its response to
climate change, and providing a benchmark on the accuracy of ocean biogeochemical models. The extensive subtropical
Northwest Pacific is assumed to be nitrogen limited, but this is based mostly on indirect evidence. We conducted experiments
along an ~8000 km cruise track showing a geographic switch from sites that were nitrogen limited and those that were
nitrogen–iron co-limited. Co-limited sites showed much larger responses to nutrient supply, due to blooming of diatoms that
were initially undetectable. Because diatom growth leads to higher biomass accumulation and more efficient energy transfer
up food chains, we hypothesize that this gradient could be important for regulating matching gradients in predatory tuna.

Abstract
Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin
predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under
strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of
14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gra-
dient from nitrogen limitation in the north to nitrogen–iron co-limitation in the south. While nitrogen limited sites
responded weakly to nutrient supply, co-limited sites bloomed with up to ~60-fold increases in chlorophyll a bio-
mass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton
growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concen-
tration fields. We hypothesize that this large-scale phytoplankton response gradient is both climate sensitive and
potentially important for regulating the distribution of predatory fish.
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Surface waters of the western subtropical North Pacific
have chlorophyll a (Chl a) and nutrient concentrations that
are among the lowest globally (Hashihama et al. 2009;
Longhurst 2010). The mean state of this ecosystem is charac-
terized by a dominance of small picophytoplankton (<2 μm),
with tightly balanced rates of growth and mortality (i.e., via
grazing, viral lysis). Efficient remineralization of cell-bound
nutrients explains how picophytoplankton can maintain ele-
vated growth rates in an environment where the standing
stocks of nutrients are low (Goldman et al. 1979). Less clear,
however, is how these types of system can sustain export of
sinking particulate organic matter or host large predatory fish
(Lehodey et al. 1997; Longhurst 2010; Tréguer et al. 2018;
Landry et al. 2019). Both processes (i) require external supply
of new nutrients, and (ii) are enhanced by a shift in phyto-
plankton community structure from picophytoplankton to
larger diatoms (Irigoien et al. 2002; Tréguer et al. 2018). The
latter increases phytoplankton cell size by tens of thousands
(by volume), which both enhances particle sinking and short-
cuts several trophic transfer stages, increasing energy flow to
higher predators (Irigoien et al. 2002).

In the subtropical Northwest Pacific, fixed nitrogen
(N) supply is generally assumed to be the main limiting factor
for phytoplankton (Moore et al. 2004; Hashihama et al. 2009;
Longhurst 2010; Moore et al. 2013; Li et al. 2015). In this case,
increased phytoplankton growth rates and a shift from pic-
ophytoplankton to diatoms would depend primarily on the
enhanced supply of N. However, a recent data synthesis has
highlighted that, alongside N, concentrations of phosphate
(P) can also be strongly depleted in this region (Martiny
et al. 2019). Additionally, further south at the western extent
of the Equatorial Pacific upwelling zone, measurements of
phytoplankton photophysiology and the results of a nutrient
addition experiment both independently pointed toward a
system approaching co-limitation by both N and iron
(Fe) (Behrenfeld et al. 2006; Li et al. 2015). While these differ-
ent lines of evidence argue that Fe and/or P could be playing
important roles as (co-)limiting nutrients alongside N in the
subtropical Northwest Pacific, there have been no studies sys-
tematically testing for this (Moore et al. 2013). Conducting
replicated experiments with the required factorial nutrient
amendment design is challenging, but affords the advantages
of (i) defining the identity of (co-)limiting nutrient(s) and
(ii) quantifying phytoplankton responses to individual and
combinations of nutrient supply in a way that can be mapped
at ocean scales (Moore et al. 2008; Browning et al. 2017).
Here, we present the results of 14 such experiments con-
ducted along an ~8000 km cruise track throughout the sub-
tropical Northwest Pacific.

