GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Paläontologie, Geobiologie
  • View Item
  •   Home
  • Alle Publikationen
  • Paläontologie, Geobiologie
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Countergradient variation concealed adaptive responses to temperature increase in Daphnia from heated lakes

Dziuba, Marcin KrzysztofORCIDiD
Kuczyński, LechosławORCIDiD
Wejnerowski, ŁukaszORCIDiD
Cerbin, SlawekORCIDiD
Wolinska, JustynaORCIDiD
DOI: https://doi.org/10.23689/fidgeo-4225
Dziuba, Marcin Krzysztof; Kuczyński, Lechosław; Wejnerowski, Łukasz; Cerbin, Slawek; Wolinska, Justyna, 2020: Countergradient variation concealed adaptive responses to temperature increase in Daphnia from heated lakes. In: Limnology and Oceanography, DOI: 10.23689/fidgeo-4225.
 
Thumbnail
View/Open
LNO_LNO11680.pdf (588.6Kb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
To test the general assumption that global warming will induce body size reduction in aquatic organisms, we used a system of lakes continually heated for six decades by warm water discharge from power plants. Their temperature elevation of 3–4°C corresponds with climate change forecasts for the end of the 21st century. We compared body size and reproduction of Daphnia longispina complex communities inhabiting heated and non‐heated (control) lakes nearby. No difference in body size was found, but Daphnia communities from heated lakes had a wider thermal breadth for reproduction. The two lake groups varied in the taxonomic composition of Daphnia communities. Thus, to disentangle inter‐ and intraspecific sources of variation, and to examine evolution vs. phenotypic plasticity of investigated traits, we performed two life history experiments: (1) a between‐species experiment compared D. galeata inhabiting heated lakes with D. longispina typical of nearby control lakes, under three temperature regimes; (2) a within‐species experiment compared D. galeata from heated lakes with conspecifics from high latitude (cold control) and low latitude (warm control) lakes, under two temperature regimes. The experiments revealed countergradient variation: environmental constraints on body size in situ concealed evolution of larger potential body size in Daphnia from heated lakes. In turn, evolution of increased body size plasticity resulted in an efficient resource allocation trade‐off: more effective reproduction at high temperature, at the cost of size reduction. We suggest that large size is adaptive during active overwintering, while plastic size reduction is a coping strategy for high temperatures.
Statistik:
View Statistics
Collection
  • Paläontologie, Geobiologie [273]
Subjects:
Daphnia
aquatic organism
body size reduction
global warming
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan