Do image resolution and classifier choice impact island biogeographical parameters of terrestrial islands?

Oldeland, Jens ORCIDiD
Eibes, Pia Maria ORCIDiD
Irl, Severin David Howard ORCIDiD
Schmiedel, Ute ORCIDiD

DOI: https://doi.org/10.1111/tgis.12920
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10261
Oldeland, Jens; Eibes, Pia Maria; Irl, Severin David Howard; Schmiedel, Ute, 2022: Do image resolution and classifier choice impact island biogeographical parameters of terrestrial islands?. In: Transactions in GIS, 26, 4, 2004-2022, DOI: https://doi.org/10.1111/tgis.12920. 
 
Oldeland, Jens; 1 Eco‐Systems Hamburg Germany
Eibes, Pia Maria; 2 Biogeography and Biodiversity Lab Institute of Physical Geography Goethe‐University Frankfurt am Main Germany
Irl, Severin David Howard; 2 Biogeography and Biodiversity Lab Institute of Physical Geography Goethe‐University Frankfurt am Main Germany

Abstract

Island biogeography provides concepts for conservation management as fragmented habitats are comparable to ocean islands. Remote sensing can help to extract terrestrial habitat islands on the landscape scale. However, little is known about the effects of image resolution and classification algorithms on resulting island size and related parameters. We study the combined effect of three image resolutions (2, 10, and 30 m) and three classification algorithms (Artificial Neural Network, Random Forest, Support Vector Machine) by extracting quartz islands from WorldView‐2 imagery using image segmentation. We compared four island parameters (i.e., area, distance, shape index, and perimeter–area ratio between resolutions and classifiers). We found that in all cases, image resolution and classification algorithms had a strong effect. However, image resolution was more important for area and shape. Artificial Neural Network always provided the best performance as a classifier (OA: 0.880, kappa: 0.801, F1: 0.912). Hence, conservation strategies could lead to different results when different pattern extraction strategies are applied. Future studies which aim at extracting terrestrial habitat islands from image datasets should aim for the highest possible resolution and compare the outcomes of different classifiers to ensure the best possible results.