Methods
Experiments were conducted onboard the RV Tan Kah Kee

from 25th April 2019 to 13th June 2019 (KK1903). Data are

available in Browning (2021). Experiments directly followed
previously published protocols (Browning et al. 2017). Follow-
ing collection of whole, unfiltered seawater (1 L acid-washed
polycarbonate bottles; Nalgene) with a towed sampling device
(~2 m depth; Zhang et al. 2019), seawater was spiked in tripli-
cate with N (1 μM NO3

� + 1 μM NH4
+), P (0.2 μM) and Fe

(2 nM) in factorial combinations. At several of the sites, addi-
tional treatments also conducted were NO3

� (2 μM) alone,
and NO3

� + Fe (2 μM and 2 nM, respectively). Samples were
incubated for ~48 h in on-deck incubators (Lee Filters “Blue
Lagoon” screening and flushed with surface seawater).
Samples for Chl a were filtered (250–500 mL), extracted in
90% acetone, and analyzed fluorometrically on a 10AU Turner
Designs fluorometer (Welschmeyer 1994). Flow cytometry
samples were preserved at 1% paraformaldehyde concentra-
tion, frozen at �80�C, and later analyzed using a CytoFLEX
(Beckman coulter; Marie et al. 2000). Phytoplankton groups
were identified and enumerated with FlowJo software. Fast
Repetition Rate fluorometry measurements were undertaken
using a FastOcean with integrated Act2 laboratory system
(Chelsea Technologies group) yielding minimum and maxi-
mum fluorescence (Fo and Fm, respectively) that were blank
corrected using fluorescence of 0.2 μm filtrates. Samples for
diagnostic pigment analyses (initial t = 0 samples 4.4–5.3 L;
pooled seawater from replicates for some treatments ~2 L)
were filtered onto glass fiber filters, frozen at �80�C, then later
analyzed using a Shimadzu LC-20A HPLC system (Heukelem
and Thomas 2001).

Macronutrient and dissolved Fe samples were collected
filtered (0.8/0.2 μm pore size; AcroPak, Pall). Analyses followed
previously described protocols: phosphate was analyzed on
ship (Ma et al. 2008); nitrate + nitrite were preserved (�20�C)
and determined following Zhang (2000); and ammonium was
analyzed on-ship (Zhu et al. 2013). Dissolved Fe samples were
acidified and stored for >6 months and analyzed following Rapp
et al. (2017) except that a Preplab instrument (PS Analytical) was
used for preconcentration and standard addition was used for
concentration determination. Analysis of GEOTRACES inter-
calibration standard GSP91 yielded Fe concentrations similar to
determinations by other laboratories (0.13 nM in the same analyt-
ical run as the samples, n = 2; 0.16 � 0.045 nM over multiple
analytical runs, n = 8; Wuttig et al. 2019) (https://www.geotraces.
org/standards-and-reference-materials/). Vertical profiles of dis-
solved Fe were collected using a trace-metal-clean rosette with
Niskin-X bottles and analyzed by chemiluminescence-based flow
injection (King et al. 1995) after preconcentration by a PA-1
column.

Rates of N2 fixation were determined using the 15N2 gas
dissolution method (Mohr et al. 2010), conducted in duplicate
4.5 L Nalgene polycarbonate bottles. The 15N2 pre-dissolved
seawater (2 L) was prepared with 15N2 gas (98.9 atom %,
Cambridge Isotope Laboratories) following Lu et al. (2018).
Samples were spiked with 100 mL 15N2 enriched filtered
seawater prepared at the same site and incubated on-deck for
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24 h. The final 15N2 enriched seawater concentration in the
incubation bottles (~3 atom %) was calculated based on an
assumed 100 atom % concentration in the pre-dissolved
seawater. Measurement of enriched seawater prepared in an
identical manner by the same investigators on a previous
cruise via GasBench-IRMS confirmed this prepared seawater
was always >95 atom %; n = 6; Wen et al. 2017). The exact
enrichment of individual incubation bottles was not deter-
mined for this research cruise. Incubated samples were filtered
onto pre-combusted (450�C, 4 h) GF/F filters. Surface seawater
particulate organic matter was also collected to determine the
natural, background 15N-PON abundance. Samples were
analyzed using an elemental analyzer coupled to a mass
spectrometer (EA-IRMS, vario PYRO cube- Isoprime 100). The
N2 fixation rates were then calculated according to Montoya
et al. (1996), taking 4‰ as the minimum acceptable change
in the δ15N of particulate nitrogen.

