Comparative Evaluation of Different MOF and Non‐MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low‐Pressure Uptake

Brandt, Philipp ORCIDiD
Nuhnen, Alexander
Öztürk, Seçil
Kurt, Gülin
Liang, Jun
Janiak, Christoph ORCIDiD

DOI: https://doi.org/10.23689/fidgeo-4358
Brandt, Philipp; Nuhnen, Alexander; Öztürk, Seçil; Kurt, Gülin; Liang, Jun; Janiak, Christoph, 2021: Comparative Evaluation of Different MOF and Non‐MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low‐Pressure Uptake. In: Advanced Sustainable Systems, 5, 4, DOI: https://doi.org/10.23689/fidgeo-4358. 
 
Brandt, Philipp; 1 Institut für Anorganische und Analytische Chemie Heinrich‐Heine‐Universität Düsseldorf Düsseldorf 40204 Germany
Nuhnen, Alexander; 1 Institut für Anorganische und Analytische Chemie Heinrich‐Heine‐Universität Düsseldorf Düsseldorf 40204 Germany
Öztürk, Seçil; 1 Institut für Anorganische und Analytische Chemie Heinrich‐Heine‐Universität Düsseldorf Düsseldorf 40204 Germany
Kurt, Gülin; 1 Institut für Anorganische und Analytische Chemie Heinrich‐Heine‐Universität Düsseldorf Düsseldorf 40204 Germany
Liang, Jun; 1 Institut für Anorganische und Analytische Chemie Heinrich‐Heine‐Universität Düsseldorf Düsseldorf 40204 Germany

Abstract

The search for adsorbents for flue gas desulfurization processes is a current interest. For the first time, a comparative experimental study of SO2 adsorption by porous materials including the prototypical metal–organic frameworks NH2‐MIL‐101(Cr), Basolite F300 (Fe‐1,3,5‐BTC), HKUST‐1 (Cu‐BTC), the zeolitic imidazolate frameworks (ZIF)‐8, ZIF‐67, the alumosilicate Zeolite Y, the silicoaluminumphosphate (SAPO)‐34, Silica gel 60, the covalent triazine framework (CTF)‐1, and the active carbon Ketjenblack is carried out. Microporous materials with pore sizes in the range of 4–8 Å or with nitrogen heterocycles are found to be optimal for SO2 uptake in the low‐pressure range. The SO2 uptake capacity at 1 bar correlates with the Brunauer‐Emmett‐Teller‐surface area and pore volume rather independently of the surface microstructure. Zeolite Y and SAPO‐34 are stable toward humid SO2. The materials Zeolite Y and CTF‐1(600) show the most promising SO2/CO2 selectivity results with an ideal adsorbed solution theory selectivity in the range of 265–149 and 63–43 with a mole fraction of 0.01–0.5 SO2, respectively, at 293 K and 1 bar.


Microporous materials with pore sizes in the range of ≈4–8 Å and with nitrogen heterocycles are optimal for the uptake of SO2 in the ‰ range.