Shock-induced formation of wüstite and fayalite in a magnetite-quartz target rock
Kontny, Agnes
Reznik, Boris
Gerhards, Uta
Göttlicher, Jörg
Genssle, Tim
Schilling, Frank
DOI: https://doi.org/10.1111/maps.13422
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8973
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8973
Henrichs, Leonard F.; Kontny, Agnes; Reznik, Boris; Gerhards, Uta; Göttlicher, Jörg; Genssle, Tim; Schilling, Frank, 2019: Shock-induced formation of wüstite and fayalite in a magnetite-quartz target rock. In: Meteoritics & Planetary Science, Band 55, 1: 56 - 66, DOI: 10.1111/maps.13422.
|
View/
|
Projectile–target interactions as a result of a large bolide impact are important issues, as abundant extraterrestrial material has been delivered to the Earth throughout its history. Here, we report results of shock-recovery experiments with a magnetite-quartz target rock positioned in an ARMCO iron container. Petrography, synchrotron-assisted X-ray powder diffraction, and micro-chemical analysis confirm the appearance of wüstite, fayalite, and iron in targets subjected to 30 GPa. The newly formed mineral phases occur along shock veins and melt pockets within the magnetite-quartz aggregates, as well as along intergranular fractures. We suggest that iron melt formed locally at the contact between ARMCO container and target, and intruded the sample causing melt corrosion at the rims of intensely fractured magnetite and quartz. The strongly reducing iron melt, in the form of μm-sized droplets, caused mainly a diffusion rim of wüstite with minor melt corrosion around magnetite. In contact with quartz, iron reacted to form an iron-enriched silicate melt, from which fayalite crystallized rapidly as dendritic grains. The temperatures required for these transformations are estimated between 1200 and 1600 °C, indicating extreme local temperature spikes during the 30 GPa shock pressure experiments.
Statistik:
View StatisticsCollection
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.