To estimate nitrate transfer into the euphotic zone via tur-
bulent diffusion, the nitrate concentration gradient at the 1%
light depth was calculated and multiplied by a turbulent diffu-
sion coefficient of 1 � 10�5 m2 s�1 (Lee et al. 2007; Kaneko
et al. 2021). This was undertaken for both depth profiles of
nitrate determined on the research cruise and for the World
Ocean Atlas annual average climatology.

Results and discussion
All investigated sites were strongly and equally oligotrophic

(Chl a 0.01–0.04 mg m�3) and depleted in fixed nitrogen (N;
nitrate + nitrite ≤10 nM; ammonium <15 nM; Table 1; Fig. 1).
In line with the extreme N depletion, experimental stimula-
tion of any increase in Chl a required the supply of at least N
(Fig. 1; one-way ANOVA, α = 0.05, followed by a Tukey post-
hoc test). The default N treatment was nitrate plus ammo-
nium, but additional further treatments at several sites with
nitrate alone showed similar results (Fig. 1c; Supporting Infor-
mation S1). At Sites 1–7, located in the northern part of the
study region, significant increases in Chl a were observed fol-
lowing supply of N alone. Within this zone, further increases
in Chl a were observed following combined supply of N + P
at Sites 1, 2, and 4; here, we define this type of response as
serially N–P limited.

Further south at Site 7, supplying N alone also increased
Chl a, however, the serial limiting nutrient switched identity
from P to Fe. Furthest south at Sites 8–13, Chl a increases fol-
lowing N-only supply were small and not significant with the
applied statistical test. Chl a responses at these sites instead
only became significantly enhanced following the combined
supply of N + Fe, indicating these nutrients were co-limiting.
Finally, Sites 5–6 and 14, located geographically in between
the serially N–P limited sites to the north and the N–Fe co-
limited sites to the south, exhibited primary N limitation
followed by serial responses to N + P + Fe supply (i.e., pri-
mary N limitation followed by serial P + Fe co-limitation).

The region of N and Fe co-limitation identified by the Chl
a responses in the southern portion of the study region was
further distinguished in a number of cases by distinct photo-
physiological changes following N supply (Figs. 1c and S1;
Behrenfeld and Milligan 2013). At N (and serial N–P) limited
sites to the north, the apparent photosystem II photochemical
efficiency parameter, Fv/Fm, was high and generally varied
insignificantly following supply of any nutrient combination
(mean = 0.45, sd = 0.06, n = 222). Values of Fv/Fm at N–Fe
serially/co-limited sites 7–11 were also elevated (mean = 0.47,
sd = 0.05, n = 93) and remained so following Fe addition in
any treatment combination, but in contrast to the northern
sites, often declined following N supply (either as +N or +N
+ P; mean = 0.37, sd = 0.03, n = 33). These Fv/Fm reductions
were a result of tipping the N–Fe co-limited communities into
stronger Fe limitation following the artificial supply of N
(Behrenfeld et al. 2006; Behrenfeld and Milligan 2013;
Browning et al. 2017).

In addition to the qualitative classification of the sites into
different nutrient limitation regimes, the magnitudes of Chl
a responses to supply of limiting nutrients between experi-
mental sites also showed strong geographic variability
(Table 1). This variability was coherent with the identity of
the limiting nutrients. Chl a based net growth rates were
0.8–0.9 d�1 (mean 0.9 d�1) at N (and serial P) limited sites
following supply of all three nutrients in combination (N + P
+ Fe; Sites 2–4). In contrast, this full nutrient treatment
resulted in net growth rates of 1.4–2.1 d�1 (mean 1.8 d�1) at
N–Fe co-limited sites (Sites 8–12). Corresponding net growth
rates at serially N–Fe limited sites fell in between these ranges
(1.2–1.8 d�1, mean 1.5 d�1). Therefore, in addition to arrang-
ing into geographically coherent categories in terms of the
identity of limiting nutrients, overall magnitudes and rates of
Chl a biomass responses generally matched such categoriza-
tion, with two-fold higher mean net growth rates following
nutrient supply at the N–Fe co-limited sites in the south than
at the N (or serially N–P) limited sites to the north.

