GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Institutionelle Serien und Zeitschriften
  • Electronic Journal of the Freiberg Geoscience Departement
  • View Item
  •   Home
  • Alle Publikationen
  • Institutionelle Serien und Zeitschriften
  • Electronic Journal of the Freiberg Geoscience Departement
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geostatistics without Stationarity Assumptions within Geographical Information Systems

Brenning, AlexanderORCIDiD
Journal: Freiberg Online Geosciences, 2001
: -
DOI: https://doi.org/10.23689/fidgeo-869
Brenning, Alexander, 2001: Geostatistics without Stationarity Assumptions within Geographical Information Systems. In: Freiberg Online Geosciences, DOI: 10.23689/fidgeo-869.
 
Thumbnail
View/Open
FOG_Vol_6.pdf (2.622Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
The present work deals with two challenging problems of applied geostatistics: (i) Stationarity assumptions often do not hold under real-world conditions. (ii) Geostatistical methods have to be linked with spatial databases in order to be applicable in non-stationary situations. Solutions for both problems are proposed and implemented. (i) A central assumption in geostatistics is the stationarity of the process. However the spatial variability of many natural phenomena heavily depends on the local geology, which is nonstationary in most cases. To deal with this, the concept of process stationarity is replaced by a stationarity of the governing influence relating the local semivariogram and the local geology as stored in a Geographical Information System (GIS). A construction method is used, which can meaningfully incorporate additional spatial information from GIS, e.g. smoothly varying geology in the investigated area, spatially varying anisotropy induced by mountainous morphology, or geological faults interrupting continuity. Least-squares parameter estimation is used for fitting instationary semivariogram models in typical example situations, leading to non-linear optimization problems. Furthermore, a method for semivariogram parameter estimation in the present of linear trend is proposed. (ii) Geostatistical tools that make use of the local geology need direct access to the data stored in the GIS. A link between the presented geostatistical tools and the GIS software ArcView was established. Thus, spatial data such as measured contaminant concentrations, soil properties and morphology can be incorporated in geostatistical analyses. R code that fits instationary semivariogram models and performs kriging was implemented and can be obtained from the author. It is applied to simulated datasets.
 
Die vorliegende Diplomarbeit befasst sich mit zwei wichtigen Problemen der angewandten Geostatistik: (i) Stationaritätsannahmen werden unter realweltlichen Bedingungen oft nicht erfüllt. (ii) Geostatistische Methoden müssen mit räumlichen Datenbanken verbunden werden, um unter nichtstationären Bedingungen anwendbar zu sein. Lösungen für beide Probleme werden vorgeschlagen und implementiert. (i) In der Geostatistik ist die Stationarität des Prozesses eine zentrale Annahme. Die räumliche Variabilität vieler Phänomene in unserer Umwelt hängt jedoch stark von lokalen geologischen Verhältnissen ab, die meist aber instationär sind. Um damit umgehen zu können, wird das Konzept der Stationarität des Prozesses ersetzt durch eine Stationarität des Einflusses der lokalen Geologie, wie sie in einem GIS gespeichert ist, auf das lokale Semivariogramm. Es wird eine Konstruktionsmethode benutzt, die auf sinnvolle Art räumliche Informationen aus dem GIS in Semivariogrammmodelle einbinden kann, etwa sich über das Untersuchungsgebiet gleichmäßig verändernde geologische Verhältnisse, sich räumlich verändernde Anisotropie im Gebirgsrelief oder geologische Störungen, die die Kontinuität unterbrechen. Kleinste-Quadrate Schätzung wird für die Anpassung instationärer Semivariogrammmodelle in typischen Beispielsituationen verwendet. Dies führt zu nichtlinearen Optimierungsproblemen. Des weiteren wird eine Methode der Schätzung von Semivariogrammparametern in Modellen mit linearem Trend vorgestellt. (ii) Geostatistische Werkzeuge, die lokalen geologischen Verh¨ältnisse berücksichtigen, benötigen einen direkten Zugang zu Daten, die in einem GIS gespeichert sind. Im Rahmen dieser Arbeit wurde eine Verbindung zwischen den vorgestellten geostatistischen Werkzeugen und dem GIS Programm ArcView erstellt. Auf diese Weise können räumliche Daten wie etwa Schadstoffkonzentrationen, Bodeneigenschaften oder die Morphologie in geostatistische Analysen einbezogen werden. R-Code, der instationäre Semivariogrammmodelle anpasst und Kriging durchführt, wurde erstellt und auf simulierte Datensätze angewandt. Der Code kann über den Author bezogen werden.
Statistik:
View Statistics
Collection
  • Electronic Journal of the Freiberg Geoscience Departement [27]
Subjects:
geographic information systems
geostatistics
combination
spatial distribution
sampling
Geoinformationssysteme {Geographie}
Mathematische Geographie
Statistische Auswertung {Geochemie}
Mathematische und Statistische Geologie
Probennahme, Probenaufbereitung {Geochemie}
Untersuchungsmethoden und Probennahme im Gelände {Sedimentologie}
Methoden und Techniken der Umweltforschung {Angewandte Geographie}
GEO-LEO e-docs Lizenz

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan