%0 Journal article %A Siegismund, Frank %T A Spectrally Consistent Globally Defined Geodetic Mean Dynamic Ocean Topography %R 10.1029/2019JC016031 %R 10.23689/fidgeo-4440 %J Journal of Geophysical Research: Oceans %V 125 %N 7 %X The space-borne geodetic temporal mean dynamic topography (MDT) is obtained from the difference of altimetric mean sea surface (MSS) h and the geoid height N. With the geostrophic surface currents obtained from its gradient, the MDT is an essential parameter when describing the ocean dynamics. Spectral consistency of h and N is crucial to minimize MDT errors. Frequently, h is globalized to allow for a spherical harmonic analysis, and small scales beyond maximum degree and order (d/o) resolved in the geoid are cut off. However, common globalization causes ocean-land steps in h−N and spectral inconsistencies of N and h over land. To overcome both issues, a methodology is proposed based on globalization of the MDT. A Laplacian smoother with the coastal MDT values as boundary condition is applied, resulting in a smooth surface over land and a continuous ocean-land transition. The new methodology strongly reduces Gibbs effects and the need to work with high-resolution MDTs to minimize them. Reduction of resolution is tested to reduce MDT uncertainties caused by the commission error expected to increase with decreasing scale. Applying drifter data and a high-resolution hydrodynamic ocean model, it is shown that for the Gulf Stream and the Kuroshio, geodetic MDTs applying recent combined geoid models contain physical information up to at least d/o 420 (48-km spatial scale). For oceanic regions with strong geoid gradients, a higher-resolution MDT might be needed to prevent Gibbs effects caused by remaining inconsistencies between the geoid and the MSS. %U http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8786 %~ FID GEO-LEO e-docs