Unravelling the crystal structure of Nd5.8WO12−δ and Nd5.7W0.75Mo0.25O12−δ mixed ionic electronic conductors
Fantin, Andrea
Checchia, Stefano
Stephan-Scherb, Christiane
Escolástico, Sonia
Franz, Alexandra
Seeger, Janka
Meulenberg, Wilhelm A.
d'Acapito, Francesco
Serra, José M.
DOI: https://doi.org/10.23689/fidgeo-4119
Checchia, Stefano; 3European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, Grenoble38043, France
Stephan-Scherb, Christiane; 4Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, Berlin12205, Germany
Escolástico, Sonia; 6Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Cientifícas), Avenida Los Naranjos s/n, Valencia46022, Spain
Franz, Alexandra; 1Helmholtz-Zentrum-Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin14109, Germany
Seeger, Janka; 7Forschungszentrum Jülich GmbH, Jülich52425, Germany
Meulenberg, Wilhelm A.; 7Forschungszentrum Jülich GmbH, Jülich52425, Germany
d'Acapito, Francesco; 8CNR-IOM-OGG c/o ESRF, LISA CRG, 71 avenue des Martyrs, Grenoble38043, France
Serra, José M.; 6Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Cientifícas), Avenida Los Naranjos s/n, Valencia46022, Spain
Abstract
Mixed ionic electronic conducting ceramics Nd6−yWO12−δ (δ is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost‐efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6−yWO12−δ, the ionic/electronic transport mechanism in Nd6−yWO12−δ is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12−δ and molybdenum‐substituted Nd5.7W0.75Mo0.25O12−δ prepared by the citrate complexation route. High‐resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12−δ and Nd5.7W0.75Mo0.25O12−δ. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit‐cell parameter due to cation ordering. Mo replaces W at both Wyckoff sites 4a and 48h and is evenly distributed, in contrast with La6−yWO12−δ. X‐ray absorption spectroscopy as a function of partial pressure pO2 in the near‐edge regions excludes oxidation state changes of Nd (Nd3+) and W (W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo‐substituted Nd6−yWO12−δ is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies.
The crystal structures of non‐substituted and Mo‐substituted neodymium tungstates are described in detail through neutron diffraction and high‐resolution X‐ray diffraction. Combined X‐ray and neutron diffraction refinements and electron probe micro‐analysis were employed to locate Mo atoms in the crystal structure of Nd6−yW1−zMozO12−δ (z = 0, 0.25), while X‐ray absorption spectroscopy in the near‐edge regions confirmed no changes in the oxidation states of Nd and W.