TY - JOUR A1 - Baloza, M. A1 - Henkel, S. A1 - Geibert, W. A1 - Kasten, S. A1 - Holtappels, M. T1 - Benthic Carbon Remineralization and Iron Cycling in Relation to Sea Ice Cover Along the Eastern Continental Shelf of the Antarctic Peninsula Y1 - 2022-06-28 VL - 127 IS - 7 JF - Journal of Geophysical Research: Oceans DO - 10.1029/2021JC018401 PB - N2 - Rapid and profound climatic and environmental changes have been predicted for the Antarctic Peninsula with so far unknown impact on the biogeochemistry of the continental shelves. In this study, we investigate benthic carbon sedimentation, remineralization and iron cycling using sediment cores retrieved on a 400 mile transect with contrasting sea ice conditions along the eastern shelf of the Antarctic Peninsula. Sediments at comparable water depths of 330–450 m showed sedimentation and remineralization rates of organic carbon, ranging from 2.5 to 13 and 1.8–7.2 mmol C m−2 d−1, respectively. Both rates were positively correlated with the occurrence of marginal sea ice conditions (5%–35% ice cover) along the transect, suggesting a favorable influence of the corresponding light regime and water column stratification on algae growth and sedimentation rates. From south to north, the burial efficiency of organic carbon decreased from 58% to 27%, while bottom water temperatures increased from −1.9 to −0.1°C. Net iron reduction rates, as estimated from pore‐water profiles of dissolved iron, were significantly correlated with carbon degradation rates and contributed 0.7%–1.2% to the total organic carbon remineralization. Tightly coupled phosphate‐iron recycling was indicated by significant covariation of dissolved iron and phosphate concentrations, which almost consistently exhibited P/Fe flux ratios of 0.26. Iron efflux into bottom waters of 0.6–4.5 μmol Fe m−2 d−1 was estimated from an empirical model. Despite the deep shelf waters, a clear bentho‐pelagic coupling is indicated, shaped by the extent and duration of marginal sea ice conditions during summer, and likely to be affected by future climate change. N2 - Plain Language Summary: The seafloor of the shallow shelf seas plays a significant role in the recycling of organic carbon and acts as a nutrient source for algae growth in the upper water layers. In Antarctic waters, the change in sea ice cover has a great impact on the growth of algae and the subsequent sinking of organic carbon to the seafloor. With global warming, profound changes in sea ice cover are expected for the Antarctic Peninsula. To better understand its imprint on the seafloor, we collected sediment samples from different locations along the eastern shelf of the Antarctic Peninsula and measured how changes in sea ice cover influence the accumulation and recycling of organic carbon. We found that moderate sea ice cover of 5%–35% increases the amount of organic carbon received by the seafloor and that the fraction that is buried in the sediments decreases from south (58%) to north (27%). We further measured that more iron, an important micro‐nutrient for algae growth, can be released from the seafloor the more organic carbon accumulates. Thus, sea ice conditions determine the organic carbon accumulation, turnover, and nutrient release at the seafloor, which are likely to be affected by future climate change. N2 - Key Points: Antarctic shelf sediments underlying marginal sea ice cover exhibit high sedimentation and remineralization rates of organic carbon. A high degree of sedimentary Fe‐recycling is found which scales with organic carbon remineralization rates. Coupling between P and Fe recycling is observed with a constant P/Fe flux ratio of 0.26 for sediments with high Fe and P recycling rates. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10223 ER -