Understanding Micropolar Theory in the Earth Sciences I: The Eigenfrequency $\omega_r$
DOI: https://doi.org/10.1007/s00024-021-02932-7
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10633
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10633
Abreu, Rafael; Durand, Stephanie, 2021: Understanding Micropolar Theory in the Earth Sciences I: The Eigenfrequency $\omega_r$. In: Pure and Applied Geophysics, Band 179, 3: 915 - 932, DOI: 10.1007/s00024-021-02932-7.
|
Dokument öffnen: |
Even though micropolar theories are widely applied for engineering applications such as the design of metamaterials, applications in the study of the Earth’s interior still remain limited and in particular in seismology. This is due to the lack of understanding of the required elastic material parameters present in the theory as well as the eigenfrequency $\omega _r$ which is not observed in seismic data. By showing that the general dynamic equations of the Timoshenko’s beam is a particular case of the micropolar theory we are able to connect micropolar elastic parameters to physically measurable quantities. We then present an alternative micropolar model that, based on the same physical basis as the original model, circumvents the problem of the original eigenfrequency $\omega _r$ laking in seismological data. We finally validate our model with a seismic experiment and show it is relevant to explain observed seismic dispersion curves.