This marked geographic variability in Chl a growth
responses following the supply of limiting nutrient(s) was
strongly tied to changes in phytoplankton community struc-
ture (Fig. 2). At N (and serially N–P) limited sites in the north-
ern part of the study region, Chl a responses following supply
of limiting nutrients were mostly attributable to increases in
numbers and intracellular Chl a concentration of phytoplank-
ton communities that dominated the initial seawater, that is,
cyanobacteria and photosynthetic picoeukaryotes (Fig. 2a,b).
A combination of low maximum specific growth rates of these
phytoplankton and their rapid consumption by small, fast
responding grazers were probably key in restricting rates and
magnitudes of observed biomass enhancements (Landry
et al. 2000; Moore et al. 2008; Browning et al. 2017; net
growth rates derived from cell concentrations following N + P
treatment at N/serially N–P limited Sites 2–3 ranged 0.57–
1.04 d�1 (Prochlorococcus); 0.59–0.8 d�1 (Synechococcus); 0.23–
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0.61 d�1 (picoeukaryotic phytoplankton)). In contrast, the
N–Fe co-limited sites to the south exhibited extreme shifts in
phytoplankton community structure following N + Fe supply,
with diatoms increasing from undetectable contributions to
an estimated 68–83% of total Chl a (Fig. 2b; net growth rates
of the diatom-associated pigment fucoxanthin were 2.55–3.32
d�1; Fig. S2). Synechococcus and photosynthetic picoeukaryote
concentrations and cellular Chl a content also demonstrated evi-
dence for N–Fe serial/co-limitation at these sites (Fig. 2a; net

growth rates derived from cell concentrations at N–Fe co-limited
Sites 8–13 ranged 0.12–0.52 d�1 for +N and 0.86–1.19 d�1 for
+N + Fe (Synechococcus); and 0.19–0.52 d�1 for +N and 0.43–
0.78 d�1 for +N + Fe (picoeukaryotic phytoplankton)); however,
unlike the picophytoplankton, expected higher specific growth
rates of diatoms together with their larger, slower
responding grazers, are suggested to have enabled higher
magnitude biomass accumulation following N + Fe supply
(Landry et al. 2000). Accordingly, in addition to overall

Fig. 1. Biogeochemical setting and Chl a responses. (a) Surface nitrate concentrations from the World Ocean Atlas. Mean surface currents are shown
(Talley et al. 2011): SCC, subtropical counter current; NEC, north equatorial current; NECC, north equatorial counter current; KC, Kuroshio current. (b)
Satellite-derived Chl a concentrations for May 2019. For “a” and “b,” lines and points indicate the cruise track and bioassay experiment locations, respec-
tively. Symbols summarize the nutrient limitation of Chl a accumulation found at each site as shown in panel. (c): Central circle color = primary limiting
nutrient; outer circle color = serial limiting nutrient; split circles = co-limiting nutrients; green = N, red = Fe, black = P. (c) Chl a responses to nutrient
supply. Bars are mean of triplicate biological replicates, with individual values shown as points. Arrows indicate mean initial values. Bars labeled with the
same letter have means that are statistically indistinguishable between treatments with the applied statistical test (one-way ANOVA, α = 0.05, followed
by Tukey posthoc test). Treatments labeled in blue showed significant Fv/Fm reductions relative to controls (Fig. S1).
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(a)

(b)

Fig. 2. Phytoplankton community responses to nutrient supply. (a) Picophytoplankton responses derived from flow cytometry analysis. Responses are
mean of triplicate replicates and shown on a fold scale (changes relative to controls). Upper panels are derived from cell concentrations, lower panels
fluorescence per cell (F cell�1, a proxy for intracellular Chl a content). PPE, photosynthetic picoeukaryotes. (b) Phytoplankton community responses for
select treatments derived from diagnostic pigment analysis and converted to approximate contributions of each phytoplankton type to total Chl a. Apart
from experimental sites 1 and 2, the estimated fractional contribution of diatoms in initial samples was always zero. Pigment concentrations were
converted to approximate contributions of different phytoplankton types using CHEMTAX (Mackey et al. 1996) with starting pigment ratios from DiTullio
et al. (2003).
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biomass yields, mean net Chl a growth rates in experimen-
tal treatments across the dataset were highly predictable by
final diatom contributions to the phytoplankton commu-
nity (R2 = 0.80, p < 1 � 10�16, n = 48).

