%0 Journal article %A de Vrese, Philipp %A Stacke, Tobias %A Caves Rugenstein, Jeremy %A Goodman, Jason %A Brovkin, Victor %T Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes %R 10.1038/s43247-021-00160-4 %J Communications Earth & Environment %V 2 %N 1 %I Nature Publishing Group UK %X Simple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels. %U http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11140 %~ FID GEO-LEO e-docs