Optical clock technologies for global navigation satellite systems

Schuldt, Thilo ORCIDiD
Gohlke, Martin
Oswald, Markus
Wüst, Jan
Blomberg, Tim
Döringshoff, Klaus
Bawamia, Ahmad
Wicht, Andreas
Lezius, Matthias
Voss, Kai
Krutzik, Markus
Herrmann, Sven
Kovalchuk, Evgeny
Peters, Achim
Braxmaier, Claus

DOI: https://doi.org/10.1007/s10291-021-01113-2
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11468
Schuldt, Thilo; Gohlke, Martin; Oswald, Markus; Wüst, Jan; Blomberg, Tim; Döringshoff, Klaus; Bawamia, Ahmad; Wicht, Andreas; Lezius, Matthias; Voss, Kai; Krutzik, Markus; Herrmann, Sven; Kovalchuk, Evgeny; Peters, Achim; Braxmaier, Claus, 2021: Optical clock technologies for global navigation satellite systems. In: GPS Solutions, 25, 3, DOI: https://doi.org/10.1007/s10291-021-01113-2. 
 
Schuldt, Thilo; German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany
Gohlke, Martin; German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany
Oswald, Markus; Center of Applied Space Technology and Microgravity, University of Bremen, Bremen, Germany
Wüst, Jan; German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany
Blomberg, Tim; German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany
Döringshoff, Klaus; Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
Bawamia, Ahmad; Ferdinand-Braun-Institut gGmbH, Leibniz-Institut Für Höchstfrequenztechnik, Berlin, Germany
Wicht, Andreas; Ferdinand-Braun-Institut gGmbH, Leibniz-Institut Für Höchstfrequenztechnik, Berlin, Germany
Lezius, Matthias; Menlo Systems GmbH, Martinsried, Germany
Voss, Kai; SpaceTech GmbH, Immenstaad, Germany
Krutzik, Markus; Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
Herrmann, Sven; Center of Applied Space Technology and Microgravity, University of Bremen, Bremen, Germany
Kovalchuk, Evgeny; Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
Peters, Achim; Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
Braxmaier, Claus; Center of Applied Space Technology and Microgravity, University of Bremen, Bremen, Germany

Abstract

Future generations of global navigation satellite systems (GNSSs) can benefit from optical technologies. Especially optical clocks could back-up or replace the currently used microwave clocks, having the potential to improve GNSS position determination enabled by their lower frequency instabilities. Furthermore, optical clock technologies—in combination with optical inter-satellite links—enable new GNSS architectures, e.g., by synchronization of distant optical frequency references within the constellation using time and frequency transfer techniques. Optical frequency references based on Doppler-free spectroscopy of molecular iodine are seen as a promising candidate for a future GNSS optical clock. Compact and ruggedized setups have been developed, showing frequency instabilities at the 10–15 level for averaging times between 1 s and 10,000 s. We introduce optical clock technologies for applications in future GNSS and present the current status of our developments of iodine-based optical frequency references.