What regulated the marked north–south transition in bio-
logical responses to nutrient supply? These sites were indis-
tinguishable in terms of initial N, Chl a, and community
structure. Inspection of satellite-derived current velocities
and drifting float trajectories showed that this transition
instead mapped onto changes in near-surface currents
(Fig. 3a,b). While Sites 2–6 in the north were located within
currents having no sustained flow direction, Sites 8–12 to the
south were situated in coherent westward flowing waters of
the North Equatorial Current (NEC) that originate in the
eastern tropical Pacific (Talley et al. 2011). No gradient in
surface nitrate concentration exists across the transition
between these ocean currents (Table 1); however, climatological
nitrate datasets show that Ekman divergence as a result of

westward acting wind stress in the NEC zone shoals the
nitracline depth by ~50 m (here defining the nitracline as the
1 μM nitrate contour; Fig. S3).

Using nitrate gradients calculated at the euphotic depth
alongside an assumed representative value of turbulent diffu-
sivity, we calculated the regional distribution of the turbulent
diffusive nitrate flux into the euphotic zone (Figs. 3c and S3).
In contrast to surface nitrate concentrations, which are ubiq-
uitously low, mean nitrate transport upwards into the eupho-
tic zone was estimated to be around five-fold higher in the
NEC zone (N–Fe co-limited sites 9–13) in comparison to fur-
ther north (N limited sites 2–6) (Figs. 3c; also see S4). Depth
profiles of dissolved Fe concentrations demonstrated that,
unlike nitrate and phosphate, waters below the mixed layer
were not substantially enriched in Fe, and were furthermore
indistinguishable between the NEC zone in the south and fur-
ther to the north (Fig. S5). Consequently, entrainment of
lower Fe:N waters around the NEC via Ekman divergence and

Fig. 3. Surface currents, upwelled nitrate, and tuna distribution. (a) Ekman upwelling derived from wind stress curl (background color) with satellite-
derived current vectors overlain (ocean surface current analysis real-time; https://podaac.jpl.nasa.gov/). (b) trajectories of surface drifting floats for
January–June 2019 (http://www.coriolis.eu.org; all drifter data for 1st January–30th June 2019 for region 5–25�N, 120–165�E). Blue-to-red coloring indi-
cates start-to-end trajectory. Estimate of turbulent diffusive nitrate flux into the euphotic zone with cruise station measurements (c) and N2 fixation rates
overplotted (d; crosses indicate rates too low to observe in the figure). (e) Yellowfin and Bigeye tuna catch per hook for the period 1950–1980. Data was
obtained from publicly available datasets from the Western and Central Pacific Fisheries Commission (WCPFC; https://www.wcpfc.int), then averaged for
years 1950–1980 (from record start up to the introduction of international legal frameworks restricting foreign fishing vessels fishing with EEZ waters).
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nitracline shoaling, alongside low expected aerosol Fe deposi-
tion rates in this zone (Fig. S6), would have both together
contributed to the development of the observed N–Fe co-lim-
ited conditions.

