%0 Journal article %A Le Roy, Nathalie %A Jackson, Daniel J. %A Marie, Benjamin %A Ramos-Silva, Paula %A Marin, Frédéric %T The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization %R 10.1186/s12983-014-0075-8 %R 10.23689/fidgeo-2726 %J Frontiers in Zoology %V 11 %N 1 %X The carbonic anhydrase (CA; EC 4.2.1.1) superfamily is a class of ubiquitous metallo-enzymes that catalyse the reversible hydration of carbon dioxide. The α-CA family, present in all metazoan clades, is a key enzyme involved in a wide range of physiological functions including pH regulation, respiration, photosynthesis, and biocalcification. This paper reviews the evolution of the α-CA family, with an emphasis on metazoan α-CA members involved in biocalcification. Phylogenetic analyses reveal a complex evolutionary history of α-CAs, and suggest α-CA was independently co-opted into a variety of skeleton forming roles (e.g. as a provider of HCO3 − ions, a structural protein, a nucleation activator, etc.) in multiple metazoan lineages. This evolutionary history is most likely the result of multiple gene duplications coupled with the insertion of repetitive or non-repetitive low-complexity domains (RLCDs/LCDs). These domains, of largely unknown function, appear to be lineage-specific, and provide further support for the hypothesis of independent recruitment of α-CAs to diverse metazoan biocalcification processes. An analysis of α-CA sequences associated with biocalcification processes indicates that the domains involved in the activity and conformation of the active site are extremely conserved among metazoans. %U http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/7039 %~ FID GEO-LEO e-docs