GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Geophysik, Extraterrestische Forschung
  • View Item
  •   Home
  • Alle Publikationen
  • Geophysik, Extraterrestische Forschung
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Critical Evaluation of Deep Blue Algorithm Derived AVHRR Aerosol Product Over China

Mei, LinluORCIDiD
Zhao, Chuanxu
de Leeuw, GerritORCIDiD
Burrows, John P.ORCIDiD
Rozanov, Vladimir
Che, HuiZheng
Vountas, MarcoORCIDiD
Ladstätter-Weißenmayer, Annette
Zhang, Xiaoye
DOI: https://doi.org/10.1029/2018JD029929
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8816
Mei, Linlu; Zhao, Chuanxu; de Leeuw, Gerrit; Burrows, John P.; Rozanov, Vladimir; Che, HuiZheng; Vountas, Marco; Ladstätter-Weißenmayer, Annette; Zhang, Xiaoye, 2019: A Critical Evaluation of Deep Blue Algorithm Derived AVHRR Aerosol Product Over China. In: Journal of Geophysical Research: Atmospheres, Band 124, 22: 12173 - 12193, DOI: 10.1029/2018JD029929.
 
Thumbnail
View/Open
JGRD_JGRD55786.pdf (36.37Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
The Deep Blue (DB) aerosol retrieval algorithm has recently been applied to Advanced Very High Resolution Radiometer (AVHRR) data to produce a first version (V001) of a global aerosol optical thickness (AOT) data set. In this paper, we critically evaluate these AVHRR AOT data over China by comparison with ground-based reference data from China Aerosol Remote Sensing Network for the period 2006–2011. The evaluation considers the impact of the surface (type and reflectance) and the aerosol properties (aerosol loading, aerosol absorption) on the quality of the retrieved AOT. We also compare the AVHRR-retrieved AOT with that from Moderate Resolution Imaging Spectroradiometer over major aerosol source regions in China. We further consider seasonal variations and find, in general, a good agreement between AVHRR AOT and the reference data sets. The AVHRR retrieval algorithm performs well over dark vegetated surfaces, but over bright surfaces (e.g., desert regions) the results are less good. The AVHRR algorithm underestimates the AOT, with 32.1% of the values lower than the estimated error envelope of ±0.05 ± 0.25τ. In particular over the desert, the AVHRR-retrieved AOT is frequently underestimated and for AOT ≤ 0.6 the values are on average 0.05 too low due to the pixel filtering, and dust storms are missed. The comparison of the AVHRR AOT with MODIS collection 6 and CARSNET data indicates that improvements are needed for, for example, AVHRR calibration and cloud/aerosol flagging. The analysis presented in this paper contributes to a better understanding of the AVHRR AOT product over China.
Statistik:
View Statistics
Collection
  • Geophysik, Extraterrestische Forschung [836]
Subjects:
China
AVHRR aerosol data
data quality validation
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)About usDeposit LicenseSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan