TY - JOUR A1 - Li, Xinyang A1 - Speziale, Sergio A1 - Koch‐Müller, Monika A1 - Husband, Rachel Jane A1 - Liermann, Hanns‐Peter T1 - Phase Stability of Al‐Bearing Dense Hydrous Magnesium Silicates at Topmost Lower Mantle Conditions: Implication for Water Transport in the Mantle Y1 - 2022-08-26 VL - 49 IS - 16 JF - Geophysical Research Letters DO - 10.1029/2022GL098353 PB - N2 - In this study, we investigated the phase stability of Al‐free and Al‐bearing superhydrous phase B (shy‐B) up to 55 GPa and 2500 K. In comparison with Al‐free shy‐B, the incorporation of 11.7 wt.% Al2O3 in shy‐B expands the stability by ∼400–800 K at 20–30 GPa. The determined dehydration boundary for Al‐bearing phase D indicates that it could be present even at normal mantle geotherm conditions at 30–40 GPa. Up to 23.8 mol.% Al2O3 can be dissolved into the structures of akimotoite and bridgmanite as a result of the decomposition reactions of Al‐bearing shy‐B and phase D between 20 and 40 GPa. Results of further experiments indicate that δ‐AlOOH is the stable hydrous phase coexisting with Al‐depleted bridgmanite at pressures above 52 GPa. This study shows that the incorporation of Al in dense hydrous magnesium silicates can have a profound impact on our picture of the water cycle in the deep Earth. N2 - Plain Language Summary: Constraining the deep cycle of water has a tremendous impact on our picture of the current state of the Earth and the evolution of the Earth's interior. Dense hydrous magnesium silicates (DHMSs) are considered potential H2O carriers in the Earth's mantle. However, the DHMSs can only be present at the relatively cold conditions of subduction slabs due their limited thermal stability. We determined the phase stability of Al‐bearing DHMSs at high pressure and temperature (P‐T) conditions. Our results show that the thermal stability of Al‐bearing shy‐B extends by 400–800 K with respect to its Al‐free counterpart at 600–800 km depth. The incorporation of Al also expands the phase stability of phase D and enhances the likelihood of its occurrence at normal mantle conditions at 800–1100 km. In addition, we observe that 23.8 mol.% Al2O3 can be dissolved into the structures of akimotoite and bridgmanite as a result of the decomposition reactions of Al‐bearing shy‐B and phase D between 600 and 100 km depth. Furthermore, δ‐AlOOH is the stable hydrous phase coexisting with Al‐depleted bridgmanite in the MgO‐SiO2‐Al2O3‐H2O system at pressures above 52 GPa and 1500 K. N2 - Key Points: In comparison with Al‐free shy‐B, the incorporation of 11.7 wt.% Al2O3 in superhydrous phase B (shy‐B) expands the stability by ∼400–800 K at 20–30 GPa. Al‐bearing phase D could be present even at normal mantle geotherm conditions at 30–40 GPa. δ‐AlOOH is the stable hydrous phase coexisting with Al‐depleted bridgmanite at pressures above 52 GPa. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10402 ER -