%0 Journal article %A Kemna, Kilian B. %A Verdecchia, Alessandro %A Harrington, Rebecca M. %T Spatio‐Temporal Evolution of Earthquake Static Stress Drop Values in the 2016–2017 Central Italy Seismic Sequence %R 10.1029/2021JB022566 %J Journal of Geophysical Research: Solid Earth %V 126 %N 11 %I %X The static stress drop of an earthquake is an indicator of the stress state of a specific fault before rupture initiation. The stress state is primarily controlled by the ambient stress field, fault strength, fault complexity, and the presence of fluids. This study aims to investigate the spatio‐temporal distribution of static stress drop values of the 2016–2017 multi‐fault rupture seismic sequence in central Italy, which includes three earthquakes with Mw ≥ 5.9 (Amatrice, Visso, and Norcia earthquakes), and over 95,000 aftershocks (M 0.5–6.5). We estimate stress drop values using a circular crack model with corner frequency and seismic moment estimates from single‐spectra fitting, a cluster‐event method, and spectral‐ratio fitting. The temporal distribution of stress drop values shows an apparent increase of stress drop following a large earthquake (Mw ≥ 5.9). The spatial distribution shows comparably high stress drop values for early aftershocks surrounding the mainshock rupture area. High stress drop events correlate with fault complexity, such as fault intersections at depth and reactivated thrust fronts. We observe a constant stress drop for Mw ≥ ∼3, in contrast to previous studies. Instrument response and signal‐to‐noise bandwidth limitations likely govern the observed decrease in stress drop with decreasing magnitude for events with Mw ≤ 3. The spatio‐temporal distribution of stress drop values in a complex seismic sequence could support a more complete understanding of the earthquake rupture process and the evolution of seismic sequences. It could also highlight areas where stress loading is focused, which would have implications for short and intermediate term seismic hazard estimates. %U http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9890 %~ FID GEO-LEO e-docs