Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone
Peche, Aaron
Halisch, Matthias
Bogdan Tatomir, Alexandru
Sauter, Martin
7, 3: 727 - 739
DOI: https://doi.org/10.5194/se-7-727-2016
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/6779
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/6779
Peche, Aaron; Halisch, Matthias; Bogdan Tatomir, Alexandru; Sauter, Martin, 2016: Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone. In: Solid Earth, Band 7, 3: 727 - 739, DOI: 10.5194/se-7-727-2016.
|
View/
|
In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid–fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier–Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid–fluid interface.
In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc–Sw–awn relationship can be computed.
Statistik:
View StatisticsCollection
- Geologie [933]