Spatial patterns in the relative supply rates of N and Fe also
offer a mechanistic framework for understanding the
responses to experimental supply of P (Fig. S7; Table 1).
Following N supply, serial Chl a responses to P addition were
observed in combination with Fe (i.e., serial P–Fe co-limita-
tion) at Sites 5, 6, and 14 and alone at Sites 1, 2, and 4 (all
sites away from the NEC zone in the south). A combination of
(i) reduced upwelled N away from the NEC, together with
(ii) a probable increase in Fe supply nearer Asian landmasses
(Fig. S6), would together increase the overall Fe:N supply ratio
to surface waters, creating a niche for diazotrophs (N2-fixing
bacteria; Ward et al. 2013). In line with this theoretical expec-
tation, mean N2 fixation rates measured on the research cruise
were >20-fold higher at sites away from NEC waters (Table 1;
Fig. 3d; also see Hashihama et al. 2009; Kitajima et al. 2009).
The enhanced N2 fixation at these sites would introduce new
N into the system without a corresponding addition of P,
which over time would drive the observed P drawdown in sur-
face waters (Table 1), leading to the serial P responses
observed (Fig. S7; Supporting Information S2; Wu et al. 2000;
Martiny et al. 2019).

In addition to establishing a north–south spatial gradient
in the nitracline, the westward advecting NEC current also
transports phytoplankton zonally across the tropical Pacific
(Villarino et al. 2018). This transport could retain signatures
of the community structure from more productive waters
upstream (Villarino et al. 2018), which typically contain more
diatoms. Therefore, although not detected by diagnostic pig-
ments (Fig. 2b), we hypothesize a westward transport of
bloom forming diatoms and/or their resting spores in the
NEC from the eastern subtropical Pacific. Further diatom
input could result from enhanced vertical exchange with sub-
mixed layer waters (Fig. 3a; Furuya 1990). Whether laterally or
vertically, any input term of bloom-forming diatoms into the
surface layer would effectively reduce their equilibrium
resource concentration, R* (Lévy et al. 2014), which based on
the extremely depleted nutrient concentrations would be
expected to become fully outcompeted by smaller pic-
ophytoplankton at all sites (Dutkiewicz et al. 2009). Together,
we hypothesize that the enhanced nitrate, and potentially
diatom, supply rates into the surface layer in the NEC might
be key to retaining the low-level diatom seed population,
which appears fundamental in regulating the subsequent
rapid biological growth response to supply of limiting nutri-
ents (Figs. 1c and 2b; Cermeño et al. 2016). In contrast to the
NEC zone, weaker circulating currents further north would
increase the time for competitive exclusion of bloom forming
diatoms by picophytoplankton (Figs. 2b and 3a,b; Lévy
et al. 2014), leading to the much weaker growth responses to
nutrient supply observed there (Fig. 1c).

The identified large-scale gradient in rapid diatom growth
capacity could be important for regulating predatory fish
(Fig. 3e). In addition to greater enhancements of primary pro-
ducer biomass (Fig. 1c), growth of larger diatoms shortcuts two
or more trophic positions in the food chain between primary
producers and predatory fish (that is, heterotrophic
nanoflagellates and ciliated protozoa; Landry et al. 2019).
Although ubiquitously oligotrophic throughout in its mean state
(Table 1; Fig. 1a,b), the north–south geographic shift we
observed in growth responses to nutrient supply matches the
distribution of predatory tuna (Yellowfin and Bigeye), which are
consistently elevated in the NEC region and even further to the
south (Fig. 3d; Suzuki 1994; Longhurst 2010; Fonteneau and
Hallier 2015). This tuna distribution has been recognized for
decades (Suzuki 1994; Fonteneau and Hallier 2015), but has
remained a puzzle because nitrate and Chl a in surface waters
are ubiquitously low (Lehodey et al. 1997; Longhurst 2010). Our
finding of the matching gradient in diatom growth capacity
could potentially help to reconcile the counterintuitive observa-
tion of elevated concentrations of tuna in the NEC region
(Lehodey et al. 1997; Longhurst 2010). A requirement for this
link is that transient nutrient (i.e., N + Fe) supply events do
occur in such systems, which remains to be investigated
(although see Johnson et al. 2010). We have further shown that
this gradient is intimately tied to the wind-driven NEC. Accord-
ingly, if our hypothesis is correct, projected future changes in
the distribution of wind stress, which controls NEC current flow
and Ekman transports (Duan et al. 2017), could have a major
impact on fish distribution even if changes are not registered in
mean nutrient and Chl a fields.
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