%0 Journal article %A Morales Demarco, Manuela %A Oyhantçabal, Pedro %A Stein, Karl-Jochen %A Siegesmund, Siegfried %T Dolomitic slates from Uruguay: petrophysical and petromechanical characterization and deposit evaluation %R 10.1007/s12665-012-1921-7 %R 10.23689/fidgeo-2624 %J Environmental Earth Sciences %V 69 %N 4 %I Springer-Verlag %X Slates are internationally known as roof and façade-cladding material since prehistoric times. The methods required to mine and manufacture these dimensional stones are relatively simple in comparison to those utilized in granitic dimensional stones. This has led to a worldwide rentable commercialization of slate in the last centuries and also to the development of characteristic cultural landscapes. In Uruguay several slates are mined and used in architecture, especially as façade cladding and floor slabs. The most important slates regarding their production and utilization are the dolomitic slates. These dolomitic slates are associated with the Neoproterozoic thrust and fold belt of the Dom Feliciano belt. Representative samples have been geochemically and petrographically characterized, as well as petrophysically and petromechanically analyzed. The petrophysical and petromechanical properties were investigated in a very systematic way with respect to the new European standards, showing values comparable to those registered for internationally known slates. Detailed structural and deposit analysis were carried out in Uruguay in order to evaluate the dolomitic slate deposits. The slates are linked to calc-silicate strata in a greenschist facies volcano-sedimentary sequence and the deposits are located in the limb of a regional fold, where bedding and cleavage are parallel. The main lithotype is a layered and fine-grained dolomitic slate with a quite diverse palette of colors: light and dark green, gray, dark gray, reddish and black. The mined slate is split into slabs 0.5–2 cm thick. In the past, the average production in Uruguay was around 4,000 tons/year and a historical maximum of 13,000 tons was reached in 1993 (Oyhantçabal et al. in Z dt Ges Geowiss 158(3):417–428, 2007). The oscillations in the regional demand were the cause of several flourishing and decay cycles in the activity, but our investigation shows a considerable volume of indicated resources and therefore a very good potential. %U http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/6937 %~ FID GEO-LEO e-docs